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Isometric Embeddings of Metric Q-vector Spaces into QN

TOSHIHIRO KUMADA

Let W be ann-dimensionalQ-vector space which has a positive definite symmetric bilinear form.
We prove thatW is isometrically embeddable intoQn+3. We give a formula to obtain the minimum
N such thatW is isometrically embeddable intoQN .

c© 1998 Academic Press

1. MAIN RESULT

In this paper, we denote byQ+ the set of positive rational numbers, and byQ∗ the multi-
plicative group of the rational number field. Fora1, . . . ,an ∈ Q+, let N := N(a1, . . .an)

denote the minimum number such that there existv1, . . . , vn ∈ QN satisfying(vi , v j ) = δi j ai ,
where( , ) is the canonical inner product ofQN andδi j is the Kronecker’s delta. Maehara
[1] studies this number for some special cases. Here we give an explicit formula to determine
N(a1, . . . ,an).

THEOREM 1. For all a1, . . . ,an ∈ Q+, n ≤ N(a1, . . . ,an) ≤ n+ 3 holds.

LetV be the set{p|p is prime number}∪ {∞}. We denote byQ∞ the real number fieldR, and
by Qp the p-adic number field for a primep. The following three theorems give a formula to
obtainN(a1, . . . ,an) for a givena1, . . . ,an ∈ Q+.

THEOREM 2. Let a1, . . . ,an ∈ Q+. Put D := ∏n
i=1 ai ∈ Q+ and Ev := ∏

1≤i< j≤n
(ai ,aj )v ∈ {±1}, wherev ∈ V and ( , )v is the Hilbert symbol onQv, N(a1, . . . ,an) = n
holds if and only if D= 1(modQ∗2) holds and Ev = 1 holds for allv ∈ V.

The Hilbert symbol( , )v is a map fromQ∗v/Q∗2v ×Q∗v/Q∗2v to {±1}defined so that(a, b)v = 1
holds if and only ifz2 = ax2+ by2 has a non-trivial solution(x, y, z) ∈ (Qv)

3. It is bilinear
and symmetric. The Hilbert symbol is easy to compute, see Serre [2, p. 20, Theorem 1].

THEOREM 3. Let a1, . . . ,an ∈ Q+. Let D, Ev be as in Theorem 2. Assume N(a1, . . . ,an)

6= n. Then N(a1, . . . ,an) = n+ 1 holds if and only if Ev · (D,−1)v = 1 holds for allv ∈ V.

THEOREM 4. Let a1, . . . ,an ∈ Q+. Let D, Ev be as in Theorem 2. Assume N(a1, . . . ,an)

6= n, n+ 1. Then N(a1, . . . ,an) = n+ 2 holds if and only if−D /∈ Q∗2v holds for allv ∈ V ,
where

V = {v|v is an odd prime with Ev = −1} ∪
{
{2} if E2 = 1

∅ if E2 = −1.

In the above three theorems, ifn = 1, then defineEv := 1 for all v ∈ V.
If x = b/a, y = d/c(a, b, c, d ∈ Z) andv 6= 2,∞ andv/| abcd, then(x, y)v = 1 holds

(see Serre [2, p. 20, Theorem 1]). Thus the number ofv ∈ V for which we need to compute
the Hilbert symbol is finite. Thus for givena1, . . . ,an ∈ Q+, N(a1, . . . ,an) is computable
with finite calculation.
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COROLLARY 1. For an arbitrary n∈ N, put a2 = a3 = · · · = an = 1. Then N(1,a2, . . . ,

an) = n, N(2,a2, . . . ,an) = n+1, N(3,a2, . . . ,an) = n+2 and N(7,a2, . . . ,an) = n+3
hold. Consequently, the bound in Theorem 1 is the best possible.

PROOF. As a2 = a3 = · · · = an = 1, Ev = 1 holds for alla1 ∈ Q+, v ∈ V. It is clear that
N(1,a2, . . . ,an) = n holds.

N(2,a2, . . . ,an) = n+ 1 holds because 2/∈ Q∗2 and(2,−1)v = 1 holds for allv ∈ V.
N(3,a2, . . . ,an) = n+ 2 holds because 3/∈ Q∗2, (3,−1)2 = −1 and− 3 /∈ Q∗22 .

N(7,a2, . . . ,an) = n+ 3 holds because 7/∈ Q∗2, (7,−1)2 = −1 and− 7 ∈ Q∗22 .

2

REMARK 1. LetW be a finite dimensionalQ-vector space with a positive definite symmetric
bilinear form. The above three theorems give an explicit algorithm to obtain the minimum
dimensionalQN into whichW is isometrically embeddable by aQ-linear map. This is because
for anyW, we can obtain an orthogonal basis.

These theorems give complete answers to Maehara’s open problems [1]. His upper bound
N(a1, . . . ,an) ≤ 2n+1 for n ≥ 2 is improved here ton+3. He also proved thatN(a1,a2) ≤
4(= 2+ 2) if and only if a1a2 is a sum of three squares of rational numbers. This result is
a corollary of Theorem 4, as follows. A positive rational numberx is a sum of three squares
of rational numbers if and only if−x /∈ Q∗22 (see Serre [2, p. 45, Lemma A]). Putx := a1a2,
and note thatEv := (a1,a2)v = (a1,−a1a2)v holds for allv ∈ V. Let V be as in Theorem 4.
Assume that the condition of Theorem 4 is satisfied. If 2∈ V , then−a1a2 /∈ Q∗22 holds. If
2 /∈ V , then again−a1a2 /∈ Q∗22 holds becauseE2 = (a1,−a1a2)2 = −1. In both cases,
−a1a2 /∈ Q∗22 holds. Conversely, assume that−a1a2 /∈ Q∗22 holds. Letv ∈ V . If v is odd
prime,−a1a2 /∈ Q∗2v holds becauseEv = (a1,−a1a2)v = −1. If v = 2,−a1a2 /∈ Q∗22 holds
from the assumption. Thus the condition of Theorem 4 is satisfied.

Maehara proposed characterizinga1,a2 such thatN(a1,a2) ≤ 3. By Theorem 3,N(a1,a2)

≤ 3 holds if and only if(a1,a2)v(a1a2,−1)v = 1 holds for allv ∈ V. Note that(a1,a2)v
(a1a2,−1)v = (−a1,−a2)v(−1,−1)v holds for allv ∈ V, because the Hilbert symbol is a
bilinear map. ThusN(a1,a2) ≤ 3 holds if and only if(−a1,−a2)v(−1,−1)v = 1 holds for
all v ∈ V.

2. SYMMETRIC BILINEAR FORMS

Let W be a finite dimensional vector space over a fieldK with a symmetric non-degenerate
bilinear form( , ) : W ×W → K . Putn = dimW. Let (wi )1≤i≤n be a basis ofW. If
u =∑αi wi andv =∑βi wi , then we have

(u, v) = (α1, . . . , αn)A
t (β1, . . . , βn),

whereA is a symmetric matrix inGL(n, K ) given by A = (ai j ),ai j = (wi ,w j ). If we use
another basis(w′i )1≤i≤n, then we have another symmetric matrixB, whereB = (bi j ), bi j =
(w′i ,w′j ). These matrices are related byB = t X AX with X ∈ GL(n, K ).

In general, we denoteA
K∼ B if and only if there existsX ∈ GL(n, K ) such thatB = t X AX

holds. If A is the symmetric matrix of the bilinear form w.r.t. a basis(wi ) of W, and A
K∼ B,

then B is the symmetric matrix of the bilinear form w.r.t. the basis(w′i ) obtained by the

transformation of(wi ) by X. If A
K∼ B, then detA = detB(modK ∗2) holds.
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To save the space of paper, we will use a notation diag(a1, . . . ,aN) for anN × N diagonal
matrix whose(i, i ) element isai . IN denotes the identity matrix of sizeN.

LEMMA 1. Let a1, . . . ,an ∈ Q+. N(a1, . . . ,an) is characterized as the minimum value
of N such that we can choose bn+1, . . . ,bN ∈ Q+ so that

diag(a1, . . . ,an, bn+1, . . . ,bN)
Q∼ IN

holds.

PROOF. The right side of the above is a matrix of the canonical inner product w.r.t. the
canonical basis ofQN . The above equivalence implies the existence of orthogonal basis
{v1, . . . , vn, . . . , vN} of QN with (vi , vi ) = ai for 1 ≤ i ≤ n. Conversely, if we have
v1, . . . , vn ∈ QN satisfying(vi , v j ) = δi j ai , then we can extend these vectors to an orthogonal
basis, see Lemma 2 below. 2

3. PROOF OF THEOREM 1

In this section, we give proof of Theorem 1. Before the proof of Theorem 1, we prepare two
lemmas.

LEMMA 2. Let W be a finite dimensionalQ-vector space with a positive definite symmet-
ric bilinear form. Let{w1, . . . ,wl } be linearly independent vectors. Assume{w1, . . . ,wl }
are mutually orthogonal. Then we can obtain an orthogonal basis ofW which includes
{w1, . . . ,wl }.

PROOF. The bilinear form onW is positive definite. Thus we may perform Schmidt or-
thogonalization without normalization to a basis extending{w1, . . . ,wl }. 2

LEMMA 3. Let c be a positive rational number and c1, . . . , c4 be elements ofQ∗. Assume
that c1 > 0. Then the next quadratic equation has a rational solution(x1, . . . , x4) ∈ Q4:

c =
4∑

i=1

ci x
2
i .

For the proof of the lemma, see, for example, Serre [2, Corollary, Theorem 8 (Hasse–
Minkowski), pp. 37, 41].

PROOF OF THEOREM 1. Let a1, . . . ,an be arbitraryn elements inQ+. It is clear that
n ≤ N(a1, . . . ,an). So we proveN(a1, . . . ,an) ≤ n+3. By the definition ofN(a1, . . . ,an),
it is sufficient to findn vectorsv1, . . . , vn ∈ Qn+3 such that(vi , v j ) = δi j ai . We use induction
onn. If n = 1, by Lemma 3, there are four rational numbersp,q, r, s such that

a1 = p2+ q2+ r 2+ s2.

Then putv1 := (p,q, r, s). {v1} satisfies the requirement.
Next, assume that Theorem 1 holds forn. We considern+1. By the assumption of induction,

there aren vectorsv1, . . . , vn ∈ Qn+3 such that(vi , v j ) = δi j ai . Putui := (vi , 0) ∈ Qn+4.
Clearly,(ui , u j ) = (vi , v j ) = δi j ai holds and{u1, . . . ,un} is linearly independent over the
rational number field. By Lemma 2, we may obtain an orthogonal basis ofQn+4 which includes
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{u1, . . . ,un}. Let {u1, . . . ,un, en+1, en+2, en+3, en+4} be an orthogonal basis ofQn+4. Let
ei = (ei , ei ). By Lemma 3, there are four rational numbersp,q, r, s such that

an+1 = e1p2+ e2q2+ e3r 2+ e4s2.

Putun+1 := pen+1+qen+2+r en+3+sen+4. Then{u1, . . . ,un+1} satisfies the requirements.
2

4. PROOFS OF THEOREMS 2 AND 3

In this section, we give proofs of Theorems 2 and 3. We use Hasses’s principle and the
Hilbert symbol. First recall the general notion of thep-adic number field.

Qv is an extension field of the rational number fieldQ. It is a complete metric space and
Q∗v/Q∗2v is an Abelian group of order 4 (ifv 6= 2,∞), order 8 (ifv = 2), order 2 (ifv = ∞),
respectively.

LEMMA 4. Let A and B be symmetric matrices in GL(N,Q). Then A
Q∼ B holds if and

only if A
Qv∼ B holds for allv ∈ V.

LEMMA 5. Let A and B be diagonal matrices in GL(N,Qv). Then A
Qv∼ B holds if

and only if det(A) = det(B) (modQ∗2v ) and εv(A) = εv(B) hold, where εv(A) :=∏
1≤i< j≤N(ai ,aj )v ∈ {±1} for A = diag(a1, . . . ,aN). If N = 1, we defineεv(A) := 1

as usual.

For the proof of both lemmas, see, for example, Serre [2, Theorem 7, Theorem 9, pp. 39,
44].

PROOF OF THEOREM 2. By Lemma 1,N(a1, . . . ,an) = n holds if and only if diag(a1,

. . . ,an)
Q∼ In. Now det(In) = 1 holds andεv(In) = 1 holds for allv ∈ V. Thus the theorem

follows from Lemmas 4 and 5. 2

PROOF OF THEOREM 3. We assume thatN(a1, . . . ,an) 6= n. By Lemma 1,N(a1, . . . ,
an)= n+1 holds if and only if there exist a rational numberx such thatA = diag(a1, . . . ,an,

x)
Q∼ In+1. Put D := ∏n

i=1 ai . The determinant of the left side isDx, and that of the
right side is 1, soDx = 1(modQ∗2) holds. Thusx is determined byD as an element

of Q∗/Q∗2. Then we check whetherA = diag(a1, . . . ,an, D)
Q∼ In+1 holds or not. As

det(A) = det(In+1)(modQ∗2), det(A) = det(In+1)(modQ∗2v ) holds for allv ∈ V. Thus, all
we have to do is to check whetherεv(A) = ε(In+1) holds for allv ∈ V or not (recall Lemmas 4
and 5). PutEv :=∏1≤i< j≤n(ai ,aj )v. Then we have

εv(diag(a1, . . . ,an, D)) =
∏

1≤i< j≤n

(ai ,aj )v

n∏
i=1

(ai , D)v

= Ev

( n∏
i=1

ai , D

)
v

= Ev(D, D)v
= Ev(D,−1(−D))v
= Ev(D,−1)v.

In the above transformation, we used bilinearity of the Hilbert symbol. At the last transforma-
tion, we used(D,−D)v = 1. Now the theorem is proved. 2
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5. PROOF OF THEOREM 4

Before the proof of Theorem 4, we prepare a lemma.

LEMMA 6. Let a be an element ofQ∗, and let(bv)v∈V be a family of numbers in{±1}.
In order that there exists x∈ Q∗ such that(a, x)v = bv for all v ∈ V, it is necessary and
sufficient that the following conditions are satisfied:

(1) The cardinality of the set V′ = {v|v ∈ V, bv = −1} is finite and even.
(2) For eachv ∈ V, there exists xv ∈ Q∗v such that(a, xv)v = bv.

As the Hilbert symbol is non-degenerate,(a, y)v = 1 holds for ally ∈ Q∗v if and only if
a ∈ Q∗2v . Thus we may replace (2) in the above lemma with (2′).

(2′) For all v ∈ V ′, a is not contained inQ∗2v .

For the proofs, see, for example, Serre [2, Theorem 2, Theorem 4, pp. 20, 24].

PROOF OF THEOREM 4. We assume thatN(a1, . . . ,an) 6= n, n + 1. By Lemma 1,
N(a1, . . . , an) = n + 2 holds if and only if there exist rational numbersx, y such that

A = diag(a1, . . . , an, x, y)
Q∼ In+2. PutD := ∏n

i=1 ai . As we observed in the proof of The-
orem 3, the last rational numbery is determined byDx from the discussion of determinant. It
is necessary thatDx = y(modQ∗2) holds. Thus we discuss the existence of a rational number

x such thatA = diag(a1, . . . ,an, x, Dx)
Q∼ In+2. Like the proof of Theorem 3, all we have

to do is to check whetherεv(A) = 1 holds for allv ∈ V or not (recall Lemmas 4 and 5). Put
Ev :=∏1≤i< j≤n(ai ,aj )v. Then we have

εv(diag(a1, . . . ,an, x, Dx)) =
∏

1≤i< j≤n

(ai ,aj )v(x, Dx)v
n∏

i=1

(ai , x)v
n∏

i=1

(ai , Dx)v

= Ev(x, Dx)v

( n∏
i=1

ai , x

)
v

( n∏
i=1

ai , Dx

)
v

= Ev(x, Dx)v(D, Dx2)v

= Ev(x,−D(−x))v(D, D)v
= Ev(x,−D)v(D,−1)v
= Ev(x,−D)v(−D,−1)v(−1,−1)v
= Ev(−x,−D)v(−1,−1)v.

Now our problem is reduced to the existence of a rational numberx such that(−x,−D)v =
Ev(−1,−1)v holds for allv ∈ V. Let us recall that(−1,−1)v = −1 holds iff v = 2 or∞.
Then Theorem 4 follows from Lemma 6. Note that forv = ∞,−D /∈ Q∗2∞ is automatically
satisfied asD > 0. 2
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