Isometric Embeddings of Metric Q-vector Spaces into Q N

Toshihiro Kumada

Abstract

Let \mathbf{W} be an n-dimensional \mathbf{Q}-vector space which has a positive definite symmetric bilinear form. We prove that \mathbf{W} is isometrically embeddable into \mathbf{Q}^{n+3}. We give a formula to obtain the minimum N such that \mathbf{W} is isometrically embeddable into \mathbf{Q}^{N}. (C) 1998 Academic Press

1. Main Result

In this paper, we denote by \mathbf{Q}^{+}the set of positive rational numbers, and by \mathbf{Q}^{*} the multiplicative group of the rational number field. For $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}$, let $N:=N\left(a_{1}, \ldots a_{n}\right)$ denote the minimum number such that there exist $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{Q}^{N}$ satisfying $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\delta_{i j} a_{i}$, where (,) is the canonical inner product of \mathbf{Q}^{N} and $\delta_{i j}$ is the Kronecker's delta. Maehara [1] studies this number for some special cases. Here we give an explicit formula to determine $N\left(a_{1}, \ldots, a_{n}\right)$.

THEOREM 1. For all $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}, n \leq N\left(a_{1}, \ldots, a_{n}\right) \leq n+3$ holds.
Let \mathcal{V} be the set $\{p \mid p$ is prime number $\} \cup\{\infty\}$. We denote by \mathbf{Q}_{∞} the real number field \mathbf{R}, and by \mathbf{Q}_{p} the p-adic number field for a prime p. The following three theorems give a formula to obtain $N\left(a_{1}, \ldots, a_{n}\right)$ for a given $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}$.

THEOREM 2. Let $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}$. Put $D:=\prod_{i=1}^{n} a_{i} \in \mathbf{Q}^{+}$and $E_{v}:=\prod_{1 \leq i<j \leq n}$ $\left(a_{i}, a_{j}\right)_{v} \in\{ \pm 1\}$, where $v \in \mathcal{V}$ and $(,)_{v}$ is the Hilbert symbol on $\mathbf{Q}_{v}, N\left(a_{1}, \ldots, a_{n}\right)=n$ holds if and only if $D=1\left(\bmod \mathbf{Q}^{* 2}\right)$ holds and $E_{v}=1$ holds for all $v \in \mathcal{V}$.

The Hilbert symbol $(,)_{v}$ is a map from $\mathbf{Q}_{v}^{*} / \mathbf{Q}_{v}^{* 2} \times \mathbf{Q}_{v}^{*} / \mathbf{Q}_{v}^{* 2}$ to $\{ \pm 1\}$ defined so that $(a, b)_{v}=1$ holds if and only if $z^{2}=a x^{2}+b y^{2}$ has a non-trivial solution $(x, y, z) \in\left(\mathbf{Q}_{v}\right)^{3}$. It is bilinear and symmetric. The Hilbert symbol is easy to compute, see Serre [2, p. 20, Theorem 1].

Theorem 3. Let $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}$. Let D, E_{v} be as in Theorem 2. Assume $N\left(a_{1}, \ldots, a_{n}\right)$ $\neq n$. Then $N\left(a_{1}, \ldots, a_{n}\right)=n+1$ holds if and only if $E_{v} \cdot(D,-1)_{v}=1$ holds for all $v \in \mathcal{V}$.

THEOREM 4. Let $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}$. Let D, E_{v} be as in Theorem 2. Assume $N\left(a_{1}, \ldots, a_{n}\right)$ $\neq n, n+1$. Then $N\left(a_{1}, \ldots, a_{n}\right)=n+2$ holds if and only if $-D \notin \mathbf{Q}_{v}^{* 2}$ holds for all $v \in V$, where

$$
V=\left\{v \mid v \text { is an odd prime with } E_{v}=-1\right\} \cup \begin{cases}\{2\} & \text { if } E_{2}=1 \\ \emptyset & \text { if } E_{2}=-1 .\end{cases}
$$

In the above three theorems, if $n=1$, then define $E_{v}:=1$ for all $v \in \mathcal{V}$.
If $x=b / a, y=d / c(a, b, c, d \in \mathbf{Z})$ and $v \neq 2, \infty$ and $v / a b c d$, then $(x, y)_{v}=1$ holds (see Serre [2, p. 20, Theorem 1]). Thus the number of $v \in \mathcal{V}$ for which we need to compute the Hilbert symbol is finite. Thus for given $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+}, N\left(a_{1}, \ldots, a_{n}\right)$ is computable with finite calculation.

Corollary 1. For an arbitrary $n \in \mathbf{N}$, put $a_{2}=a_{3}=\cdots=a_{n}=1$. Then $N\left(1, a_{2}, \ldots\right.$, $\left.a_{n}\right)=n, N\left(2, a_{2}, \ldots, a_{n}\right)=n+1, N\left(3, a_{2}, \ldots, a_{n}\right)=n+2$ and $N\left(7, a_{2}, \ldots, a_{n}\right)=n+3$ hold. Consequently, the bound in Theorem 1 is the best possible.

Proof. As $a_{2}=a_{3}=\cdots=a_{n}=1, E_{v}=1$ holds for all $a_{1} \in \mathbf{Q}^{+}, v \in \mathcal{V}$. It is clear that $N\left(1, a_{2}, \ldots, a_{n}\right)=n$ holds.

$$
\begin{aligned}
& N\left(2, a_{2}, \ldots, a_{n}\right)=n+1 \text { holds because } 2 \notin \mathbf{Q}^{* 2} \text { and }(2,-1)_{v}=1 \text { holds for all } v \in \mathcal{V} . \\
& N\left(3, a_{2}, \ldots, a_{n}\right)=n+2 \text { holds because } 3 \notin \mathbf{Q}^{* 2},(3,-1)_{2}=-1 \text { and }-3 \notin \mathbf{Q}_{2}^{* 2} . \\
& N\left(7, a_{2}, \ldots, a_{n}\right)=n+3 \text { holds because } 7 \notin \mathbf{Q}^{* 2},(7,-1)_{2}=-1 \text { and }-7 \in \mathbf{Q}_{2}^{* 2} .
\end{aligned}
$$

REMARK 1. Let \mathbf{W} be a finite dimensional \mathbf{Q}-vector space with a positive definite symmetric bilinear form. The above three theorems give an explicit algorithm to obtain the minimum dimensional \mathbf{Q}^{N} into which \mathbf{W} is isometrically embeddable by a \mathbf{Q}-linear map. This is because for any \mathbf{W}, we can obtain an orthogonal basis.

These theorems give complete answers to Maehara's open problems [1]. His upper bound $N\left(a_{1}, \ldots, a_{n}\right) \leq 2 n+1$ for $n \geq 2$ is improved here to $n+3$. He also proved that $N\left(a_{1}, a_{2}\right) \leq$ $4(=2+2)$ if and only if $a_{1} a_{2}$ is a sum of three squares of rational numbers. This result is a corollary of Theorem 4, as follows. A positive rational number x is a sum of three squares of rational numbers if and only if $-x \notin \mathbf{Q}_{2}^{* 2}$ (see Serre [2, p. 45, Lemma A]). Put $x:=a_{1} a_{2}$, and note that $E_{v}:=\left(a_{1}, a_{2}\right)_{v}=\left(a_{1},-a_{1} a_{2}\right)_{v}$ holds for all $v \in \mathcal{V}$. Let V be as in Theorem 4. Assume that the condition of Theorem 4 is satisfied. If $2 \in V$, then $-a_{1} a_{2} \notin \mathbf{Q}_{2}^{* 2}$ holds. If $2 \notin V$, then again $-a_{1} a_{2} \notin \mathbf{Q}_{2}^{* 2}$ holds because $E_{2}=\left(a_{1},-a_{1} a_{2}\right)_{2}=-1$. In both cases, $-a_{1} a_{2} \notin \mathbf{Q}_{2}^{* 2}$ holds. Conversely, assume that $-a_{1} a_{2} \notin \mathbf{Q}_{2}^{* 2}$ holds. Let $v \in V$. If v is odd prime, $-a_{1} a_{2} \notin \mathbf{Q}_{v}^{* 2}$ holds because $E_{v}=\left(a_{1},-a_{1} a_{2}\right)_{v}=-1$. If $v=2,-a_{1} a_{2} \notin \mathbf{Q}_{2}^{* 2}$ holds from the assumption. Thus the condition of Theorem 4 is satisfied.

Maehara proposed characterizing a_{1}, a_{2} such that $N\left(a_{1}, a_{2}\right) \leq 3$. By Theorem 3, $N\left(a_{1}, a_{2}\right)$ ≤ 3 holds if and only if $\left(a_{1}, a_{2}\right)_{v}\left(a_{1} a_{2},-1\right)_{v}=1$ holds for all $v \in \mathcal{V}$. Note that $\left(a_{1}, a_{2}\right)_{v}$ $\left(a_{1} a_{2},-1\right)_{v}=\left(-a_{1},-a_{2}\right)_{v}(-1,-1)_{v}$ holds for all $v \in \mathcal{V}$, because the Hilbert symbol is a bilinear map. Thus $N\left(a_{1}, a_{2}\right) \leq 3$ holds if and only if $\left(-a_{1},-a_{2}\right)_{v}(-1,-1)_{v}=1$ holds for all $v \in \mathcal{V}$.

2. Symmetric Bilinear Forms

Let \mathbf{W} be a finite dimensional vector space over a field K with a symmetric non-degenerate bilinear form (,): W $\times \mathbf{W} \rightarrow K$. Put $n=\operatorname{dim} \mathbf{W}$. Let $\left(\mathbf{w}_{i}\right)_{1 \leq i \leq n}$ be a basis of \mathbf{W}. If $\mathbf{u}=\sum \alpha_{i} \mathbf{w}_{i}$ and $\mathbf{v}=\sum \beta_{i} \mathbf{w}_{i}$, then we have

$$
(\mathbf{u}, \mathbf{v})=\left(\alpha_{1}, \ldots, \alpha_{n}\right) A^{t}\left(\beta_{1}, \ldots, \beta_{n}\right),
$$

where A is a symmetric matrix in $G L(n, K)$ given by $A=\left(a_{i j}\right), a_{i j}=\left(\mathbf{w}_{i}, \mathbf{w}_{j}\right)$. If we use another basis $\left(\mathbf{w}_{i}^{\prime}\right)_{1 \leq i \leq n}$, then we have another symmetric matrix B, where $B=\left(b_{i j}\right), b_{i j}=$ $\left(\mathbf{w}_{i}^{\prime}, \mathbf{w}_{j}^{\prime}\right)$. These matrices are related by $B={ }^{t} X A X$ with $X \in G L(n, K)$.
In general, we denote $A \stackrel{K}{\sim} B$ if and only if there exists $X \in G L(n, K)$ such that $B={ }^{t} X A X$ holds. If A is the symmetric matrix of the bilinear form w.r.t. a basis $\left(\mathbf{w}_{i}\right)$ of \mathbf{W}, and $A \stackrel{K}{\sim} B$, then B is the symmetric matrix of the bilinear form w.r.t. the basis $\left(\mathbf{w}_{i}^{\prime}\right)$ obtained by the transformation of $\left(\mathbf{w}_{i}\right)$ by X. If $A \stackrel{K}{\sim} B$, then $\operatorname{det} A=\operatorname{det} B\left(\bmod K^{* 2}\right)$ holds.

To save the space of paper, we will use a notation $\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$ for an $N \times N$ diagonal matrix whose (i, i) element is $a_{i} . I_{N}$ denotes the identity matrix of size N.

LEMMA 1. Let $a_{1}, \ldots, a_{n} \in \mathbf{Q}^{+} . N\left(a_{1}, \ldots, a_{n}\right)$ is characterized as the minimum value of N such that we can choose $b_{n+1}, \ldots, b_{N} \in \mathbf{Q}^{+}$so that

$$
\operatorname{diag}\left(a_{1}, \ldots, a_{n}, b_{n+1}, \ldots, b_{N}\right) \stackrel{\mathbf{Q}}{\sim} I_{N}
$$

holds.
Proof. The right side of the above is a matrix of the canonical inner product w.r.t. the canonical basis of \mathbf{Q}^{N}. The above equivalence implies the existence of orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \ldots, \mathbf{v}_{N}\right\}$ of \mathbf{Q}^{N} with $\left(\mathbf{v}_{i}, \mathbf{v}_{i}\right)=a_{i}$ for $1 \leq i \leq n$. Conversely, if we have $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{Q}^{N}$ satisfying $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\delta_{i j} a_{i}$, then we can extend these vectors to an orthogonal basis, see Lemma 2 below.

3. Proof of Theorem 1

In this section, we give proof of Theorem 1. Before the proof of Theorem 1, we prepare two lemmas.

Lemma 2. Let \mathbf{W} be a finite dimensional \mathbf{Q}-vector space with a positive definite symmetric bilinear form. Let $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right\}$ be linearly independent vectors. Assume $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right\}$ are mutually orthogonal. Then we can obtain an orthogonal basis of \mathbf{W} which includes $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right\}$.

Proof. The bilinear form on \mathbf{W} is positive definite. Thus we may perform Schmidt orthogonalization without normalization to a basis extending $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right\}$.

Lemma 3. Let c be a positive rational number and c_{1}, \ldots, c_{4} be elements of \mathbf{Q}^{*}. Assume that $c_{1}>0$. Then the next quadratic equation has a rational solution $\left(x_{1}, \ldots, x_{4}\right) \in \mathbf{Q}^{4}$:

$$
c=\sum_{i=1}^{4} c_{i} x_{i}^{2}
$$

For the proof of the lemma, see, for example, Serre [2, Corollary, Theorem 8 (HasseMinkowski), pp. 37, 41].

Proof of Theorem 1. Let a_{1}, \ldots, a_{n} be arbitrary n elements in \mathbf{Q}^{+}. It is clear that $n \leq N\left(a_{1}, \ldots, a_{n}\right)$. So we prove $N\left(a_{1}, \ldots, a_{n}\right) \leq n+3$. By the definition of $N\left(a_{1}, \ldots, a_{n}\right)$, it is sufficient to find n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{Q}^{n+3}$ such that $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\delta_{i j} a_{i}$. We use induction on n. If $n=1$, by Lemma 3, there are four rational numbers p, q, r, s such that

$$
a_{1}=p^{2}+q^{2}+r^{2}+s^{2} .
$$

Then put $\mathbf{v}_{1}:=(p, q, r, s) .\left\{\mathbf{v}_{1}\right\}$ satisfies the requirement.
Next, assume that Theorem 1 holds for n. We consider $n+1$. By the assumption of induction, there are n vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbf{Q}^{n+3}$ such that $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\delta_{i j} a_{i}$. Put $\mathbf{u}_{i}:=\left(\mathbf{v}_{i}, 0\right) \in \mathbf{Q}^{n+4}$. Clearly, $\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=\delta_{i j} a_{i}$ holds and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is linearly independent over the rational number field. By Lemma 2, we may obtain an orthogonal basis of \mathbf{Q}^{n+4} which includes
$\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$. Let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}, \mathbf{e}_{n+1}, \mathbf{e}_{n+2}, \mathbf{e}_{n+3}, \mathbf{e}_{n+4}\right\}$ be an orthogonal basis of \mathbf{Q}^{n+4}. Let $e_{i}=\left(\mathbf{e}_{i}, \mathbf{e}_{i}\right)$. By Lemma 3, there are four rational numbers p, q, r, s such that

$$
a_{n+1}=e_{1} p^{2}+e_{2} q^{2}+e_{3} r^{2}+e_{4} s^{2} .
$$

Put $\mathbf{u}_{n+1}:=p \mathbf{e}_{n+1}+q \mathbf{e}_{n+2}+r \mathbf{e}_{n+3}+s \mathbf{e}_{n+4}$. Then $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n+1}\right\}$ satisfies the requirements.

4. Proofs of Theorems 2 and 3

In this section, we give proofs of Theorems 2 and 3. We use Hasses's principle and the Hilbert symbol. First recall the general notion of the p-adic number field.
\mathbf{Q}_{v} is an extension field of the rational number field \mathbf{Q}. It is a complete metric space and $\mathbf{Q}_{v}^{*} / \mathbf{Q}_{v}^{* 2}$ is an Abelian group of order 4 (if $v \neq 2, \infty$), order 8 (if $v=2$), order 2 (if $v=\infty$), respectively.
Lemma 4. Let A and B be symmetric matrices in $G L(N, \mathbf{Q})$. Then $A \stackrel{\mathbf{Q}}{\sim} B$ holds if and only if $A \stackrel{\mathbf{Q}_{v}}{\sim} B$ holds for all $v \in \mathcal{V}$.

Lemma 5. Let A and B be diagonal matrices in $G L\left(N, \mathbf{Q}_{v}\right)$. Then $A \stackrel{\mathbf{Q}_{v}}{\sim} B$ holds if and only if $\operatorname{det}(A)=\operatorname{det}(B)\left(\bmod \mathbf{Q}_{v}^{* 2}\right)$ and $\epsilon_{v}(A)=\epsilon_{v}(B)$ hold, where $\epsilon_{v}(A):=$ $\prod_{1 \leq i<j \leq N}\left(a_{i}, a_{j}\right)_{v} \in\{ \pm 1\}$ for $A=\operatorname{diag}\left(a_{1}, \ldots, a_{N}\right)$. If $N=1$, we define $\epsilon_{v}(A):=1$ as usual.

For the proof of both lemmas, see, for example, Serre [2, Theorem 7, Theorem 9, pp. 39, 44].

PRoof of Theorem 2. By Lemma $1, N\left(a_{1}, \ldots, a_{n}\right)=n$ holds if and only if $\operatorname{diag}\left(a_{1}\right.$, $\left.\ldots, a_{n}\right) \stackrel{\mathbf{Q}}{\sim} I_{n}$. Now $\operatorname{det}\left(I_{n}\right)=1$ holds and $\epsilon_{v}\left(I_{n}\right)=1$ holds for all $v \in \mathcal{V}$. Thus the theorem follows from Lemmas 4 and 5 .

Proof of Theorem 3. We assume that $N\left(a_{1}, \ldots, a_{n}\right) \neq n$. By Lemma $1, N\left(a_{1}, \ldots\right.$, $\left.a_{n}\right)=n+1$ holds if and only if there exist a rational number x such that $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right.$, $x) \stackrel{\mathbf{Q}}{\sim} I_{n+1}$. Put $D:=\prod_{i=1}^{n} a_{i}$. The determinant of the left side is $D x$, and that of the right side is 1 , so $D x=1\left(\bmod \mathbf{Q}^{* 2}\right)$ holds. Thus x is determined by D as an element of $\mathbf{Q}^{*} / \mathbf{Q}^{* 2}$. Then we check whether $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, D\right) \stackrel{\mathbf{Q}}{\sim} I_{n+1}$ holds or not. As $\operatorname{det}(A)=\operatorname{det}\left(I_{n+1}\right)\left(\bmod \mathbf{Q}^{* 2}\right), \operatorname{det}(A)=\operatorname{det}\left(I_{n+1}\right)\left(\bmod \mathbf{Q}_{v}^{* 2}\right)$ holds for all $v \in \mathcal{V}$. Thus, all we have to do is to check whether $\epsilon_{v}(A)=\epsilon\left(I_{n+1}\right)$ holds for all $v \in \mathcal{V}$ or not (recall Lemmas 4 and 5). Put $E_{v}:=\prod_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)_{v}$. Then we have

$$
\begin{aligned}
\epsilon_{v}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}, D\right)\right) & =\prod_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)_{v} \prod_{i=1}^{n}\left(a_{i}, D\right)_{v} \\
& =E_{v}\left(\prod_{i=1}^{n} a_{i}, D\right)_{v} \\
& =E_{v}(D, D)_{v} \\
& =E_{v}(D,-1(-D))_{v} \\
& =E_{v}(D,-1)_{v}
\end{aligned}
$$

In the above transformation, we used bilinearity of the Hilbert symbol. At the last transformation, we used $(D,-D)_{v}=1$. Now the theorem is proved.

5. PROOF OF THEOREM 4

Before the proof of Theorem 4, we prepare a lemma.
Lemma 6. Let a be an element of \mathbf{Q}^{*}, and let $\left(b_{v}\right)_{v \in \mathcal{V}}$ be a family of numbers in $\{ \pm 1\}$. In order that there exists $x \in \mathbf{Q}^{*}$ such that $(a, x)_{v}=b_{v}$ for all $v \in \mathcal{V}$, it is necessary and sufficient that the following conditions are satisfied:
(1) The cardinality of the set $V^{\prime}=\left\{v \mid v \in \mathcal{V}, b_{v}=-1\right\}$ is finite and even.
(2) For each $v \in \mathcal{V}$, there exists $x_{v} \in \mathbf{Q}_{v}^{*}$ such that $\left(a, x_{v}\right)_{v}=b_{v}$.

As the Hilbert symbol is non-degenerate, $(a, y)_{v}=1$ holds for all $y \in \mathbf{Q}_{v}^{*}$ if and only if $a \in \mathbf{Q}_{v}^{* 2}$. Thus we may replace (2) in the above lemma with (2').
(2') For all $v \in V^{\prime}, a$ is not contained in $\mathbf{Q}_{v}^{* 2}$.
For the proofs, see, for example, Serre [2, Theorem 2, Theorem 4, pp. 20, 24].
Proof of Theorem 4. We assume that $N\left(a_{1}, \ldots, a_{n}\right) \neq n, n+1$. By Lemma 1 , $N\left(a_{1}, \ldots, a_{n}\right)=n+2$ holds if and only if there exist rational numbers x, y such that $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, x, y\right) \stackrel{\mathbf{Q}}{\sim} I_{n+2}$. Put $D:=\prod_{i=1}^{n} a_{i}$. As we observed in the proof of Theorem 3, the last rational number y is determined by $D x$ from the discussion of determinant. It is necessary that $D x=y\left(\bmod \mathbf{Q}^{* 2}\right)$ holds. Thus we discuss the existence of a rational number x such that $A=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, x, D x\right) \stackrel{\mathbf{Q}}{\sim} I_{n+2}$. Like the proof of Theorem 3, all we have to do is to check whether $\epsilon_{v}(A)=1$ holds for all $v \in \mathcal{V}$ or not (recall Lemmas 4 and 5). Put $E_{v}:=\prod_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)_{v}$. Then we have

$$
\begin{aligned}
\epsilon_{v}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{n}, x, D x\right)\right) & =\prod_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)_{v}(x, D x)_{v} \prod_{i=1}^{n}\left(a_{i}, x\right)_{v} \prod_{i=1}^{n}\left(a_{i}, D x\right)_{v} \\
& =E_{v}(x, D x)_{v}\left(\prod_{i=1}^{n} a_{i}, x\right)_{v}\left(\prod_{i=1}^{n} a_{i}, D x\right)_{v} \\
& =E_{v}(x, D x)_{v}\left(D, D x^{2}\right)_{v} \\
& =E_{v}(x,-D(-x))_{v}(D, D)_{v} \\
& =E_{v}(x,-D)_{v}(D,-1)_{v} \\
& =E_{v}(x,-D)_{v}(-D,-1)_{v}(-1,-1)_{v} \\
& =E_{v}(-x,-D)_{v}(-1,-1)_{v}
\end{aligned}
$$

Now our problem is reduced to the existence of a rational number x such that $(-x,-D)_{v}=$ $E_{v}(-1,-1)_{v}$ holds for all $v \in \mathcal{V}$. Let us recall that $(-1,-1)_{v}=-1$ holds iff $v=2$ or ∞. Then Theorem 4 follows from Lemma 6. Note that for $v=\infty,-D \notin \mathbf{Q}_{\infty}^{* 2}$ is automatically satisfied as $D>0$.

Acknowledgements

I want to thank Miwa Isobe and Ayako Sugawara, both secretaries in my department, for their help. I also want to thank Makoto Matsumoto, my mathematical supervisor, for his useful advice.

REFERENCES

1. H. Maehara, Embedding a set of rational points in lower dimensions, Discrete Math. to appear.
2. J. P. Serre, A Course in Arithmetic, GTM, 7, Springer-Verlag, New York, 1973.

Received 31 December 1997 and accepted 27 March 1998
T. Kumada

Department of Mathematics,
Faculty of Science and Technology,
Keio University,
Hiyoshi 3-14-1,
Kohoku-ku, Yokohama 223,
Japan

