Europ. J. Combinatoric§1998)19, 701-706
Article No. ej980220
Isometric Embeddings of Metric Q-vector Spaces into &

TOSHIHIRO KUMADA

Let W be ann-dimensionalQ-vector space which has a positive definite symmetric bilinear form.
We prove thatV is isometrically embeddable in@"3. We give a formula to obtain the minimum
N such thatV is isometrically embeddable in@N.
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1. MAIN RESULT

In this paper, we denote 9™ the set of positive rational numbers, and®@y the multi-
plicative group of the rational number field. Fay, ... ,a, € QT, let N := N(ay, ...an)
denote the minimum number such thatthere exist. . , v, € QN satisfying(vi, vj) = 6ij &,
where( , ) is the canonical inner product 6§ ands;; is the Kronecker's delta. Maehara
[1] studies this number for some special cases. Here we give an explicit formula to determine

N(@a, ..., an).
THEOREM 1. Forallay,...,a, € Qt,n < N(ag,...,an) < n+3holds.

LetV be the sefp|p is prime number} U {oa}We denote by), the real number fiel&, and
by Qp the p-adic number field for a prime. The following three theorems give a formula to
obtainN(ag, ... ,an) foragivenay, ... ,an € Q™.

THEOREM 2. Leta,...,ay € QF. Put D:=[[;a € Q" and E, := ;4 _j<n
(&,aj), € {£1}, wherev € V and(, ), is the Hilbert symbol oQ,, N(az, ... ,an) = n
holds if and only if D= 1(modQ*?) holds and E = 1 holds for allv € V.

The Hilbert symbol , ), is a map fronQ}/Q:? x Q*/Q*? to {+1} defined so thata, b), = 1
holds if and only ifz2 = ax? + by? has a non-trivial solutioiix, y, z) € (Q,)3. Itis bilinear
and symmetric. The Hilbert symbol is easy to compute, see Serre [2, p. 20, Theorem 1].

THEOREM 3. Letar, ... ,an € QT. Let D, E, be asin Theorem 2. Assuméay, ... , an)
#n. ThenNay,...,ay) =n+1holdsifandonly if - (D, —1), = 1 holds forallv € V.

THEOREM 4. Letay,...,a, € Q'. LetD, E, beasin Theorem 2. Assumeay, ... , an)
#n,n+1. Then Nag,...,a,) =n+2holdsifand only i-D ¢ sz holds for allv € V,
where

V = {v|v is an odd prime with E= —1} U !{2} !f E2=1
@ if Ep = —1.
In the above three theoremshit= 1, then defineg, := 1 forallv € V.

If x =b/a,y =d/c(ab,c,de Z) andv # 2,00 andv)abcd, then(x, y), = 1 holds
(see Serre [2, p. 20, Theorem 1]). Thus the number efV for which we need to compute
the Hilbert symbol is finite. Thus for giveay, ... ,an € QT, N(ay, ... , ay) is computable
with finite calculation.
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COROLLARY 1. Foran arbitraryne N,putgg =az=---=a,=1. Then N1, a, ...,
an) =n,N(2,a2,...,ay) =n+1,N@,ap,...,an) =n+2and N7,ap, ... ,an) =n+3
hold. Consequently, the bound in Theorem 1 is the best possible.

PROOF. Asap =ag=---=an = 1,E, =1 holds for alla; € Q, v € V. Itis clear that
N(1,ap,...,an) = nholds.

N(2,a,...,an) = n+ 1 holds because 2 Q*2 and(2,—1), = 1 holds for allv € V.
N(3,ap. ... ,an) = n+ 2 holds because 8 Q*2, (3, —1), = —1 and — 3 ¢ Q32.
N(7,ap, ... ,an) = n+ 3 holds because  Q*2, (7, 1), = —1and — 7 € Q2.

O

REMARK 1. LetW be afinite dimension&)-vector space with a positive definite symmetric
bilinear form. The above three theorems give an explicit algorithm to obtain the minimum
dimensionaQN into whichW is isometrically embeddable byQlinear map. This is because
for anyW, we can obtain an orthogonal basis.

These theorems give complete answers to Maehara’s open problems [1]. His upper bound
N(a,...,an) < 2n+1forn > 2isimproved here ta+ 3. He also proved thall (a1, ap) <
4(= 2+ 2) if and only if ajay is a sum of three squares of rational numbers. This result is
a corollary of Theorem 4, as follows. A positive rational numkeés a sum of three squares
of rational numbers if and only X ¢ Q;Z (see Serre [2, p. 45, Lemma A]). Put= ajap,
and note thak, := (az, a»), = (a1, —a1a2), holds for allv € V. LetV be as in Theorem 4.
Assume that the condition of Theorem 4 is satisfied. # ¥, then—ajay ¢ Q;Z holds. If
2 ¢ V, then again—ajap ¢ Q;Z holds becaus&, = (a;, —a1a2)2 = —1. In both cases,
—a1a ¢ Q32 holds. Conversely, assume thatya, ¢ Q32 holds. Letv € V. If v is odd
prime, —a1a; ¢ Q:2 holds becausg, = (a1, —a1d), = —1. If v = 2, —a1a, ¢ Q32 holds
from the assumption. Thus the condition of Theorem 4 is satisfied.

Maehara proposed characterizeng a, such thaiN(az, a) < 3. By Theorem 3N(ag, az)
< 3 holds if and only if(as, az), (a1@2, —1), = 1 holds for allv € V. Note that(as, ap),
(qa2, —1), = (—a1, —a2),(—1,—1), holds for allv € V, because the Hilbert symbol is a
bilinear map. ThudN(az, ap) < 3 holds if and only if(—a;, —a2),(—1, —1), = 1 holds for
allv e V.

2. SYMMETRIC BILINEAR FORMS

Let W be a finite dimensional vector space over a fi€lavith a symmetric non-degenerate
bilinear form(, ) : W x W — K. Putn = dimW. Let (wj)1<i<n be a basis oWW. If
u=> aw; andv = > Biw;, then we have

(U, V) = (@1, ... ,an) A (B, ..., Bn),

whereA is a symmetric matrix irG L(n, K) given by A = (&), aj = (wj, wj). If we use
another basisw;)1<j<n, then we have another symmetric matBxwhereB = (bjj), bij =
(Wi/,W/j). These matrices are related By= !X AXwith X € GL(n, K).

In general, we denota K B if and only if there existX € GL(n, K) suchthaB = !X AX

holds. If A is the symmetric matrix of the bilinear form w.r.t. a bagig) of W, and A X B,
then B is the symmetric matrix of the bilinear form w.r.t. the bagig) obtained by the

transformation ofw;) by X. If A X B, then detA = detB(modK *2) holds.
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To save the space of paper, we will use a notation digg(. , an) foranN x N diagonal
matrix whose(i, i) element isg;. | denotes the identity matrix of size.

LEMMA 1. Leta,...,a, € Q7. N(ay, ..., an) is characterized as the minimum value
of N such that we can choosgf, ... , by € QT so that

. Q
diag@i, ... ,an, bny1, ..., bn) ~ In
holds.

PrROOF. The right side of the above is a matrix of the canonical inner product w.r.t. the
canonical basis 0QN. The above equivalence implies the existence of orthogonal basis

{Vi,...,Vn,...,vn} of QN with (vi,vi) = & for1 < i < n. Conversely, if we have
Vi, ..., Vn € QN satisfying(vi, vj) = éjj &, then we can extend these vectors to an orthogonal
basis, see Lemma 2 below. a

3. PROOF OF THEOREM 1

In this section, we give proof of Theorem 1. Before the proof of Theorem 1, we prepare two
lemmas.

LEMMA 2. LetW be a finite dimensiondD-vector space with a positive definite symmet-
ric bilinear form. Let{w, ... ,w} be linearly independent vectors. Assufng, ..., w;}
are mutually orthogonal. Then we can obtain an orthogonal basig/oivhich includes
{wg, ..., w}.

PROOF. The bilinear form or\W is positive definite. Thus we may perform Schmidt or-
thogonalization without normalization to a basis extending, ... , w; }. O

LEMMA 3. Let ¢ be a positive rational number ang,c. . , ¢4 be elements d@*. Assume
that ¢, > 0. Then the next quadratic equation has a rational solution . . . , x4) € Q*:

4
c=Y X
=

For the proof of the lemma, see, for example, Serre [2, Corollary, Theorem 8 (Hasse—
Minkowski), pp. 37, 41].

PROOF OF THEOREM 1. Let ay, ... , an be arbitraryn elements inQ™. It is clear that
n<N(@i,...,an. SoweproveN(ay, ..., a,) < n+3. BythedefinitionoN(ay, ... , an),
itis sufficient to findn vectorsvy, . . . , vn € Q"3 such thatv;, Vj) = 6jja. We use induction

onn. If n =1, by Lemma 3, there are four rational numbersgj, r, s such that
a1=p*+?+r2+s%

Then putvy := (p, q, r, S). {v1} satisfies the requirement.

Next, assume that Theorem 1 holdsrioMWe considen+1. By the assumption of induction,
there aren vectorsvy, ... , vp € Q™3 such that(vi, vj) = &jja. Putu; := (vj, 0) € Q"*4.
Clearly, (uj, uj) = (vi, vj) = gija holds and{us, ... , un} is linearly independent over the
rational number field. By Lemma 2, we may obtain an orthogonal bag8 ttwhich includes
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{ug, ..., un}. Let{us,..., Un, €n+1, Ent2, €013, €114} be an orthogonal basis Q4. Let
e = (g, §). By Lemma 3, there are four rational numbexsy, r, s such that

ani1 = e1p? + &0° + exr? + ess?.

Putun;1 := pens1+0deni2+renss+Senta. Thenfus, ... , uny1} satisfies the requirements.
O

4. PROOFS OF THEOREMS 2 AND 3

In this section, we give proofs of Theorems 2 and 3. We use Hasses’s principle and the
Hilbert symbol. First recall the general notion of theadic number field.

Q, is an extension field of the rational number fi€dd It is a complete metric space and
Qj/ij2 is an Abelian group of order 4 (if # 2, c0), order 8 (ifv = 2), order 2 (ifv = 00),
respectively.

LEMMA 4. Let A and B be symmetric matrices in @\, Q). Then Ag B holds if and

only if A% B holds for allv € V.

LEMMA 5. Let A and B be diagonal matrices in GN, Q,). Then A% B holds if
and only if det(A) = det(B) (monjZ) and ¢,(A) = ¢,(B) hold, where ¢,(A) :=

HlSi<jSN(a4,aj)v € {1} for A = diag(@s,...,an). If N = 1, we defing,(A) := 1
as usual.

For the proof of both lemmas, see, for example, Serre [2, Theorem 7, Theorem 9, pp. 39,
44].

PROOF OF THEOREM 2. By Lemma 1,N(ay, ..., a,) = n holds if and only if diagas,

., an) ] Ih. Now det() = 1 holds and:, (I) = 1 holds for allv € V. Thus the theorem
follows from Lemmas 4 and 5. O

PROOF OF THEOREM 3. We assume thalN(ay, ... ,an) # n. By Lemma 1,N(ay, ...,

an) = n+1 holds if and only if there exist a rational numbesuch thatA = diag@, .. . , an,

X) R Iny1. PutD := ]_[i”:la;. The determinant of the left side Bx, and that of the
right side is 1, soDx = 1(modQ*?) holds. Thusx is determined byD as an element

of Q*/Q*2. Then we check whetheA = diag@, ... ,an, D) i In+1 holds or not. As
det(A) = det(lny+1)(ModQ*?), det(d) = det(ln,1)(ModQ:*?) holds for allv € V. Thus, all

we have to do is to check whethgi{ A) = ¢(l11) holds for allv € V or not (recall Lemmas 4
and 5). PUE, := [];_j-n(ai. aj)y. Then we have

n
e(diag@.....an. D)= [] G@.aj)]]@.D),
i=1

l<i<j=<n
n
i=1 v
= Ey(D, D)y
= Ev(Da_l(_D))v
= Ev(Dv_l)v'

In the above transformation, we used bilinearity of the Hilbert symbol. At the last transforma-
tion, we used D, —D), = 1. Now the theorem is proved. O
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5. PROOF OF THEOREM 4
Before the proof of Theorem 4, we prepare a lemma.

LEMMA 6. Let a be an element @*, and let(b,),cy be a family of numbers if-1}.
In order that there exists x Q* such that(a, x), = b, for all v € V, it is necessary and
sufficient that the following conditions are satisfied:

(1) The cardinality of the set\= {v|v € V, b, = —1} is finite and even.
(2) For eachv € V, there exists x € Q3 such that(a, x,), = b,.

As the Hilbert symbol is non-degenerate, y), = 1 holds for ally € Q} if and only if
a € Q*2. Thus we may replace (2) in the above lemma witl. (2

(2)) For all v € V', a is not contained iQ*2.
For the proofs, see, for example, Serre [2, Theorem 2, Theorem 4, pp. 20, 24].

PROOF OF THEOREM 4. We assume thaN(az,...,an) # n,n+ 1. By Lemma 1,
N(ai,..., an) = n+ 2 holds if and only if there exist rational numbexsy such that

A =diag@, ..., an, X, y) 2 Iny2. PutD := ]_[i”:1 8. As we observed in the proof of The-
orem 3, the last rational numbwgiis determined byp x from the discussion of determinant. It
is necessary thadx = y(modQ*2) holds. Thus we discuss the existence of a rational number

x such thatA = diag@y, . .. , an, X, Dx) i Int2. Like the proof of Theorem 3, all we have
to do is to check whethet, (A) = 1 holds for allv € V or not (recall Lemmas 4 and 5). Put
E, := H15i<j5n(ai ,8j)y. Then we have

n n
e,(diag@i, ... ,an, x, Dx) = [ (@, ). DX, [ @, %, []@, Dx),
i=1 i=

l<i<j<n i=1

= Ey(X, Dx)v<ﬁa4,x> (ﬁa. Dx)
i=1 v\j=1 v

= E,(X, DX)y(D, Dx?),

= Ey(X, =D(=x))»(D, D)y

= Ey(X, =D)y(D, —1),

= Ey(X, =D)y (=D, =1y (-1, -1),
= Ev(—=X, =D)y (=1, =1),.

Now our problem is reduced to the existence of a rational numiserch that—x, —D), =
E,(—-1,-1), holds for allv € V. Let us recall that—1, —1), = —1 holds iffv = 2 or cc.
Then Theorem 4 follows from Lemma 6. Note that foe= oo, —D ¢ Q32 is automatically
satisfied aD > 0. a
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