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a  b  s  t  r  a  c  t

Mapping  and  assessment  of  ecosystem  services  in  agricultural  landscapes  as  required  by  the  EU biodiver-
sity policy  need  a better  characterization  of  the  given  landscape  typology  according  to  its  ecological  and
cultural  values.  Such  need  should  be accommodated  by a better  discrimination  of  the landscape  charac-
teristics  linked  to the  capacity  of  providing  ecosystem  services  and socio-cultural  benefits.  Often,  these
key variables  depend  on the  degree  of  farmland  heterogeneity  and  landscape  patterns.  We  employed
segmentation  and  landscape  metrics  (edge  density  and  image  texture  respectively),  derived  from  a  pan-
European  multi-temporal  and  multi-spectral  remote  sensing  dataset,  to generate  a  consistent  European
indicator  of  farmland  heterogeneity,  the  Farmland  Heterogeneity  Indicator  (FHI).  We  mapped  five  degrees
of  FHI  on  a wall-to-wall  basis  (250  m spatial  resolution)  over  European  agricultural  landscapes  includ-
ing  natural  grasslands.  Image  texture  led  to a clear  improvement  of the  indicator  compared  to  the  pure
application  of Edge  Density,  in  particular  to a better  detection  of  small  patches.  In addition  to  deriving  a
andscape metrics qualitative  indicator  we attributed  an  approximate  patch  size  to each  class,  allowing  an  indicative  assess-
ment  of European  field  sizes.  Based  on  CORINE  land  cover,  we identified  pastures  and  heterogeneous  land
cover classes  as  classes  with  the  highest  degree  of  FHI,  while  agroforestry  and  olive  groves appeared  less
heterogeneous  on  average.  We  performed  a verification  based  on  a  continental  and  regional  scale,  which
resulted  in  general  good  agreement  with  independently  derived  data.

ublis
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. Introduction

Agro-ecosystems are the result of human activities aimed at
roducing food, feed, fibres and energy. This primary output of agri-
ulture is classified in the ecosystem services frame (MA,  2005)
s provisioning ecosystem service. Alongside with agricultural
iomass production, farming practices also impact on the capac-

ty of agro-ecosystems to supply regulating and cultural ecosystem
ervices, some of which directly support agricultural production
i.e. soil fertility, water availability, pollination, pest control, soil
rosion mitigation) (Bommarco et al., 2013). Farmland biodiver-
ity is hosted to a varying degree in all agricultural landscapes,

eing the result of thousands of years of agricultural practices. It

s generally enhanced and maintained by extensive practices and
hreatened by intensification (Benton et al., 2003). In particular
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fragmentation and conversion of natural habitats, removal of land-
scape elements (e.g. hedges, tree lines, ridges) increase of field size
and reduction of crop diversity have contributed to species decline
(Donald et al., 2006), including species that are functional to agri-
cultural production (Haenke et al., 2014; Le Féon et al., 2010). From
the European policy side, the supply of ecosystem services and
biodiversity conservation within farmland is fostered by the EU
Biodiversity Strategy to 2020 (European Commission, 2011) and
the Common Agricultural Policy (CAP) with its so-called Greening
measures (European Union, 2013).

Several studies have tried to assess and/or map the degree to
which selected agricultural land characteristics support biodiver-
sity and ecosystem service provision (Billeter et al., 2008; Donald
et al., 2006; Herzog et al., 2006; Overmars et al., 2014; Roschewitz
et al., 2005). The ecological role of habitat diversity and field edges
as source and sink of farmland biodiversity (including functional
biodiversity) has been demonstrated by several authors (Gabriel
et al., 2006; Jentsch et al., 2012; Kaule and Krebs, 1989; Marshall
and Moonen, 2002; Wagner et al., 2000). Recognized important fea-

tures playing an important role in this respect are linear landscape
elements, such as ditches, hedge and tree lines, and grass margins
(García-Feced et al., 2015; Van der Zanden et al., 2013). An
enhanced supply of regulating ecosystem services and biodiversity

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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aintenance is linked to the spatial arrangement of (such) features
hat increase habitat availability, individual movement and species
ispersal when distributed across the landscape with sufficient
ensity and connectivity (Landis et al., 2000; Wiens et al., 1993). The

mportance of the landscape scale in the regulation of biodiversity
rocesses has been underlined by several authors (Ernoult et al.,
003; Hamer et al., 2006; Tscharntke et al., 2005); however, a lack
f information on the spatial configuration of the agricultural land-
cape on the EU scale limits the possibility of assessing its ecological
alue at the continental level. An existing assessment (Paracchini
t al., 2008) in fact relies on CORINE land cover data (EEA, 2007)
hich, due to its inherent degree of generalization, does not fully

apture the complexity of agricultural landscapes. Recent studies
García-Feced et al., 2015; Van der Zanden et al., 2013) provide
nformation on the presence of landscape features but information
n other structural parameters such as field size or patch distribu-
ion is still missing. An indicator is therefore needed to fill this gap
nd to increase the detail of spatial characterization provided by
and use maps. This proxy needs to (i) be robust (e.g. insensitive
o comparable sensors) and repeatable to be monitored in time,
ii) be detailed enough to account for local particularities and (iii)
over areas of continental extent at the same time. Moreover, the
pproach of proxy derivation should be (iv) consistent across the
hole area, and (v) economically feasible (preferably with no or
inimal cost, e.g. based on free available source data). Multispec-

ral remote sensing images fulfil most of these requirements, being
uited in particular for the detection of changes in reflectance
etween spectrally homogeneous features and are thus particularly
ffective in the detection of field edges and habitat boundaries.

Given the ecological importance of structural elements, field
ize and patch distribution, and further considering the require-
ents of the indicator, a remote sensing-based indicator-based on

dge density seems adequate. Such edges are both positively cor-
elated with the edge density of classically defined patches (see
ection 2.2 for definition) that can be detected in a multispectral
mage. Therefore, in this study we propose a new patch indicator,
upposed to deliver a qualitative (related to degree of patchiness)
nd up to a certain degree a semi-quantitative assessment indica-
or (related to approximate field size) of the structure of European
gricultural areas. The proposed indicator is based on an edge
ensity metric combined with a parallel-derived texture-based
easure. Both metrics are combined to a single indicator called

HI or Farmland Heterogeneity Indicator. FHI can be considered
n improved Edge Density of patch borders, based on a combi-
ation of spectral and textural data as promoted by Chica-Olmo
nd Abarca-Hernández (2000), while improving the spatial extent
f similar works (Kuemmerle et al., 2009; Rydberg and Borgefors,
001) which cover smaller regions.

. Materials and methods

.1. Data

As base data for this study we used Image 2006 (Soille,
008), a pan-European mosaic, providing top-of-atmosphere (TOA)
eflectance of four pre-processed spectral bands in the green, red,
ear-infrared and mid-infrared spectrum, derived from the satel-

ite sensors IRS P6 LISS-III, SPOT 4 and SPOT 5, and centred in the
ear 2006. A total of 2004 images were mosaicked for the first cov-
rage of the mosaic (COV1), temporally centred in the early period

f the vegetation period (spring, early summer), and 1,561 images
or the second coverage (COV2) of the mosaic, temporally centred
n the later period of the vegetation period (late summer, autumn).
etails about data, pre-processing, cloud detection, accuracy, and

he mosaicking method are reported by Soille (2008).
dicators 61 (2016) 317–327

2.2. Methods

2.2.1. Farmland Heterogeneity Indicator (FHI) design
FHI aims to express a major part of the above-mentioned cul-

tural and ecological values of landscape. FHI is intended for this
purpose as a measure for the frequency of occurring patch vari-
ability within a defined area. To achieve this, we (i) performed a
segmentation based on homogeneity criteria for spectral data, (ii)
quantified patch edge density for a defined area A, (iii) calculated
a textural indicator for A and (iv) combined both to create the FHI.
A graphical overview of the FHI methodology is shown in Fig. 1.
The core of the methodology is the segmentation and the parallel
texture module, whose results are then fused: we  considered the
parallel approach beneficial since it consolidates the final results
and enhances robustness. Moreover, following our empirical tests,
texture still delivers meaningful results on areas with very small
fields where the segmentation already fails. This led us to a com-
plex fusion technique, which takes into account the asymmetry of
data confidentiality.

In this work, a patch is defined as a homogeneous plot within
the wider agricultural land, which assumes a different (remotely
sensed) observable property from its surrounding neighbourhood,
and, similar to Forman (1995), assumes an ecological meaning. The
patch is detached from any cadastral meaning. According to this
definition, patches do not necessarily represent agricultural fields,
although most of them do so. A patch can also consist of remnant
elements of semi-natural vegetation (forest, trees, hedges, edge of
field and/or riparian buffer strips, etc.), small water bodies and
wetlands, roads or even single buildings or rocks, which are not
masked out by pre-stratification of agricultural areas. These ele-
ments, where encountered, are part of the definition of the FHI,
intended as an indicator expressing heterogeneity, also taking into
account non-typical agricultural elements.

2.2.2. Segmentation
Segments or image objects provide the basis of geospatial

object-based image analysis (GEOBIA) (Blaschke, 2010). Out of
various object-based image analysis software on the market, we
selected the product eCogniton® of Trimble (eCognition Developer,
Server version 8.64.1), since it provided a batch processing envi-
ronment. We  prepared 549 tiles with a dimension of 4000 × 4000
pixels and eight spectral bands, four of COV1 and four of COV2
for segmentation. The basic task of segmentation algorithms is the
merging of (image) elements based on homogeneity parameters
or on the differentiation to neighbouring regions (heterogeneity)
(Schiewe, 2002). eCognition’s segmentation relies on a bottom-up
region merging technique, which aims at minimizing the weighted
heterogeneity (n × h) of resulting image objects, where n is the
size of a segment and h a parameter of heterogeneity (Baatz and
Schaepe, 2000; Benz et al., 2004). In each step, the pair of adja-
cent image objects (initially a pixel pair) is merged, which results
in the smallest growth of the defined heterogeneity. Heterogene-
ity is defined as heterogeneity of colour (spectral data/grey tone)
and shape,  where shape heterogeneity can be divided into hetero-
geneity of smoothness and compactness of an object. The merging
process stops if the growth exceeds the threshold defined by the
scale parameter � . The scale parameter is used to determine the
approximate size of objects, although in reality the scale parameter
� determines the maximal threshold of heterogeneity allowed to
grow objects. For segmentation, the user has the option to deter-
mine weights for the colour and shape heterogeneity (and for
smoothness and compactness).
For the underlying purpose, the colour parameter was consid-
ered of highest interest, since patch borders are supposed to be
placed in locations where the spectral colour of a remotely sensed
image changes and creates heterogeneity. The shape parameter was
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Fig. 1. Overview of the FHI generation, showing input/output data

onsidered of minor interest as patches of varying shapes exist, such
s very elongated ones, compact and even fragmented ones. We
etermined the scale parameter empirically, testing approximately
0 sites across Europe with different agricultural characteristics,
ventually choosing a value on the lower end. We  fused segments
f very high similarity to larger single elements in a later step,

ased on spectral difference. This way, the segmentation process
elivered a wide range of segment sizes. Generally, we preferred
o over-segment the area rather than to under-segment it, since
he first would lead to a relative and systematic error, while the
llelograms), processes (rectangles), and adopted settings (circles).

latter would lead to fatal results in areas where segments are not
captured at all. Also, a following fusion step of spectrally similar
objects would increase the size of objects. Since the main aim was
the development of a qualitative indicator a minor relative error
was accepted.

Before running the segmentation, we  masked the dataset for

areas other than agricultural land use or natural grassland accord-
ing to a refined CORINE land cover 2006 product, version 2 (Batista
e Silva et al., 2012) with a general minimum mapping unit of 25 ha
(locally higher).
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We  segmented with the following settings: we ran the multi-
esolution segmentation process with scale factor = 5, a weight of
.9 for colour and 0.1 for shape;  we weighted the sub-divisions for
hape 0.9 for smoothness and 0.1 for compactness. We  applied this
ule to all layers with the same weight. We  processed the result-
ng segmentation layer (L1) by the tool “spectral difference”, which
nabled the fusion of similar objects based on a threshold criterion.
e determined the maximum difference to keep separate objects

mpirically for different regions and set it to 2. Then, we exported
o a vector layer and further processed the resulting segmentation
ayer (L2).

.2.3. Edge density calculation
We calculated a segmentation edge density for the vector tiles

ithin ESRI ArcGIS (ESRI, 2011) using Python scripts (http://www.
ython.org). After converting the polygons to lines (edges) we
alculated the edge density (ED) per km2 for 250 m grids. We  cal-
ulated ED as ED = E/A, where E represents total edge length [km]
nd A total agricultural area [km2]. We  selected a search radius

 that circumvented an entire 250 m pixel (i.e. radius r = 250/2 *
√

2) = 177 m).

.2.4. Texture calculation
Some regions with very small patches were sometimes not cap-

ured by the segmentation process. This occurred especially in areas
here patches were not contrasted well from others. The reasons

or this failure were visually identified by comparing GoogleTM

arth imagery to the original images and the preliminary results,
nd can be reassumed as (i) very small fields which created a high
umber of (blurred) mixed pixels, (ii) similar crops on small patches
ithout clear border lines or structures or, (iii) low image qual-

ty. For those regions the applied approach was apparently at its
imits. Although some non-detected patches were smaller (or nar-
ower) than 25 m,  yet some of them were clearly larger (or broader)
han this size, leaving options for further improvements. Since
he potentialities of spectral-based segmentation had been already
xploited, we envisaged a complementary texture-based approach.
mage texture is commonly defined as the characteristic physi-
al structure given to an object by the size, shape, arrangement,
nd proportions of its parts (Soille, 2002). Texture is a promising
arameter which has been investigated for field size mapping in
he past (Kuemmerle et al., 2009). In this work, we  extracted tex-
ure as relative variance of the near-infrared (NIR) bands, i.e. as
oefficient of variation (CV), which is defined as

√
(variance)/mean.

e  calculated CV on a 5 × 5 pixel moving window applied to the
ear-infrared layers of COV1 and COV2 and finally maximized it
o a single value. We considered the calculation of this indicator
ased on the only NIR bands as a trade-off between data content
vegetation is highly reflected or transmitted in the NIR range)
Jackson and Huete, 1991) and computing time, which helped to
eep the calculation time within reasonable time limits. Eventu-
lly, we aggregated (applying an arithmetic mean) to 250 m grid
ells. To avoid data inconsistencies due to data of non-agricultural
and we masked pixels with less than 50% agricultural coverage
or natural grasslands), employing a resampled CORINE land cover

ask of 250 m grid size.

.2.5. Fusion edge density – texture
In the final step we combined both data layers of segmentation

nd texture to a final indicator (fusion). We  first rescaled the values
f both layers based on the global 1- and 99-percentile to values

etween 0 and 1.

rescaled,i = xi − 1 ‰
99 ‰ −1  ‰

(1)
dicators 61 (2016) 317–327

We  replaced values less than the 1-percentile or greater than
the 99-percentile by 0 and 1 respectively to exclude a distorting
effect (outlier-effect) of extreme values.

We  designed the fusion in a way  to accommodate the trust we
had into the layers. Following Bordogna et al., 2012, input data
imperfections may  be taken into account by the expert if partial
data reliability is being defined by partial trust into that layer. A data
layer with partial trust is reflected to a minor degree in the fusion
product, proportional to the partial trust. Generally we retained
both edge density and texture as trusted indicators and we intended
to use both data layers for the final indicator. However, empiri-
cal tests revealed that texture was for some cases better suited to
express the presence of small patches, which was the case when
the edge density failed as indicator (in these cases the edge den-
sity was low). To improve the results in those cases, we  applied
the following rule: generally, we expected the rescaled edge den-
sity (EDresc) to deliver the same response as the rescaled texture
(TXresc). However, if EDresc stayed in magnitude behind TXresc we
assumed that EDresc did not capture small patches. As already men-
tioned above, in this particular case we had less trust in EDresc than
in TXresc. In fact, the formula was designed in a way that the loss
of trust in EDresc increases with rising difference TXresc − EDresc. In
logical-mathematical terms, this fusion process can be expressed
as:

If TXresc < EDresc

then FHI = TXresc ∗ EDresc

else FHI = TXresc/(1 − (TXresc − EDresc)) ∗ EDresc

(2)

This fusion process is hereafter referred to as Alternative A. The
term in brackets in the else-statement re-dimensions the value of
TXresc to a higher value and hence gives it higher importance (higher
trust). Since we  generally assume EDresc and TXresc to be equally
trusted, the divergence (difference) between the two  values is taken
as trust increasing factor.

After fusion, we  re-classified values into quintiles (classes 0+,
20+, 40+, 60+, 80+), also referred to as (20-percentile) classes 1–5,
thus class “0+” or class 1 expressing the lowest probability of finding
small patches on ground and class “80+” or class 5 expressing the
highest probability to encounter small patches on ground. In other
words, the FHI expresses a degree of probability to encounter small
patches on ground.

Visual expert assessment of the results based on remote sensing
images revealed that in particular for areas in Bulgaria/Romania
very small fields were often not properly captured. Checking back
with the single sub-indicators ED and texture it could be identified
that texture did still not get enough weight to properly reflect the
situation on ground. The following Alternative B is considered to
account better for the texture-related component since it puts more
weight on this factor.

Alternative B:

The fusion process of Alternative B should consider the cases
where TX is larger than ED. There, TX is amplified with increas-
ing difference (TX − ED), adding this term to TX, and eventually (in
comparable re-scaled terms) putting more emphasis on TX than in
Alternative A. In logical-mathematical terms, the formula can be
written as

If TXresc < EDresc

then FHI = TXresc ∗ EDresc (3)
else FHI = TXresc + (TXresc − EDresc)

After this step we  re-classified the results according to quintiles
0+, 20+, 40+, 60+, 80+, in which each class is associated with a rising

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
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ig. 2. Comparison of data fusion outcome for Alternative A and B. An example
opulation of 10 TXresc values in the range [0.1,1] and a constant value EDresc of 0.5
as  employed.

egree of patch size while containing the same number of samples.
 rescaling to values between 0 and 1 could thus be skipped.

As shown in Fig. 2 for an example population, Alternative B
rovides for a constant EDresc (= 0.5) higher percentile classes com-
ared to Alternative A. This is particularly pronounced at higher
anges of TXresc.

.2.6. LUCAS driven choice of fusion
LUCAS 2009 is a European-wide area frame survey to gather har-

onised data on land use/cover and their changes over time. The
-year difference to the Image 2006 data was accepted since struc-
ural changes on farmland do usually occur slowly, as long as no

ajor event (e.g. political transition, incentive campaign) triggers
ignificant changes. Amongst other data, LUCAS records the occur-
ence of structural elements, which have been summed up, as listed
n Table 1 within a 250 m transect originating at each LUCAS obser-
ation point. To find the right choice between Alternatives A and
, we compared the LUCAS data to them. As selection criterion we
hose the country-wise correlation coefficient between the number
f LUCAS structural elements and the FHI class (average of the four
eighbouring pixels). For 21 out of 23 EU countries (EU27 without
ulgaria and Romania, where LUCAS 2009 was  not available, and
xcluding Malta and Cyprus), Alternative A was  clearly the bet-
er choice. For Italy and Luxembourg, Alternative A and B provided
lmost equal results. For Bulgaria and Romania we  chose the fusion
esult of Alternative B a priori, since there the peculiarity of the co-
ccurrence of very big and very small patches was better caught by
lternative B.

Thus, we applied a combined approach, merging the results of
lternative B (for Bulgaria and Romania) with those of Alternative

 for all other countries (Alternative AB). It should be kept in mind
hat the combination of Alternative A and B occurred on the level
f classified percentiles, which were calculated for all of Europe.

.2.7. Association of approximate patch size
The qualitative indicator provided a good means to distinguish

gricultural land; however, we developed the indicator further to
 semi-quantitative one, associating with each of the qualitative

lasses the mean (plus lower and upper limit) object size identi-
ed during the segmentation process. The derivation of the object
ize was performed exclusively on pixels, whose quintile-based
lasses were not altered after the fusion process of edge density and
dicators 61 (2016) 317–327 321

texture. This way, only pure segmentation-based data and no
textural data is assessed to derive plot size. However, finally we
attributed patch size to all pixels, assuming that the quintile-
based classification based on segmentation and texture delivers a
comparable valuable class ranking as the sole segmentation-based
approach.

Next to an average patch size value for each class, we derived
the (lower and upper) class limits. If class limits were taken as
minimum and maximum values of patch size of each class, they
would overlap, which is not desirable. Therefore, class limits were
re-defined in a way  that the lower percentile x of a class y is closest
to the higher percentile 1−x of a class y+1. For instance, class lim-
its between class 0+ (largest patches) and class 20+ (second largest
patches) are supposed to be where the percentile x of class 0+ is
closest to (the complementary) percentile 1−x of class 20+.

2.3. Verification – methods

Verification of the results occurred on different scales for both
qualitative and semi-quantitative results.

(1) ESDAC:  The European Soil Data Centre (ESDAC) has derived
field size based on the Image 2000 dataset (http://eusoils.jrc.
ec.europa.eu/library/themes/erosion/winderosion/Resources/
AvFieldSize.pdf). The ESDAC approach only considers large
fields (neglecting small ones), since this data has been designed
as input for wind erosion modelling on a European scale. The
difference between the two data sets mainly consists in the
inclusion of textural analysis in the FHI in order to account
for small fields. We carried out a numerical country-wise
comparison.

(2) LUCAS:  The database LUCAS 2009 provides point data on field
size for 25 EU member states. The survey assigns the classes 1–4
to each sample of a point grid of 2 km distance, equivalent to the
local field plot size of La < 0.5 ha, 0.5 ha ≤ La < 1 ha, 1 ≤ La < 10 ha,
and La ≥ 10 ha. We  compared these classes to FHI-derived field
classes.

(3) IACS: we carried out a similar comparison on a regional scale,
which is illustrated in Fig. 7B. Rintelen and Zenger (2001)
reported for Bavaria, a Southern German region with a size of
70,550 km2 with an agricultural share of 50% the distribution of
arable field sizes for the year 1999. Source of their reporting was
the InVeKoS data base, an IACS database (Integrated Adminis-
tration and Control System, EC, 2009) to administer agricultural
subsidies.

3. Results

3.1. Farmland Heterogeneity Indicator (FHI)

Fig. 3 illustrates input data, Image 2006, which shows a distinct
pattern of small and large patches. In this example, agricultural
land surrounding urbanized areas (masked areas in Fig. 3B–D)
shows a higher density of small patches. The segmentation and
the ED derived thereof did not fully capture this particularity (A
and C), while texture is able to distinguish these areas more dis-
tinctly (compare B and C, where C is predominantly covered by
percentile class 0+). This is reflected in the FHI (D). Fig. 4 shows
the FHI for Europe. The historical border between the states of
the former Eastern Bloc and the Western countries is clearly vis-

ible (e.g. between East and West Germany). Large parts of the
Iberian Peninsula are dominated by large patches, which can be
explained by historical reasons (minifundio in the North versus
latifundio in the South, Gjelten, 1984). The detail, depicting a

http://eusoils.jrc.ec.europa.eu/library/themes/erosion/winderosion/Resources/AvFieldSize.pdf
http://eusoils.jrc.ec.europa.eu/library/themes/erosion/winderosion/Resources/AvFieldSize.pdf
http://eusoils.jrc.ec.europa.eu/library/themes/erosion/winderosion/Resources/AvFieldSize.pdf
http://eusoils.jrc.ec.europa.eu/library/themes/erosion/winderosion/Resources/AvFieldSize.pdf
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Table 1
Structural elements extractable from LUCAS database 2009.

LUCAS code Description

1 Grass margins less than 3 m
2  Heath-Shrub tall herb fringes less than 3 m

10  Single bushes single tree
11 Avenue trees
12 Conifer hedges less than 3 m
13  Bush-tree hedges-coppices visibly managed (e.g. pollarded) less than 3 m
14  Bush-tree hedges – not managed – with single Trees – or shrub land deriving from abandonment less than 3 m
15  Grove-Woodland margins (if no hedgerow) less than 3 m
21  Dry stone walls
23  Fences
31 Ditches – channels less than 3 m
32  Rivers – streams less than 3 m
41  Ponds – wetlands less than 3 m
51 Rock outcrops with some natural vegetation
61  Tracks
62 Roads
63 Railways
71 Other linear elements

F ring th
i ly (C),

s
o
a
c
c

ig. 3. Intermediate and final products for an area in Romania (Alternative AB) du
ndicator (B), urban areas are masked, a patch indicator derived by edge density on

ubset of the Italian Po Valley, shows a hot spot of large patches

n the left side, which is in fact an area of large rice paddies. Aver-
ged over EU27, FHI values were calculated for all agricultural CLC
lasses including ‘natural grasslands’ (Fig. 5). Based on CLC classifi-
ation, agroforestry areas clearly result as areas with largest patch
e generation of the FHI: Input data Image 2006 overlaid by segments (A), texture
 definitive FHI using edge density and texture (D).

size (low FHI), followed by Olive groves and natural grasslands. On

the other hand, pastures and mixed (heterogeneous) CLC classes are
detected as areas with smallest patch size (high FHI). Intermediate
values were found for typical arable land and all other permanent
vegetation.
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Fig. 4. FHI for Europe (EU27), Alternative AB. The detail shows t

.2. Approximate patch size

The approximate patch size limits (lower and upper limits) of
ach class are reported in Table 2. The term approximate patch
ize is preferred due to data’s inherent uncertainty. The class per-
entiles of where class limits have been detected and a reliability
f each class limit is given. Class limits are assumed to occur where
he histograms of neighbouring classes intersect. The reliability

easure expresses the population fraction of two  neighbouring
lasses that can be expected to fall into the two  classes with the
pecified limits, i.e. the percentiles of two neighbouring classes,
xpressing the positively associated population with each class, are
veraged.

.3. Verification – results

.3.1. ESDAC
The results of the numerical country-wise comparison with

SDAC field size data are displayed for some countries in Fig. 6.
nly the results of France (FR), Spain (ES) and Germany (DE) are

isplayed in Fig. 6 since they dispose of reasonable ranges (FHI
ange > 2.5, ESDAC field size range > 18 ha) and sufficient points per
ountry (n > 40). Low field size coincides with high FHI classes and
ice versa. The most reliable comparison is the one for Germany,
I for the agricultural area around the Po River in Northern Italy.

which covers a broader range for both FHI and field size and
consists of a higher number of points. For Germany, the correlation
coefficient has been calculated as R = −0.74.

3.3.2. LUCAS
The coincidence between the class limits of FHI and LUCAS (La)

is not perfectly congruent, as Table 3 shows. FHI class 1 and LUCAS
class 4 fit best where there are slight deviations between their
classes’ field plot sizes for the other pairs. However, an accumula-
tive comparison for the study site shows good agreement between
the FHI and LUCAS (Fig. 7A).

3.3.3. IACS
For Bavaria high congruency of different field plot sizes

was found (Fig. 7B). Agreements were better for medium-sized
patches (>2 ha) than for those less than 2 ha. For congruent com-
parison between FHI and the reported data, interpolation of
reported data was performed applying a polynomial degree 3
(R2 = 0.99).

Although an overall numerical assessment of all three verifica-

tions can hardly be calculated, in all cases the plausibility of the
results is documented. This is particularly advantageous as com-
parisons have been made across regional, national and continental
scales.
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Table 3
Corresponding FHI and LUCAS classes.

FHI LUCAS

Class Area [ha] Class Area La [ha]

1 >9.4 4 >10

T
P

ig. 5. Average FHI values (and standard deviation) of agricultural CLC classes (level
)  and ‘natural grasslands’ (EU27) for Alternative AB.

. Discussion
To our knowledge, this paper presents the first-fully observed
armland Heterogeneity Indicator at a continental level. The
ndicator assesses the density of field edges or other structural

able 2
ercentile class specific characteristics. Percentile and patch size limits of classes and a re

Class 0+ Class 20+ 

Lower Upper Lower 

Percentile 0.24 0.76 0.37 

[ha]  9.2 9.6 3.8 

Avg.  class limit [ha] 9.4 3.8 

Reliability 0.76 0.63 

Fig. 6. Scatterplot FHI (Alternative AB) versus field s
2  + 3 + 4 2.0–9.3 3 1–10
5  <2.0 2 0.5–1

elements that delineate agricultural patches (roads, buildings,
etc.) and are detectable from satellite-based spectral remote
sensing data for agricultural lands. The FHI fills the gap of a so
far missing detailed, harmonized continental indicator on a land-
scape scale for farmland heterogeneity, allowing or contributing,
amongst others, to an ecological assessment of agricultural land
in terms of ecosystem service potential and farmland biodiversity
. With reference to other works on the identification of linear
features (García-Feced et al., 2015; Van der Zanden et al., 2013),
the main differences consist in the wider definition of mapping
features, the identification of the patch as reference landscape unit
and the focus on landscape configurational heterogeneity.

Methodologically, edges or structural elements are detected due
to existing visible structures or spectral differences between fields,
or they can be inferred by the presence of elevated texture val-
ues. The latter applies in particular to areas of very small patches,
where field edges cannot be individually detected due to sensor
resolution. For the derivation of FHI, the appraised approach of
Chica-Olmo and Abarca-Hernández (2000), namely the combina-
tion of segmentation and texture-based data, was followed. The
integration of these data represents an added value compared to

other indices computed for the European continent, e.g. as for the
mentioned ESDAC-based field size. The parallel approach offers
advantages, such as more consolidated and robust results, or an

liability measure is shown.

Class 40+ Class 60+ Class 80+

Limit

Upper Lower Upper Lower Upper

0.63 0.40 0.60 0.39 0.61
3.8 2.6 2.7 2.0 2.0

2.7 2.0
0.60 0.61

ize according to ESDAC for three EU-countries.
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nd IACS based cumulative shares of arable land covered by different field sizes for
avaria (Germany).

ource: InVeKos (Rintelen and Zenger, 2001).

symmetric and dynamic assessment of “trust” of the single layers,
ut requires a more complex process of data fusion.

A valuable advantage of FHI is that the whole area is assessed by
 harmonized approach, although for Bulgaria/Romania a slightly
odified approach had to be applied due to local peculiarities. To

chieve this, a landscape metric’s-based approach was employed,
llowing the indicator computation of a large geographic region
ithin reasonable time. The indicator is of qualitative nature,

et an effort was made to associate semi-quantitative informa-
ion by delivering 5 classes of varying patch size degrees within
gricultural land (including grasslands). The outcome is character-
zed by the trade-off between spatial resolution and coverage: the
ata set’s spatial resolution can be insufficient in the case of very
mall/narrow patches (limitation), but it is to date a unique data
ource providing European coverage, essential for a harmonized
uropean assessment. The availability of two temporal coverages
COV1 and COV2) is advantageous, as it is increasing the probability
o encounter vegetated fields on ground for at least one date, which

s expected to enhance patch detection compared to uncultivated
atches or bare soil.

The approach is repeatable if, given the single processing steps
ocumented here, similar data are available. This includes at least
dicators 61 (2016) 317–327 325

a remote sensing data set with comparable characteristics and
an updated land use/land cover mask. It is highly probable that
these data will be available for the coming years, provided by the
CORINE project and by recent or upcoming sensors (e.g. Sentinel-2,
Landsat-8, etc.). Exactly identical data input settings will hardly be
encountered in future. This, however, should not impede a re-run,
considering that it is not the single pixel but pattern changes which
are usually of interest to decision makers. Monitoring or change
detection will be possible through the extraction of data population
values (e.g. FHI before classification, or patch size) at defined limits
(e.g. percentiles) at time 1, and superimposition of these values to
corresponding data population values at time 2, getting the per-
centile rank (Schultzkie, 2013). Class volume differences will then
deliver the direction, degree and the geo-locations of changes. The
percentile-based approach and the rescaling (Eq. (1)) do technically
not facilitate repeatability but enhance certainly the robustness of
the indicator, also in view of future comparability.

The results have been verified on different scales (regional,
national and continental) and for different areas in Europe. Good
agreement with reported field sizes of three independent sources
was found for FHI, confirming the plausibility of the results. Despite
the good agreement for FHI, the uncertainty of the underlying
derived patch size remains high, for which in particular the derived
approximate field size has to be considered of indicative order. In
general, main sources of uncertainty are linked to (i) the inherent
characteristics and limitations of the multispectral remote sensing
data used, (ii) the segmentation settings, (iii) the generalization
process of CORINE land use/land cover map. Field size estimation
uncertainties relate to the necessity to extract patch size from the
areas which are purely derived by segmentation, and the technique
and assumption made to extract field class limits. Moreover, the
assessment is based on all detected elements within agricultural
land, including minor areas of semi-natural or natural origin, and
impervious areas.

Overall, the FHI can provide a useful data source for agro-
economic assessments, for example, as input for an ecological
and economic assessment of energy/machinery use or status of
land consolidation. It is noteworthy that a context-based view
is required for a correct interpretation of results. Large patches
within typical agroforestry areas (as e.g. found in Southern Iberia)
do not have the same ecological potential of large patches within
an intensive agricultural area (e.g. East Germany). Additional data
is required to further analyze the indicator. For example, to dis-
tinguish the above-mentioned cases, land use/land cover data or
an indicator describing patch complexity would help (i.e. arable
parcels generally have a more simple and geometric shape than
agroforestry patches); the latter could be derived from the same
base data.

Considering the importance of small fields, structured land-
scapes and the presence of field margins, following Fahrig et al.
(2015) and their work on configurational heterogeneity of farm-
land, FHI may  serve as an input for farmland biodiversity
assessments.

For the future, a quantitative indicator of patch size should be
envisaged for Europe. In the ideal case, such an indicator would be
based on improved data input, such as optical remote sensing data
in the range of 2–10 m.

5. Conclusions

The FHI is a novel indicator to characterize the agricultural

landscape, providing information on configurational heterogene-
ity. Being based both on the occurrence of spectral differences
between adjacent elements and on textural information, it (i)
expresses the presence of visible field borders and other structural
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lements within a field in qualitative terms, and (ii) provides the
asis for an indicative field size. To our knowledge, and taking into
ccount previous work carried out by Van der Zanden et al. (2013),
he work presented in this paper is the first pan-European map-
ing of observed farmland structural heterogeneity at a detailed
cale. Compared to existing applications, the combination of spec-
ral and texture information enhances robustness of the resulting
ndicator, which is characterized by a higher accuracy than the sin-
le components on their own. However, it has to be kept in mind
hat due to scale dependency, very small or narrow elements are
ot captured by the used sensor (e.g. single trees). Moreover, the
pplied methodology identifies transition zones of changing land
se/land cover, which do not necessarily represent or correspond
ith cadastral limits. Potential fields of application concern the
ommon Agricultural Policy and its greening package, farmland
iodiversity assessments as well as ecosystem service mapping. The
HI is a snapshot of the situation at a specific date, but repeatable
n time while allowing monitoring landscape structural changes.
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