A Basis-Deficiency-Allowing Variation of the Simplex Method for Linear Programming

P.-Q. Pan
Department of Applied Mathematics
Southeast University, Nanjing 210096, P.R. China

(Received November 1997; accepted December 1997)

Abstract

As one of the most important and fundamental concepts in the simplex methodology, basis is restricted to being a square matrix of the order exactly equal to the number of rows of the coefficient matrix. Such inflexibility might have been the source of too many zero steps taken by the simplex method in solving real-world linear programming problems, which are usually highly degenerate. To dodge this difficulty, we first generalize the basis to allow the deficient case, characterized as one that has columns fewer than rows of the coefficient matrix. Variations of the primal and dual simplex procedures are then made, and used to form a two-phase method based on such a basis, the number of whose columns varies dynamically in the solution process. Generally speaking, the more degenerate a problem to be handled is, the fewer columns the basis will have; so, this renders the possibility of efficiently solving highly degenerate problems. We also provide a valuable insight into the distinctive and favorable behavior of the proposed method by reporting our computational experiments. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords-Linear programming, Simplex method, Degeneracy, Basis deficiency, Least squares problem, Orthogonal transformation.

1. INTRODUCTION

1997 marked the golden anniversary of linear programming and the simplex method, founded by Dantzig $[1,2]$. As perhaps the most beneficial and widely used mathematical tools in technology and science, linear programming, and the simplex method might be well accepted to be one of man's greatest achievements in this century.
Effects of degeneracy were noted as early as nearly at the beginning of the fruitful and exciting period of 50 years $[3,4]$. The problem with degeneracy is that basic variables bearing value zero could lead to zero-length steps and, as a result, undermine the finiteness of the simplex method. Although authors make a nondegeneracy assumption to guarantee the finiteness of the simplex method, degeneracy occurs all the time in practice. In fact, it is common that a considerable proportion of basic variables bear value zero.
Yet, from a practical point of view, finiteness of the simplex method is not a problem, since there is not much chance of cycling practically, even in the presence of degeneracy. Rather, the real problem caused by it is stalling: the methods can become stuck at a degenerate vertex for too long a time before exiting it, and consequently consume too much time, or fail to solve difficult largescale LP problems entirely. Although the perturbation method [5] and the lexicographic rule [6] (which coincide in spirit), and Bland's rules [7] prevent cycling, their computational performance is unsatisfactory. In spite of alternatives for handling degeneracy having been cropped up from time to time, it remains troublesome in practice (also see, for example, [8-13]).

In view of these facts, we believe that significant progress is impossible unless degeneracy is dodged completely, or to some extent at least, and that as a step toward the realization of this aim, a generalization of the basis, one of the most important and fundamental concepts in the simplex methodology, is absolutely necessary.

But how to do so?
Conventionally, basis is a nonsingular square submatrix from the coefficient matrix, of order exactly equal to the number of rows of the coefficient matrix. As a result, in literature the coefficient matrix is always assumed to have full row rank although it is not the case in general. Essentially, degeneracy occurs if and only if the right-hand side of the equality constraint is included in a subspace, spanned by some proper subset of the basis's columns. In this case, the basic variables corresponding to columns that are not included in the proper subset vanish unavoidably. To remedy this fault, therefore, these columns should be dropped from the basis; it is noted that through doing so, there would be no basic variable bearing value of zero at all, and hence, a strictly positive step-length could be taken, if the subset is a smallest one of such kind.

Motivated by the preceding ideas, in this paper we make an attempt to allow deficient basis, characterized as one that has columns fewer than rows of the coefficient matrix. Generally speaking, the more degenerate a problem to be solved is, the fewer columns the basis should have in the process. For the first time, consequently, a high degree of degeneracy could contribute to method's efficiency.

In the next section, we first generalize the basis to include the deficient case. Then, in Section 3, we make a variation of the primal simplex procedure using such a basis, the number of whose columns changes dynamically in the process while maintaining primal feasibility, until an optimal basis is reached. In Section 4, we make a variation of the dual simplex method too. In Section 5, we propose a general purpose method, based on the procedures established in the foregoing two sections, and highlight important pivot criterion issues. Finally, in Section 6, we provide some valuable insight into the distinctive and favorable behavior of the proposed method by reporting numerical results of our computational trials.

2. THE GENERALIZATION OF BASIS

Approaches to solving various LP problems can be well presented with problems in the following standard form:

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \geq 0 \tag{2.1c}
\end{array}
$$

where $A \in \mathcal{R}^{m \times n}$ with $m<n$, and $b \in \mathcal{R}^{m}, c \in \mathcal{R}^{n}$. It is assumed that the cost vector c, the right-hand side b, and A 's columns and rows are all nonzero, and that (2.1b) is consistent. In addition, we stress that no assumption is made on the rank of A, except $1 \leq \operatorname{rank}(A) \leq m$.

The following notation will be used throughout:
a_{j} the $j^{\text {th }}$ column of A,
e_{i} the unit vector with the $i^{\text {th }}$ component 1 ,
\bullet_{j} the $j^{\text {th }}$ component of a vector •,
$\|\bullet\|$ the 2 -norm of a vector \bullet,
$R(\bullet)$ the range space of a matrix \bullet.
We begin with redefining the basis.
Definition 2.1. A basis is submatrix consisting of any linearly independent set of A's columns, whose range space includes b.

Obviously, the preceding is more general than the conventional definition of basis. Thereby, bases may be classified into the following two categories.

Definition 2.2. If the number of basis' columns equals the number of rows of the coefficient matrix, it is normal basis; else, it is deficient basis.
Clearly, any m linearly independent columns from A comprise a normal basis. And the simplex method and existing variants of it merely use the normal basis.

Let B be a basis with $m 1$ columns and let N be nonbasis, consisting of the remaining columns. Define the ordered basic and nonbasic (index) sets respectively by

$$
\begin{equation*}
J_{B}=\left\{j_{1}, \ldots, j_{m 1}\right\} \quad \text { and } \quad J_{N}=\left\{k_{1}, \ldots, k_{n-m 1}\right\} \tag{2.2}
\end{equation*}
$$

where $j_{i}, i=1, \ldots, m 1$, is the index of the $i^{\text {th }}$ column of B, and $k_{j}, j=1, \ldots, n-m 1$, the index of the $j^{\text {th }}$ column of N. The subscript of a basic index j_{i} is called row index, and that of a nonbasic index k_{j} column index. Components of x and c, and columns of A, corresponding to basic and nonbasic indices, are called basic and nonbasic, respectively. Hereafter, for simplicity of exposition, components of vectors and columns of matrices will always be arranged, and partitioned conformably, as the ordered set $\left\{J_{B}, J_{N}\right\}$ changes. For example, we have

$$
\begin{aligned}
A & =[B, N]=\left[a_{j_{1}}, \ldots, a_{j_{m}} ; a_{k_{1}}, \ldots, a_{k_{n-m}}\right], \\
c^{\top} & =\left[c_{B}^{\top}, c_{N}^{\top}\right]=\left[c_{j_{1}}, \ldots, c_{j_{m 1}} ; c_{k_{1}}, \ldots, c_{k_{n-m}}\right], \\
x^{\top} & =\left[x_{B}^{\top} ; x_{N}^{\top}\right]=\left[x_{j_{1}}, \ldots, x_{j_{m} 1} ; x_{k_{1}}, \ldots, x_{k_{n-m}}\right] .
\end{aligned}
$$

Thus, program (2.1) can be written

$$
\begin{array}{ll}
\min & c_{B}^{\top} x_{B}+c_{N}^{\top} x_{N} \\
\text { s.t. } & B x_{B}+N x_{N}=b, \\
& x_{B} \geq 0, \quad x_{N} \geq 0 . \tag{2.3c}
\end{array}
$$

And, accordingly, the dual program will be

$$
\begin{array}{ll}
\max & b^{\top} y, \\
\text { s.t. } & {\left[\begin{array}{l}
B^{\top} \\
N^{\top}
\end{array}\right] y+\left[\begin{array}{l}
z_{B} \\
z_{N}
\end{array}\right]=\left[\begin{array}{l}
c_{B} \\
c_{N}
\end{array}\right],} \\
& z_{B}, \quad z_{N} \geq 0 \tag{2.4c}
\end{array}
$$

The primal or dual simplex method can be used to solve program (2.1), as far as the basis is normal $(m 1=m)$ throughout. For example, a pair of complementary primal and dual basic solutions can be determined, respectively, from (2.3b) and (2.4b), that is,

$$
\begin{equation*}
\bar{x}_{N}=0 \quad \text { and } \quad \bar{x}_{B}=B^{-1} b \tag{2.5}
\end{equation*}
$$

and

$$
\begin{gather*}
\bar{y}=B^{-\top} c_{B}, \tag{2.6a}\\
\bar{z}_{N}=c_{N}-N^{\top} \bar{y}, \quad \text { and } \quad \bar{z}_{B}=0 . \tag{2.6b}
\end{gather*}
$$

When the basis is deficient, however, the preceding formulas, and conventional iterations are not well defined. Therefore, new methods have to be found to cope with the generalized basis introduced previously.

3. THE PRIMAL PROCEDURE

In this section, we make a variation of the primal simplex method, based on the generalized basis. In the process, the number of basis's columns varies dynamically, as it is updated iteration by iteration while maintaining primal feasibility, until optimality is achieved.

For simplicity, we shall use the system's augmented matrix to represent the system itself. So, for any nonsingular matrix $Q^{\top} \in \mathcal{R}^{m \times m},\left[Q^{\top} B, Q^{\top} N, Q^{\top} b\right]$ is equivalent to $[B, N, b]$, in the sense of their representing the same constraint (2.1b). In particular, an orthogonal matrix Q^{\top} can be determined such that $Q^{\top} B \in R^{m \times m 1}$ is upper triangular. In this case, the $\left[Q^{\top} B, Q^{\top} N, Q^{\top} b\right]$ is said to be canonical (augmented) matrix. Notably, since B is a basis, all diagonal entries of $Q^{\top} B$ are nonzero, while all the last $m-m 1$ components, if any, of $Q^{\top} b$ are zero.

Let us develop a tableau version of the primal procedure first. Assume the presence of a canonical matrix, which might as well be denoted again by $[B, N, b]$, with the associsted sets J_{B} and J_{N} known. Assume $m 1<m$, and put program (2.1) into the following equivalent tableau, by appending the cost row to $[B, N, b]$, as partitioned:

$$
\left[\begin{array}{ccc}
B & N & b \tag{3.1}\\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right] \equiv\left[\begin{array}{ccc}
B_{1} & N_{1} & b_{1} \\
0 & N_{2} & 0 \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right]
$$

where $B_{1} \in \mathcal{R}^{m 1 \times m 1}$ is upper triangular. Accordingly, the dual program of (3.1) can be written in the tableau below:

$$
\left[\begin{array}{ccc}
B^{\top} & I_{B} & c_{B} \tag{3.2}\\
N^{\top} & I_{N} & c_{N} \\
b^{\top} & 0 & 0
\end{array}\right] \equiv\left[\begin{array}{ccc}
B_{1}^{\top} 0 & I_{B} & c_{B} \\
N_{1}^{\top} N_{2}^{\top} & I_{N} & c_{N} \\
b_{1}^{\top} 0 & 0 & 0
\end{array}\right]
$$

From (3.1), a primal basic solution can be determined immediately:

$$
\begin{align*}
\bar{x}_{N} & =0 \tag{3.3a}\\
\bar{x}_{B} & =B_{1}^{-1} b_{1} \tag{3.3b}
\end{align*}
$$

corresponding to the objective value $f=c_{B}^{\top} B_{1}^{-1} b_{1}$. And a basic solution to (3.2) can be obtained, that is,

$$
\begin{align*}
\bar{y} & =\left[\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
B_{1}^{-\top} c_{B} \\
0
\end{array}\right], \tag{3.4a}\\
\bar{z}_{N} & =c_{N}-N_{1}^{\top} B_{1}^{-\top} c_{B} \tag{3.4~b}\\
\bar{z}_{B} & =0 \tag{3.4c}
\end{align*}
$$

The preceding \bar{x} and \bar{z} clearly exhibit complementary slackness. We shall regard (3.4) as a "dual basic solution", since it is a basic solution to the original dual program of (2.1), except \bar{y} is different from its correspondent by only an orthogonal matrix factor (the same below).

The \bar{z}_{N} can be obtained alternatively. In fact, it is easy to show that annihilating by Gaussian elimination the basic entries of the cost row of (3.1) renders \bar{z}_{N} and f as well

$$
\left[\begin{array}{ccc}
B & N & b \tag{3.5}\\
0 & \bar{z}_{N}^{\top} & -f
\end{array}\right] \equiv\left[\begin{array}{ccc}
B_{1} & N_{1} & b_{1} \\
0 & N_{2} & 0_{2} \\
0 & \bar{z}_{N}^{\top} & -f
\end{array}\right]
$$

The preceding is called canonical tableau.
Take a single iteration. Assume that the current canonical tableau, say (3.5), is primally feasible, i.e., $\bar{x}_{B} \geq 0$. If, in addition, it holds that $\bar{z}_{N} \geq 0$, then primal and dual optimal solutions are already obtained, and hence all is done. Suppose that this is not the case. We
select a nonbasic column to enter the basis in accordance with some column selection criteria, for instance, Dantzig's original one below:

$$
\begin{equation*}
q=\operatorname{Arg} \min \left\{\bar{z}_{k_{j}} \mid j=1, \ldots, n-m 1\right\} . \tag{3.6}
\end{equation*}
$$

So, $\bar{z}_{k_{q}}<0$, and the nonbasic column $a_{k_{q}}$ will enter the basis. There will be one of the following two possibilities arising, which should be handled differently.
CASE 1. $m 1=m$, or $m 1<m$ but the $(m 1+1)$ through $m^{\text {th }}$ components of $a_{k_{q}}$ are all zero.
Clearly, this case occurs if and only if $a_{k_{q}} \in R(B)$. In this case, the value of the nonbasic variable $x_{k_{q}}$ of the solution is allowed to increase from zero with the objective value decreasing. To determine a blocking basic variable, compute the $m 1$-vector

$$
\begin{equation*}
v=B_{1}^{-1} \tilde{a}_{k_{q}}, \tag{3.7}
\end{equation*}
$$

by solving the upper triangular system $B_{1} v=\tilde{a}_{k_{q}}$, where $\tilde{a}_{k_{q}}$ is the subvector consisting of the first $m 1$ components of $a_{k_{q}}$. There is no blocking variable, and the program is hence lower unbounded if the row index set below is empty:

$$
\begin{equation*}
I=\left\{i \mid v_{i}>0, i=1, \ldots, m 1\right\} . \tag{3.8}
\end{equation*}
$$

If, otherwise, it is nonempty, then the row index p may be determined such that

$$
\begin{equation*}
\alpha=\frac{\bar{x}_{j_{p}}}{v_{p}}=\min \left\{\left.\frac{\bar{x}_{j_{i}}}{v_{i}} \right\rvert\, i \in I\right\}>0, \tag{3.9}
\end{equation*}
$$

where the inequality holds under nondegeneracy, i.e., $\bar{x}_{B}>0$. Therefore, as the value of the nonbasic variable $x_{k_{q}}$ increases from zero up to α with values of the other nonbasic variables unchanged, the value of $x_{j_{p}}$ decreases from $\bar{x}_{j_{p}}$ down to zero while primal feasibility remains unaltered. This leads to the following formula for updating the basic feasible solution \bar{x} :

$$
\begin{equation*}
\bar{x}_{j_{i}}:=\bar{x}_{j_{i}}-\alpha v_{i}, \quad \forall i=1, \ldots, m 1, \quad \bar{x}_{k_{q}}:=\alpha . \tag{3.10}
\end{equation*}
$$

Then we bring the $p^{\text {th }}$ basic column of the canonical tableau to the end of its nonbasic columns (corresponding to N), with J_{B} and J_{N} adjusted conformably. If $p=m 1$, the resulting $B \in$ $\mathcal{R}^{m \times(m 1-1)}$ is already upper triangular, while when $p<m 1$, the B is an upper Hessenberg with nonzero subdiagonal entries in its p through $(m 1-1)^{\text {th }}$ columns. These unwanted entries are zeroed by premultiplying $[B, N, b]$ in (3.5) by a series of appropriate Givens rotations. Afterwards, the $q^{\text {th }}$ nonbasic column of (3.5) is brought to the end of its basic columns, with J_{B} and J_{N} adjusted conformably. It is easy to show that the new $B \in \mathcal{R}^{m \times m 1}$, or $B_{1} \in \mathcal{R}^{m 1 \times m 1}$ is again upper triangular, with nonzero diagonal entries.
At first thought, one might expect that a column to be chosen to enter a basis rarely happens to be in the basis' range space, and hence this case rarely occurs. However, our computational experiments indicate quite the contrary, as will be shown in Section 6.
CASE 2. $m 1<m$ and some of the $(m 1+1)$ through $m^{\text {th }}$ components of $a_{k_{q}}$ are nonzero.
The case occurs if and only if $a_{k_{q}} \notin R(B)$. This time, the value of the nonbasic variable $x_{k_{q}}$ is not allowed to increase from zero because this action will lead to violation of some of the last $m-m 1$ constraints. So, we annihilate the ($m 1+2$) through $m^{\text {th }}$ components of $a_{k_{q}}$ by premultiplying $[B, N, b]$ by an appropriate Householder reflection, and bring the $q^{\text {th }}$ nonbasic column of the canonical tableau (3.5) to the end of its basic part. Then we set $m 1:=m 1+1$, and rearrange J_{B} and J_{N} conformably. It is obvious that the resulting B is an $m \times m 1$ upper triangular matrix with nonzero diagonal entries.

Clearly, the orthogonal transformations carried out in either case do not disturb zero components of b 's subvector 0_{2} at all. When the newly-entering entry of the cost row is zeroed
using Gaussian elimination, therefore, a new canonical tableau results. As the number of basis' columns remains unchanged in Case 1, and grows by one in Case 2, the associated iterations will be referred to as full and rank-increasing ones, respectively. Note that in Case 1, the primal basic feasible solution is updated to correspond to a lower objective value, if nondegeneracy is assured, whereas it remains unaltered in Case 2; on the other hand, the dual basic solution (or the cost row) changes in either case, generally.

The description of a single iteration is then completed. Such steps are repeated until optimality is accomplished, or otherwise lower unboundedness is detected. In the process, the number of basis' columns varies dynamically but never decreases.

We put the preceding steps into the following model.
Algorithm 3.1. Primal procedure: a tableau version. Given an initial canonical tableau (3.5) and associated sets J_{B} and J_{N}. Assume nonnegativeness of \bar{x}_{B}, featured by (3.3b).

1. Stop if $\bar{z}_{N} \geq 0$.
2. Determine the column index q by rule (3.6).
3. Go to Step 11, if $m 1<m$ and some of the $(m 1+1)$ through $m^{\text {th }}$ components of $Q^{\top} a_{k_{q}}$ are nonzero.
4. Compute the vector v, defined by (3.7).
5. Stop if set I defined by (3.8) is empty.
6. Determine the step-length α and row index p by rule (3.9).
7. Updated \bar{x} by (3.10).
8. Bring the $p^{\text {th }}$ basic column of (3.5) to the end of its nonbasic columns, and adjust sets J_{B} and J_{N} conformably.
9. If $p<m 1$, annihilate nonzero subdiagonal entries in the p through ($m 1-1)^{\text {th }}$ columns of B by premultiplying $[B, N, b]$ by appropriate Givens rotations.
10. Go to Step 13.
11. If $m 1<m-1$, annihilate the $(m 1+2)$ through $m^{\text {th }}$ components of $a_{k_{q}}$ by premultiplying [$B, N, b]$ by an appropriate Householder reflection.
12. Set $m 1:=m 1+1$.
13. Bring the q nonbasic column of (3.5) to the end of its basic columns, and adjust J_{B} and J_{N} conformably.
14. Annihilate $\bar{z}_{j_{m 1}}$ using Gaussian elimination.
15. Go to Step 1.

Since there are only finitely many bases, the algorithm does not terminate if and only if cycling occurs. Further, since the number of basis's columns does not decrease in the process, a cycle never involves any rank-increasing iteration; or in other words, cycling can only occur with full iterations. If nondegeneracy is assured for such iterations, there will be no chance of cycling at all, as the objective value decreases strictly. Thus, based on the discussions made priori to the algorithm, we state the following.

Theorem 3.2. Under primal nondegeneracy assumption on full iterations, Algorithm 3.1 terminates at either
(1) Step 1, with primal and dual optimal solutions reached; or
(2) Step 7, detecting lower unboundedness of program (2.1).

It is possible to revise the preceding computations by maintaining $Q R$ factors of the basis rather than accumulating manipulations in the canonical tableau. Let J_{B} and J_{N} be current basic and nonbasic sets, respectively. Given $A \equiv[B, N]$, and the QR decomposition $Q^{\top} B=R$, where $Q \in R^{m \times m}$ is orthogonal and $R \in \mathcal{R}^{m \times m 1}$ is upper triangular. Let Q and R be partitioned as $Q=\left[Q_{1}, Q_{2}\right]$ and $R=\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$, where $Q_{1} \in \mathcal{R}^{m \times m 1}, Q_{2} \in \mathcal{R}^{m \times(m-m 1)}, R_{1} \in \mathcal{R}^{m 1 \times m 1}$ is upper triangular, and $0 \in \mathcal{R}^{(m-m 1) \times m 1}$ is the zero matrix. Then the canonical matrix may be
partitioned

$$
\left[\begin{array}{lll}
Q^{\top} B & Q^{\top} N & Q^{\top} b
\end{array}\right]=\left[\begin{array}{ccc}
R_{1} & Q_{1}^{\top} N & Q_{1}^{\top} b \tag{3.11}\\
0 & Q_{2}^{\top} N & 0
\end{array}\right]
$$

The associated primal basic solution is then

$$
\begin{align*}
\bar{x}_{N} & =0 \tag{3.12a}\\
\bar{x}_{B} & =R_{1}^{-1} Q_{1}^{\top} b \tag{3.12b}
\end{align*}
$$

corresponding to the objective value $f=c_{B}^{\top} R_{1}^{-1} Q_{1}^{\top} b$. And the according dual basic solution is

$$
\begin{align*}
\bar{y} & =\left[\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
R_{1}^{-\top} c_{B} \\
0
\end{array}\right] \tag{3.13a}\\
\bar{z}_{N} & =c_{N}-N^{\top} Q_{1} R_{1}^{-\top} c_{B} \tag{3.13b}\\
\bar{z}_{B} & =0 \tag{3.13c}
\end{align*}
$$

Similarly, other computations carried out by Algorithm 3.1 can be done with the program's original data and the basis' QR factors.

Denote by G_{j} a Givens rotation, i.e., identity matrix of some order with its principal submatrix in j and $(j+1)^{\text {th }}$ columns and rows replaced by appropriate entries: $\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right]$. Let us show how to update QR factors after adding column $a_{k_{q}}$ to the end of the basis B, in a rank-increasing iteration. Assume $m 1+1<m$, and some of the $m 1+2$ through $m^{\text {th }}$ components of $Q^{\top} a_{k_{q}}$ is nonzero. Determine Householder reflection $H \in \mathcal{R}^{m \times m}$ such that the $m 1+2$ through $m^{\text {th }}$ components of $H Q^{\top} a_{k_{q}}$ are all zero. Thus, the QR factors are updated as follows:

$$
\begin{equation*}
Q^{\top}:=H Q^{\top} \quad \text { and } \quad R:=\left[R, Q^{\top} a_{k_{\mathbf{q}}}\right] \tag{3.14}
\end{equation*}
$$

The above remains valid when $m 1+1=m$, or else the $m 1+2$ through $m^{\text {th }}$ components of $Q^{\top} a_{k_{q}}$ are zero if it is established that the H is the identity matrix in such case.

Now assume that the $p^{\text {th }}$ column, $a_{j_{p}}$, of the basis is deleted. Denote by $\bar{R} \in \mathcal{R}^{m \times(m 1-1)}$ the matrix, resulting from deleting the $p^{\text {th }}$ column of R. If $p<m 1$, determine Givens rotations $G_{j} \in \mathcal{R}^{m \times m}, j=p, \ldots, m 1-1$, to annihilate nonzero subdiagonal entries in the p through $(m 1-1)^{\text {th }}$ columns of the upper Hessenberg \bar{R}. Thereby, we have the updating formulas below:

$$
\begin{equation*}
Q^{\top}:=G_{m 1-1} \ldots G_{p} Q^{\top} \quad \text { and } \quad R:=G_{m 1-1} \ldots G_{p} \bar{R} \tag{3.15}
\end{equation*}
$$

The preceding remains valid for case of $p=m 1$ if it is established that the Givens rotations become the identity matrix.

Using above notation, we revise Algorithm 3.1 into the following model.
Algorithm 3.3. Primal procedure: a revised version. Given initial sets J_{B} and J_{N}, and the $Q R$ decomposition $Q^{\top} B=R$ of the basis B. Assume nonnegativeness of \bar{x}_{B}, featured by (3.12b).

1. Compute \bar{z}_{N} by (3.13b).
2. Stop if $\bar{z}_{N} \geq 0$.
3. Determine the column index q by rule (3.6).
4. Go to Step 12, if $m 1<m$ and some of the $(m 1+1)$ through $m^{t h}$ components of $Q^{\top} a_{k_{q}}$ are nonzero.
5. Compute vector $v=R_{1}^{-1} Q_{1} a_{k_{q}}$.
6. Stop if set I defined by (3.8) is empty.
7. Determine the step-length α and row index p by rule (3.9).
8. Updated \bar{x} by (3.10).
9. Update R and Q^{\top} by (3.15).
10. Bring the $p^{t h}$ index of J_{B} to the end of J_{N}.
11. Set $m 1:=m 1-1$.
12. Update R and Q^{\top} by (3.14).
13. Bring the $q^{\text {th }}$ index of J_{N} to the end of J_{B}.
14. Set $m 1:=m 1+1$.
15. Go to Step 1.

4. THE DUAL PROCEDURE

In this section, we make a variation of the dual simplex method using the generalized basis, the number of whose columns changes dynamically as it is updated iteration by iteration, while maintaining dual feasibility, until primal feasibility is achieved.

Hereafter, a canonical matrix will also be referred to as canonical tableau. Now assume the presence of such a tableau, say that denoted by (3.5) without the cost row, i.e.,

$$
[B N b] \equiv\left[\begin{array}{ccc}
B_{1} & N_{1} & b_{1} \tag{4.1}\\
0 & N_{2} & 0
\end{array}\right]
$$

with associated sets J_{B} and J_{N}. Suppose that $\bar{x}_{B} \geq 0$ but $\bar{z}_{N} \geq 0$, where \bar{x}_{B} and \bar{z}_{N} are featured by (3.3b) and (3.4b), respectively.

If pivoting operations are carried out, as in the conventional dual simplex method, a row index p should be selected such that

$$
\begin{equation*}
\bar{x}_{j_{p}}=\min \left\{\bar{x}_{j_{i}} \mid i=1, \ldots, m 1\right\}<0 \tag{4.2}
\end{equation*}
$$

Then, a column index q is chosen such that

$$
\begin{equation*}
-\frac{\bar{z}_{k_{q}}}{d_{q}}=\min \left\{\left.-\frac{\bar{z}_{k_{j}}}{d_{j}} \right\rvert\, d_{j}<0, j=1, \ldots, n-m 1\right\} \tag{4.3a}
\end{equation*}
$$

where d is the $(n-m 1)$-vector

$$
\begin{equation*}
d=N_{1}^{\rightarrow} B_{1}^{-\top} e_{p} \tag{4.3b}
\end{equation*}
$$

Let us justify the preceding pivot rules in our context here. Denote by

$$
[\bar{B}, \bar{N}, b] \equiv\left[\begin{array}{ccc}
\bar{B}_{1} & \bar{N}_{1} & b_{1} \tag{4.4}\\
0 & \bar{N}_{2} & 0
\end{array}\right]
$$

the matrix resulting from the $[B, N, b]$ by bringing the $p^{\text {th }}$ column of B to the end of N, with J_{B} and J_{N} adjusted conformably. Note that

$$
\begin{equation*}
\bar{N}_{1} e_{n-m 1+1} \equiv B_{1} e_{p} \tag{4.5}
\end{equation*}
$$

By (4.2) and (3.3b), and the relation between \bar{B}_{1} and B_{1}, it can be verified that the m-vector

$$
\begin{equation*}
u \equiv\binom{u_{1}}{0}=\binom{-B_{1}^{-\top} e_{p}}{0} \tag{4.6}
\end{equation*}
$$

satisfies

$$
\bar{B}^{\top} u=0 \quad \text { and } \quad b^{\top} u>0
$$

implying that u is itself in the orthogonal complement of the range space of \bar{B}, and is an ascent direction with respect to the dual objective. It is therefore, eligible to be used as a search direction in y space; this gives rise to the following line search form:

$$
\begin{equation*}
\tilde{z}_{N}=\bar{z}_{N}+\alpha d \tag{4.7a}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{d}=-\bar{N}_{1}^{\top} u_{1}=\bar{N}_{1}^{\top} B_{1}^{-\top} e_{p} \tag{4.7~b}
\end{equation*}
$$

Notably, by (4.5), it holds that

$$
\begin{equation*}
\hat{d}_{n-m 1+1}=e_{p}^{\top} B_{1}^{-1} \bar{N}_{1} e_{n-m 1+1}=\left(e_{p}^{\top} B_{1}^{\top}\right) B_{1}^{-\top} e_{p}=1 \tag{4.8}
\end{equation*}
$$

Further, since \bar{N}_{1} and N_{1} are the same, except for \bar{N}_{1} 's $(n-m+1)^{\text {th }}$ column, we have

$$
\begin{equation*}
\hat{d}^{\top}=\left[d^{\top}, 1\right] \tag{4.9}
\end{equation*}
$$

where d is defined by (4.3b). So, the $z_{k_{n-m 1+1}}$ is never a blocking variable. This justifies row and column selection rules (4.2) and (4.3).

However, we shall compute neither d by (4.3b), nor \hat{d} by (4.7b), because an alternative search vector can be computed at a lower cost. Return to (4.4) again. If $p<m 1$, the $\bar{B}_{1} \in \mathcal{R}^{m 1 \times(m 1-1)}$ is upper Hessenberg with nonzero subdiagonal entries in its p through $(m 1-1)^{\text {th }}$ columns. A series of Givens rotations $G_{j} \in \mathcal{R}^{m 1 \times m 1}, j=p, \ldots, m 1-1$, can be determined such that $Q_{1}^{\top} \bar{B}_{1} \in \mathcal{R}^{m 1 \times(m 1-1)}$ is upper triangular, where $Q_{1}^{\top}=G_{m 1-1} \ldots G_{p}$. Consequently, we have

$$
\operatorname{diag}\left(Q_{1}^{\top}, I_{m-m 1}\right)[\bar{B}, \bar{N}, b]=\left[\begin{array}{ccc}
Q_{1}^{\top} \bar{B}_{1} & Q_{1}^{\top} \bar{N}_{1} & Q_{1}^{\top} b_{1} \tag{4.10}\\
0 & \bar{N}_{2} & 0
\end{array}\right]
$$

where $I_{m-m 1} \in \mathcal{R}^{(m-m 1) \times(m-m 1)}$ is the unit matrix. Consider the following least squares problem:

$$
\begin{equation*}
\min _{x_{B}}\left\|b-\bar{B} x_{B}\right\| \tag{4.11}
\end{equation*}
$$

which is equivalent to

$$
\min _{x_{B}}\left\|\left[\begin{array}{c}
Q_{1}^{\top} b_{1} \tag{4.12}\\
0
\end{array}\right]-\left[\begin{array}{c}
Q_{1}^{\top} \bar{B}_{1} \\
0
\end{array}\right] x_{B}\right\|
$$

The residual at the solution to (4.11) is then

$$
r=\left[\begin{array}{c}
r_{1} \tag{4.13}\\
0
\end{array}\right]=\left[\begin{array}{c}
\left(e_{m 1}^{\top} Q_{1}^{\top} b_{1}\right) Q_{1} e_{m 1} \\
0
\end{array}\right]
$$

Since the r above is the orthogonal projection of b onto the complement of the range space of \bar{B}, it is eligible to use the following line search form:

$$
\begin{equation*}
\tilde{z}_{N}=\bar{z}_{N}+\alpha \bar{d} \tag{4.14a}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{d}=-\bar{N}_{1}^{\top} r_{1}=-\left(e_{m 1}^{\top} Q_{1}^{\top} b_{1}\right) \bar{N}_{1}^{\top} Q_{1} e_{m 1} \tag{4.14b}
\end{equation*}
$$

Substituting the \bar{x} into the equation, represented by the $m 1^{\text {th }}$ row of (4.10), gives

$$
\begin{equation*}
\left(e_{m 1}^{\top} Q_{1}^{\top} \bar{N}_{1} e_{n-m 1+1}\right) \bar{x}_{j_{p}}=e_{m 1}^{\top} Q_{1}^{\top} b_{1} \tag{4.15}
\end{equation*}
$$

Since $\left[\bar{B}_{1}, \bar{N}_{1} e_{n-m 1+1}\right.$] is just the upper triangular matrix B_{1} with columns reordered, on the other hand, $\left[Q_{1}^{\top} \bar{B}_{1}, Q_{1}^{\top} \bar{N}_{1} e_{n-m 1+1}\right] \in \mathcal{R}^{m 1 \times m 1}$ is again an upper triangular matrix (with nonzero diagonal entries). Therefore, it holds that $\left(e_{m 1}^{\top} Q_{1}^{\top} \bar{N}_{1} e_{n-m 1+1}\right) \neq 0$, which together with (4.15) and $\bar{x}_{j_{p}}<0$ leads to $e_{m 1}^{\top} Q_{1}^{\top} b_{1} \neq 0$. And the $z_{k_{n-m 1+1}}$ is never a blocking variable since it holds that

$$
\begin{equation*}
\bar{d}_{n-m 1+1}=-\left(e_{m 1}^{\top} Q_{1}^{\top} b_{1}\right) e_{n-m 1+1}^{\top} \bar{N}_{1}^{\top} Q_{1} e_{m 1}>0 \tag{4.16}
\end{equation*}
$$

Table 1. Code CLS statistics.

| Problem | N | N | $N+N$ | Total | | | Phase-1 | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | Iter | Time | \% Dgn | Iter | Time | \% Dgn |
| AFIRO | 27 | 32 | 59 | 29 | 0.17 | 68.97 | 28 | 0.17 | 71.43 |
| SC50B | 50 | 48 | 98 | 59 | 1.31 | 77.97 | 51 | 1.15 | 88.24 |
| SC50A | 50 | 48 | 98 | 57 | 1.26 | 71.93 | 51 | 1.15 | 78.43 |
| ADLITTLE | 56 | 97 | 153 | 128 | 4.12 | 13.28 | 69 | 2.31 | 24.64 |
| BLEND | 74 | 83 | 157 | 115 | 6.09 | 39.13 | 90 | 4.89 | 50.00 |
| SHARE2B | 96 | 79 | 175 | 196 | 16.53 | 57.14 | 149 | 12.91 | 67.79 |
| SC105 | 105 | 103 | 208 | 123 | 13.40 | 70.73 | 110 | 12.08 | 77.27 |
| STOCFOR1 | 117 | 111 | 228 | 174 | 23.56 | 70.11 | 150 | 20.60 | 80.67 |
| SCAGR7 | 129 | 140 | 269 | 181 | 31.14 | 33.70 | 146 | 25.71 | 41.78 |
| ISRAEL | 174 | 142 | 316 | 513 | 159.45 | 0.78 | 188 | 64.05 | 1.06 |
| SHARE1B | 117 | 225 | 342 | 309 | 49.54 | 7.12 | 190 | 31.64 | 11.58 |
| SC205 | 205 | 203 | 408 | 262 | 133.14 | 67.56 | 211 | 109.57 | 81.04 |
| BEACONFD | 173 | 262 | 435 | 213 | 81.12 | 51.17 | 159 | 62.23 | 57.86 |
| LOTFI | 153 | 308 | 461 | 348 | 105.62 | 13.51 | 190 | 60.25 | 22.63 |
| BRANDY | 220 | 249 | 469 | 356 | 163.95 | 34.27 | 238 | 113.26 | 50.00 |
| E226 | 223 | 282 | 505 | 615 | 392.28 | 22.60 | 394 | 260.51 | 32.49 |
| AGG | 488 | 163 | 651 | 640 | 1975.02 | 7.03 | 572 | 1789.15 | 6.99 |
| SCORPION | 388 | 358 | 746 | 404 | 732.27 | 60.89 | 380 | 692.45 | 64.21 |
| BANDM | 305 | 472 | 777 | 674 | 917.25 | 22.85 | 489 | 679.64 | 30.06 |
| SCTAP1 | 300 | 480 | 780 | 480 | 645.27 | 35.21 | 344 | 473.30 | 43.60 |
| SCFXM1 | 330 | 457 | 787 | 595 | 949.44 | 35.46 | 429 | 700.85 | 46.39 |
| AGG2 | 516 | 302 | 818 | 823 | 2970.97 | 4.86 | 629 | 2320.66 | 5.56 |
| AGG3 | 516 | 302 | 818 | 839 | 3022.66 | 5.60 | 627 | 2313.85 | 6.22 |
| SCSD1 | 77 | 760 | 837 | 195 | 35.04 | 77.44 | 80 | 15.10 | 97.50 |
| SCAGR25 | 471 | 500 | 971 | 911 | 2888.86 | 30.74 | 616 | 2009.12 | 40.26 |
| Total | - | - | - | 9239 | 15319.46 | 27.21 | 6580 | 11776.60 | 34.83 |

It is easy to show that nonzero vectors r_{1} feature by (4.13) and u_{1} by (4.6) are both in the one-dimensional complement of the range space of \bar{B}_{1}, and hence there is a scalar $\nu \neq 0$ such that $\bar{d}=\nu \hat{d}$. Further, since it holds that

$$
\begin{equation*}
r_{1}^{\top} b_{1}=r^{\top} b>0 \quad \text { and } \quad u_{1}^{\top} b_{1}=-\left(B_{1}^{-\top} e_{p}\right)^{\top} b_{1}=-e_{p}^{\top}\left(B_{1}^{-1} b_{1}\right)=-\bar{x}_{j_{p}}>0 \tag{4.17}
\end{equation*}
$$

we have $\nu>0$, implying that \bar{d} agrees with \hat{d} in direction. Therefore, line search forms (4.14) and (4.7) are equivalent mathematically, in the sense of updating \bar{z}_{N}.

Computationally, however, formula (4.14) is preferable to (4.7) because the quantity $e_{m 1}^{\top}$ $Q_{1}^{\top} \bar{N}_{1}$ needed by it is nothing but (4.10)'s $m 1^{\text {th }}$ row, and available. In fact, (4.14b) requires only $n-m 1+1$ multiplications, compared with $m 1 \times(n-m 1 / 2)$ multiplications required by (4.7b). Further, since only needed is \bar{d} 's direction, the following might be favorable in place of (4.14), numerically:

$$
\begin{equation*}
\tilde{d}=-\operatorname{Sign}\left(e_{m 1}^{\top} Q_{1}^{\top} b_{1}\right) \bar{N}_{1}^{\top} Q_{1} e_{m 1} \tag{4.18}
\end{equation*}
$$

If we put (4.10) into the tableau form by setting $[B, N, b]:=\operatorname{diag}\left(Q_{1}^{\top}, I_{m-m 1}\right)[\bar{B}, \bar{N}, b]$, then (4.18) becomes:

$$
\begin{equation*}
\tilde{d}=-\operatorname{Sign}\left(b_{m 1}\right) N^{\top} e_{m 1} \tag{4.19}
\end{equation*}
$$

In the case when the set

$$
\begin{equation*}
J=\left\{j \mid \tilde{d}_{j}<0, j=1, \ldots, n-m 1\right\} \tag{4.20}
\end{equation*}
$$

Table 2. Code CDP1 total statistics.

Problem	Iter	Time	M1	\% M1	\% Dfc	\% Nf	\% Dgn
AFIRO	25	0.06	12	44.44	100.00	12.00	0.00
SC50B	60	0.33	28	56.80	100.00	20.00	0.00
SC50A	59	0.33	27	54.61	96.61	16.95	0.00
ADLITTLE	130	1.60	43	77.95	49.23	56.92	0.77
BLEND	120	1.65	51	69.54	61.67	38.33	12.50
SHARE2B	176	3.95	61	64.13	95.45	45.45	5.11
SC105	131	3.24	59	56.63	94.66	20.61	2.29
STOCFOR1	145	5.17	67	57.50	92.41	19.31	2.07
SCAGR7	197	10.00	85	66.48	82.23	34.52	2.54
ISRAEL	393	28.12	135	77.58	75.57	55.73	0.25
SHARE1B	287	16.75	93	79.65	40.77	59.23	0.35
SC205	286	31.69	123	60.01	100.00	29.02	3.15
BEACONFD	140	18.89	69	40.05	100.00	12.86	0.00
LOTFI	271	34.55	108	71.01	85.98	43.54	3.32
BRANDY	370	45.92	127	65.99	100.00	54.05	1.89
E226	672	102.38	166	74.86	100.00	68.01	4.02
AGG	561	243.87	274	56.22	100.00	14.08	0.36
SCORPION	364	135.66	178	50.01	100.00	7.97	0.55
BANDM	632	217.56	226	74.35	100.00	52.37	6.01
SCTAP1	374	148.79	170	56.66	100.00	27.01	4.55
SCFXM1	519	217.62	212	64.49	100.00	38.54	5.20
AGG2	665	422.44	315	61.19	93.53	22.41	0.60
AGG3	689	436.05	322	62.51	94.05	25.11	0.58
SCSD1	90	9.00	43	55.90	95.56	14.44	5.56
SCAGR25	853	684.75	336	71.51	100.00	45.37	7.27
Total	8209	2820.37	199	-	93.09	37.46	3.06

is empty, the dual program is upper unbounded, and hence program (2.1) has no feasible solution; otherwise, a column index q and step-length α are determined such that

$$
\begin{equation*}
\alpha=-\frac{\bar{z}_{k_{q}}}{\tilde{d}_{q}}=\min \left\{\left.-\frac{\bar{z}_{k_{j}}}{\tilde{d}_{j}} \right\rvert\, j \in J\right\} \tag{4.21}
\end{equation*}
$$

and the \bar{z} is updated via

$$
\begin{equation*}
\bar{z}_{N}:=\bar{z}_{N}+\alpha \tilde{d} . \tag{4.22}
\end{equation*}
$$

We bring the $q^{\text {th }}$ column of N to the end of B, with J_{B} and J_{N} adjusted conformably. Thus, after the m through $(m 1+1)^{\text {th }}$ components of the column are zeroed using an appropriate series of Givens rotations $G_{j}^{\top}, j=m-1, \ldots, m 1$, the iteration is completed. This is clearly a full iteration. The next can be either a full or rank-increasing iteration, depending on whether or not $b_{m 1+1}$ is equal to zero. A rank-increasing one will not include the steps priori to the computation of \tilde{d} by (4.19).

The above steps can be summarized into the following model.
Algorithm 4.1. Dual procedure: a tableau version. Given an initial canonical tableau (4.1) and associated sets J_{B} and J_{N}. Assume nonnegativeness of \bar{z}_{N}, featured by (3.4b).

1. Compute \bar{x}_{B}, featured by (3.3b).
2. Stop if $\bar{x}_{B} \geq 0$.
3. Determine row index p by (4.2).

Table 3. Code CDP2 total statistics.

Problem	Iter	Time	M1	\% M1	\% Dfc	\% Nf	\% Dgn
AFIRO	25	0.05	12	44.44	100.00	12.00	0.00
SC50B	60	0.33	28	56.80	100.00	20.00	0.00
SC50A	59	0.33	27	54.61	96.61	16.95	0.00
ADLITTLE	130	1.65	43	77.95	49.23	56.92	0.77
BLEND	120	1.71	51	69.54	61.67	38.33	12.50
SHARE2B	188	4.23	65	68.41	87.23	48.94	2.66
SC105	131	3.24	59	56.63	94.66	20.61	2.29
STOCFOR1	145	5.16	67	57.38	92.41	19.31	1.38
SCAGR7	197	9.94	85	66.58	79.70	34.52	0.00
ISRAEL	393	28.12	135	77.58	75.57	55.73	0.25
SHARE1B	282	16.59	92	79.31	41.49	58.51	0.00
SC205	286	31.70	123	60.01	100.00	29.02	3.15
BEACONFD	140	18.90	69	40.05	100.00	12.86	0.00
LOTFI	271	34.55	108	71.01	85.98	43.54	3.32
BRANDY	339	44.98	124	64.25	100.00	49.85	0.88
E226	732	103.37	173	77.85	100.00	70.49	5.87
AGG	561	243.87	274	56.22	100.00	14.08	0.18
SCORPION	364	135.67	178	50.01	100.00	7.97	0.27
BANDM	540	191.91	215	70.53	100.00	44.26	1.67
SCTAP1	381	153.08	171	57.28	100.00	28.35	2.62
SCFXM1	511	214.48	213	64.54	100.00	37.57	1.96
AGG2	665	422.49	315	61.19	93.53	22.41	0.60
AGG3	682	429.91	320	62.13	93.99	24.34	0.15
SCSD1	90	9.01	43	55.90	95.56	14.44	5.56
SCAGR25	818	675.36	331	70.47	100.00	42.91	5.01
Total	8110	2780.62	197	-	92.81	36.67	2.13

4. Bring the $p^{t h}$ column of B to the end of N, and adjust J_{B} and J_{N} conformably.
5. If $p<m 1$, annihilate nonzero subdiagonal entries in the p through $(m 1-1)^{\text {th }}$ columns of B by premultiplying $[B, N, b]$ by appropriate Givens rotations.
6. Compute \tilde{d} by (4.19).
7. Stop if the set defined by (4.20) is empty.
8. Determine step-length α and column index q by (4.21).
9. Update \bar{z} by (4.22).
10. Bring the $q^{\text {th }}$ column of N to the end of B, and adjust J_{B} and J_{N} conformably.
11. If $m 1<m$, annihilate the m through $(m 1+1)^{\text {th }}$ components of the $m 1^{\text {th }}$ column of B by premultiplying $[B, N, b]$ by Givens reflections.
12. Go to Step 1, if $b_{m 1+1}=0$.
13. Set $m 1:=m 1+1$.
14. Go to Step 6.

Based on discussions made priori to Algorithm 4.1 and similar arguments made for the primal case, we state the following.

ThEOREM 4.2. Under dual nondegeneracy assumption for full iterations, Algorithm 4.1 terminates at either
(1) Step 2, with primal and dual optimal solutions reached; or
(2) Step 7, detecting the infeasibility of program (2.1).

Table 4. Code CDP1 crash and Phase-1 statistics.

Problem	Iter	Time	M1	\% M1	\% Dfc	\% Nf	\% Dgn
AFIRO	7	0.06	4	14.81	100.00	0.00	0.00
SC50B	5	0.05	3	6.00	100.00	0.00	0.00
SC50A	10	0.11	5	11.00	100.00	0.00	0.00
ADLITTLE	56	0.66	27	49.84	100.00	10.71	0.00
BLEND	8	0.17	4	6.08	100.00	0.00	0.00
SHARE2B	131	3.24	52	54.83	100.00	41.98	1.53
SC105	20	0.94	10	10.00	100.00	0.00	0.00
STOCFOR1	86	3.79	43	36.86	100.00	4.65	1.16
SCAGR7	154	7.25	73	57.26	100.00	20.13	3.25
ISRAEL	172	12.25	86	49.71	100.00	0.00	0.00
SHARE1B	163	10.27	75	64.18	71.78	28.22	0.61
SC205	38	7.63	19	9.51	100.00	0.00	0.00
BEACONFD	122	16.42	61	35.55	100.00	0.00	0.00
LOTFI	85	12.47	43	28.10	100.00	0.00	0.00
BRANDY	238	32.08	105	54.44	100.00	32.77	2.94
E226	231	49.32	104	46.72	100.00	29.00	3.90
AGG	501	216.74	250	51.27	100.00	5.39	0.20
SCORPION	302	126.11	150	42.26	100.00	3.31	0.66
BANDM	399	151.92	185	60.68	100.00	26.07	4.01
SCTAP1	345	138.80	161	53.80	100.00	21.74	3.48
SCFXM1	330	140.72	160	48.50	100.00	17.27	5.15
AGG2	517	303.36	259	50.19	100.00	0.77	0.00
AGG3	558	342.63	277	53.79	100.00	8.06	0.72
SCSD1	5	1.21	3	3.90	100.00	0.00	0.00
SCAGR25	539	344.65	262	55.72	100.00	14.47	6.86
Total	5022	1922.85	178	-	99.08	13.68	2.27

Again, it is possible to revise the preceding algorithm, as is described as follows.
Algorithm 4.3. Dual procedure: a revised version. Given initial sets J_{B} and J_{N}, and the $Q R$ decomposition $Q^{\top} B=R$ of the basis B. Assume nonnegativeness of \bar{z}_{N}, featured by (3.13b).

1. Compute \bar{x}_{B} by (3.12b).
2. Stop if $\bar{x}_{B} \geq 0$.
3. Determine the column index p by rule (4.2).
4. Update R and Q^{\top} by (3.15), and bring the $p^{t h}$ index of J_{B} to the end of J_{N}.
5. Compute $\tilde{d}=-\operatorname{Sign}\left(e_{m 1}^{\top} Q^{\top} b\right) N^{\top} Q e_{m 1}$.
6. Stop if the set defined by (4.20) is empty.
7. Determine step-length α and column index q by (4.21).
8. Update \bar{z} by (4.22).
9. Go to Step 13 if $m 1=m$.
10. Determine Givens rotations $G_{j}^{\top}, j=m-1, \ldots, m 1$, such that the m through $(m 1+1)^{\text {th }}$ components of $G_{m 1}^{\top} \ldots G_{m-1}^{\top} a_{k_{q}}$ are zero.
11. Update Q^{\top} by $Q^{\top}:=G_{m 1}^{\top} \ldots G_{m-1}^{\top} Q^{\top}$, and then update R by $R:=\left[R, Q^{\top} a_{k_{q}}\right]$.
12. Bring the $q^{\text {th }}$ index of J_{N} to the end of J_{B}.
13. Go to Step 1 if $e_{m 1+1}^{\top} Q^{\top} b=0$.
14. Set $m 1:=m 1+1$.
15. Go to Step 6.

Table 5. Code CDP1 crash and Phase-1 statistics.

Problem	Iter	Time	M1	\% M1	\% Dfc	\% Nfl	\% Dgn
AFIRO	7	0.00	4	14.81	100.00	0.00	0.00
SC50B	5	0.06	3	6.00	100.00	0.00	0.00
SC50A	10	0.06	5	11.00	100.00	0.00	0.00
ADLITTLE	56	0.66	27	49.84	100.00	10.71	0.00
BLEND	8	0.22	4	6.08	100.00	0.00	0.00
SHARE2B	148	3.25	58	60.75	100.00	41.89	1.35
SC105	20	0.88	10	10.00	100.00	0.00	0.00
STOCFOR1	85	3.79	42	36.47	100.00	4.71	0.00
SCAGR7	149	6.97	72	55.96	100.00	17.45	0.00
ISRAEL	172	12.25	86	49.71	100.00	0.00	0.00
SHARE1B	158	10.05	73	63.07	74.05	25.95	0.00
SC205	38	7.64	19	9.51	100.00	0.00	0.00
BEACONFD	122	16.43	61	35.55	100.00	0.00	0.00
LOTFI	85	12.47	43	28.10	100.00	0.00	0.00
BRANDY	224	32.13	101	52.74	100.00	28.57	0.00
E226	225	43.28	105	47.38	100.00	16.89	0.44
AGG	501	216.73	250	51.27	100.00	5.39	0.00
SCORPION	302	126.11	150	42.26	100.00	3.31	0.33
BANDM	332	121.77	163	53.60	100.00	11.45	0.00
SCTAP1	351	142.65	163	54.43	100.00	23.08	1.42
SCFXM1	312	135.66	153	46.46	100.00	12.50	0.32
AGG2	517	303.36	259	50.19	100.00	0.77	0.00
AGG3	551	333.79	274	53.21	100.00	6.90	0.00
SCSD1	5	1.21	3	3.90	100.00	0.00	0.00
SCAGR25	522	334.77	256	54.34	100.00	11.30	1.92
Total	4905	1866.18	175	-1	99.16	10.95	0.41

5. THE GENERAL PURPOSE METHOD

The primal (or dual) procedure described above needs a primally (or dually) feasible basis to get itself started. In this section, we consider how to form a general purpose method using the proposed procedures, and address important pivot criterion issues in more detail.
First of all, the quality of an initial basis is very important. It might be well accepted that starting with a basis closer to an optimal one generally leads to fewer iterations required; if it happens to be optimal, in fact, there will be no iterations required at all. Bearing this in mind, we use a crash heuristic to provide an initial basis, since it is based on a plausible characterization of an optimal basis, and also turned out to be quite successful computationally. For more details, the reader is referred to Pan [14].

Once an initial basis is available, a Phase-1 procedure is then needed to achieve primal (or dual) feasibility. To this end, the primal or dual procedure may be applied to an auxiliary problem with piecewise-linear sums of primal or dual infeasibilities as its objective. We shall not go further with it here, however, as the steps taken will be analogues to those in the conventional cases.

What we present here is a combination of the primal and dual procedures, as described as follows. If the initial basis is primally or dually feasible, then the primal or dual procedure is immediately applicable, and can solve the problem alone. If, otherwise, it is neither primally nor dually feasible, then dual feasibility is enforced by the following perturbation:

Table 6. Comparison: total ratios.

Problem	CLS/CDP1		CLS/CDP2		CDP1/CDP2	
	Iter	Time	Iter	Time	Iter	Time
AFIRO	1.16	2.83	1.16	3.40	1.00	1.20
SC50B	0.98	3.97	0.98	3.97	1.00	1.00
SC50A	0.97	3.82	0.97	3.82	1.00	1.00
ADLITTLE	0.98	2.57	0.98	2.50	1.00	0.97
BLEND	0.96	3.69	0.96	3.56	1.00	0.96
SHARE2B	1.11	4.18	1.04	3.91	0.94	0.93
SC105	0.94	4.14	0.94	4.14	1.00	1.00
STOCFOR1	1.20	4.56	1.20	4.57	1.00	1.00
SCAGR7	0.92	3.11	0.92	3.13	1.00	1.01
ISRAEL	1.31	5.67	1.31	5.67	1.00	1.00
SHARE1B	1.08	2.96	1.10	2.99	1.02	1.01
SC205	0.92	4.20	0.92	4.20	1.00	1.00
BEACONFD	1.52	4.29	1.52	4.29	1.00	1.00
LOTFI	1.28	3.06	1.28	3.06	1.00	1.00
BRANDY	0.96	3.57	1.05	3.64	1.09	1.02
E226	0.92	3.83	0.84	3.79	0.92	0.99
AGG	1.14	8.10	1.14	8.10	1.00	1.00
SCORPION	1.11	5.40	1.11	5.40	1.00	1.00
BANDM	1.07	4.22	1.25	4.78	1.17	1.13
SCTAP1	1.28	4.34	1.26	4.22	0.98	0.97
SCFXM1	1.15	4.36	1.16	4.43	1.02	1.01
AGG2	1.24	7.03	1.24	7.03	1.00	1.00
AGG3	1.22	6.93	1.23	7.03	1.01	1.01
SCSD1	2.17	3.89	2.17	3.89	1.00	1.00
SCAGR25	1.07	4.22	1.11	4.28	1.04	1.01
Total	1.13	5.43	1.14	5.51	1.01	1.01
SMALL	1.04	4.07	1.03	3.98	0.99	0.98
MEDIUM	1.07	3.87	1.06	3.87	0.99	1.00
LARGE	1.17	5.62	1.21	5.71	1.03	1.02

$$
\bar{z}_{k_{j}}:=\left\{\begin{array}{ll}
\bar{z}_{k_{j}}, & \text { for } \bar{z}_{k_{j}} \geq 0, \tag{5.1}\\
\delta, & \text { for } \bar{z}_{k_{j}}<0,
\end{array} \quad j=1, \ldots, n-m 1\right.
$$

where the predetermined $\delta>0$ is referred to as perturbation number. Consequently, an execution of the dual procedure will result in a primally feasible basis. We restore the associated dual solution \bar{z} from the original data, and then carry out the primal procedure to achieve dual feasibility, if not yet.

So, in addition to the crash heuristic, our method consists of two phases: Phase-1 is the dual procedure with the perturbation technique incorporated in it, and Phase-2 just the primal procedure itself.

An alternative arises when the roles that the primal and dual procedures play in the method are interchanged, by using the former as Phase-1 whereas the latter as Phase-2 instead. But numerical results obtained from our experiments indicate that the crash heuristic is successful only in terms of achieving primal feasibility. Since initial bases produced from it are often nearly primally feasible, a dual Phase-1 should take less iterations than a primal Phase-1 generally.

Table 7. Comparison: crash and Phase-1 ratios.

Problem	CLS/CDP1		CLS/CDP2		CDP1/CDP2	
	Iter	Time	Iter	Time	Iter	Time
AFIRO	4.00	2.83	4.00	-	1.00	-
SC50B	10.20	23.00	10.20	19.17	1.00	0.83
SC50A	5.10	10.45	5.10	19.17	1.00	1.83
ADLITTLLE	1.23	3.50	1.23	3.50	1.00	1.00
BLEND	11.25	28.76	11.25	22.23	1.00	0.77
SHARE2B	1.14	3.98	1.01	3.97	0.89	1.00
SC105	5.50	12.85	5.50	13.73	1.00	1.07
STOCFOR1	1.74	5.44	1.76	5.44	1.01	1.00
SCAGR7	0.95	3.55	0.98	3.69	1.03	1.04
ISRAEL	1.09	5.23	1.09	5.23	1.00	1.00
SHARE1B	1.17	3.08	1.20	3.15	1.03	1.02
SC205	5.55	14.36	5.55	14.34	1.00	1.00
BEACONFD	1.30	3.79	1.30	3.79	1.00	1.00
LOTFI	2.24	4.83	2.24	4.83	1.00	1.00
BRANDY	1.00	3.53	1.06	3.53	1.06	1.00
E226	1.71	5.28	1.75	6.02	1.03	1.14
AGG	1.14	8.25	1.14	8.26	1.00	1.00
SCORPION	1.26	5.49	1.26	5.49	1.00	1.00
BANDM	1.23	4.47	1.47	5.58	1.20	1.25
SCTAP1	1.00	3.41	0.98	3.32	0.98	0.97
SCFXM1	1.30	4.98	1.38	5.17	1.06	1.04
AGG2	1.22	7.65	1.22	7.65	1.00	1.00
AGG3	1.12	6.75	1.14	6.93	1.01	1.03
SCSD1	16.00	12.48	16.00	12.48	1.00	1.00
SCAGR25	1.14	5.83	1.18	6.00	1.03	1.03
Total	1.31	6.12	1.34	6.31	1.02	1.03
SMALL	2.16	6.13	2.06	6.20	0.95	1.01
MEDIUM	1.43	4.92	1.46	5.15	1.03	1.05
LARGE	1.19	6.22	1.23	6.41	1.03	1.03

However, this point needs to be justified by extensive computations, and which from the pair of methods is superior is still open.

On the other hand, toward the solution of large-scale sparse problems, it should be favorable to use Givens rotations instead of Householder reflections, to maintain Q^{\top} in factored form, to do some appropriate ordering, and so on. Since these issues are beyond the scope of this paper, however, we shall not go into details here.

Now let us turn to the pivot criterion issues. The use of the conventional type of column and row pivot rules in the two procedures, described in preceding sections, is only for simplicity of exposition, and by no means the best. Practically, it is certainly better to apply Harris' idea [8] to row (or column) pivoting in the primal (or dual) procedure. By allowing infeasibility up to a prescribed tolerance, such a rule increases the number of pivot candidates, so as the selection of the largest among them helps to avoid too small pivots. It is accepted that this reduces the effect of degeneracy, as well as improves numerical stability. It is more than that. Harris's idea is also

Table 8. Crash heuristic statistics.

Problem	M	N inf	N dinf	CDP1		CDP2	
				\% Iters	\% Time	\% Iters	\% Time
AFIRO	27	0	8	28.00	54.55	28.00	100.00
SC50B	50	0	1	8.33	18.18	8.33	21.43
SC50A	50	0	1	16.95	33.33	16.95	18.52
ADLITTLE	56	1	35	36.15	35.71	37.90	34.59
BLEND	74	0	7	6.67	12.87	6.67	10.69
SHARE2B	96	7	24	28.08	32.13	29.69	33.25
SC105	105	0	1	15.27	29.01	15.27	28.12
STOCFOR1	117	1	38	55.71	68.00	53.79	65.59
SCAGR7	129	11	33	57.79	53.89	57.50	52.81
ISRAEL	174	0	9	43.77	43.59	43.77	43.36
SHARE1B	117	9	79	40.77	40.02	40.77	39.83
SC205	205	0	1	13.29	24.73	13.29	24.60
BEACONFD	173	0	32	87.14	86.54	87.14	86.38
LOTFI	153	0	101	31.37	35.59	31.37	35.58
BRANDY	220	17	65	38.01	45.17	35.43	44.96
E226	223	7	107	21.67	30.61	21.26	30.29
AGG	488	11	63	84.49	80.35	84.49	80.17
SCORPION	388	13	60	74.18	83.76	74.18	83.79
BANDM	305	14	95	45.66	43.01	46.56	43.35
SCTAP1	300	14	78	65.85	60.33	65.85	60.33
SCFXM1	330	17	95	49.43	51.89	50.29	53.10
AGG2	516	6	122	77.14	71.00	77.14	71.08
AGG3	516	10	132	74.46	68.46	74.46	68.58
SCSD1	77	0	53	5.56	12.76	5.56	13.50
SCAGR25	471	52	128	41.23	36.30	42.15	37.02
Total	5360	190	1368	49.47	55.03	49.55	55.38

advantageous in the sense of the heuristic characterization of an optimal basis [13,14]. Note that there should be no difficulty to embody Harris' idea in the new context here.

As to column (or row) pivoting in the primal (or dual) procedure, on the other hand, desirable should be the idea of the steepest-edge, whose superiority has been established computationally by Forrest and Goldfarb [15], and which also coincides with the plausible characterization of an optimal basis. For column pivoting in the primal procedure, in addition, it appears not to be difficult to adapt the recursive method to maintain and update squares of 2 -norms of edges.

However, a different treatment is needed for row pivoting in the dual procedure. Let us first consider a tableau version of such a rule, in place of (4.2). It might be well to redenote r, featured by (4.13), by $r(p)$ to indicate the dependence of it upon the row index p chosen. Define

$$
\begin{equation*}
I=\left\{i \mid x_{j_{i}}<0, i=1, \ldots, m 1\right\} \tag{5.2}
\end{equation*}
$$

Then, an analogue to the dual steepest-edge rule (which stands for the "dual steepest-edge rule I"; see [15]), is to select a row index \dot{p} such that the resulting direction $r(\dot{p})$ makes the most acute angle with the gradient, $b=\left[b_{1}^{\top}, 0\right]^{\top}$, of the current dual objective, among possible choices, that is,

$$
\begin{equation*}
\dot{p}=\operatorname{Arg} \max _{p \in I} \frac{b^{\top} r(p)}{\|r(p)\|} \tag{5.3}
\end{equation*}
$$

This leads to the following rule matching Algorithm 4.1.

Rule 5.1. Dual steepest-uphill rule: a tableau version. Select the row index \dot{p} such that

$$
\begin{equation*}
\dot{p}=\operatorname{Arg} \max _{p \in I}\left|b_{m 1}\right| . \tag{5.4}
\end{equation*}
$$

It is easy to obtain its revised version matching Algorithm 4.2.
Rule 5.2. Dual steepest-uphill rule: a revised version. Select the row index \dot{p} such that

$$
\begin{equation*}
\dot{p}=\operatorname{Arg} \max _{p \in I}\left|e_{m 1}^{\top} Q^{\top} b\right| \tag{5.5}
\end{equation*}
$$

A common feature of the preceding rules is their selective manner-only those indices belonging to I need to be examined. This seems to be attractive in comparison with the existing practical schemes of the steepest-edge rule, which have to carry out the major computations-maintaining and updating squares of 2 -norms for all edges throughout. It would also enable some partiality variants of them to be implemented practicably.

6. DISTINCTIVE BEHAVIOR OF THE PROPOSED METHOD

To corroborate our theory, as well as to gain an idea of the behavior of the new method, we have performed some computational trials (without exploiting sparsity).

The following three FORTRAN 77 codes were tested, and compared.

- Code CDP1: the crash heuristic [14] is utilized to supply an initial basis. A modification of Algorithm 4.1, into which the perturbation technique is incorporated, is used as Phase-1, and Algorithm 3.1 as Phase-2. The value of the perturbation number taken is $\delta=10^{-6}$.
- Code CDP2: the same as CDP1, except with a bigger perturbation number, $\delta=10^{-1}$.
- Code CLS: a conventional implementation of the revised two-Phase simplex method, where the inverse of the basis is updated explicitly in each iteration.
In all runs reported below, the problems were first reduced in size by a preprocessor to remove redundant rows before executing CLS, whereas no such action was taken for the new codes; and the rows and columns of the constraint matrix were scaled by the preprocessor for all codes. In addition, Harris' pivot strategy was incorporated into each code fittingly.

Compiled using the NDP-FORTRAN-386 VER. 2.1.0. with default options, all runs were carried out under DOS 6.2 system on an IBM 486/66 DX2 compatible microcomputer, with memory 32 Mbytes available. The machine precision used was about 16 decimal places. Pivot tolerance taken was 10^{-8}, and both the primal and dual feasibility tolerance were 10^{-6}. The reported CPU times were measured in seconds with utility routine DOSTIM. But the time required by the preprocessor was not included.
The test set of problems includes 25 standard LP problems from NETLIB that do not have BOUNDS and RANGES sections in their MPS files [16] since the current version of our codes cannot handle them implicitly. As the largest possible subset of NETLIB problems of such kind which can be solved in our computing environment, they are the first 25 problems in the order of increasing sum of the numbers of rows and columns in the coefficient matrix, before adding slack variables.
Numerical results obtained with CLS are shown in Table 1, where numbers of rows and columns of each tested problem is listed in the columns labeled M and N, and their sum in the column labeled $M+N$. Total iterations and time, required for entire solution of each problem, are displayed in the first two columns labeled Iter and Time under Total, and those spent for only achieving feasibility in the first two columns under Phase-1; the percentage of degenerate iterations are given in the third columns labeled \% Dgn. Respectively, results associated with entire solution by codes CDP1 and CDP2 are given in Tables 2 and 3, while results associated with the crash
and Phase-1 together in Tables 4 and 5. All runs terminated with the optimal objective values reached, as those in NETLIB index file.

Although iteration results are also reported for reference purpose, codes' performance should be ranked solely by running time, since computational effort involved in a single iteration by new codes is far less than that by CLS, as will be shown a little later. Table 6 displays ratios of CLS total time to CDP1 and CDP2 total time in the third and the fifth column, CDP1 total time to CDP2 total time in the seventh column, respectively. In addition, ratios associated with crash and Phase-1 together are displayed in Table 7. It is seen from the two tables that both new codes outperform CLS on a single to single basis with these problems, for either entire solution or crash and Phase-1 only. It is quite impressive that the total time ratios are CLS/CDP1 $=5.43$ and CLS/CDP2 $=5.51$, and those for crash and Phase-1 are as high as CLS/CDP1=6.12 and CLS/CDP2=6.31. As to a comparison between new codes, CDP2 is slightly better than CDP1. The performance of the new method appears to be insensitive to the value of the perturbation number.

To see how the method performs with the increase of sizes of test problems, we classify the 25 problems into three categories: the first named "SMALL" includes the first eight problems, from AFIRO to STOCFOR1, the second named "MEDIUM" includes the following eight problems, from SCAGR7 to E226, and the third named "LARGE" consists of the last nine problems, from AGG to SCAGR25. The associated ratios for each category as a whole are given in the bottom three lines in Tables 6 and 7. It is seen that the new codes' superiority over CLS grows with increase of problem sizes, overall.

However, we do not want to claim too much about the superiority of the new method based on our computational tests done at this stage. Rather, what we intend to show is the method's distinctive behavior that makes itself a clear winner in its competitions with CLS.

There are two types of iterations associated with the new codes: full and rank-increasing ones. The former is called "full", because it involves solving a system, selecting a row and a column, and appending to and dropping from the basis columns. In contrast, the latter involves selecting and appending a column to the basis only. The columns labeled $\% \mathrm{Nf}$ in Tables 2 through 5 indicate that the percentages of full iterations are quite low: roughly, only one third of total iterations are full ones (with 37.46% for CDP1 and 36.67% for CDP2), and even much less for crash and Phase-1 (with only 13.68% and 10.95%, respectively).

Furthermore, the number of columns of bases handled by new codes is quite small relative to the number of rows of the coefficient matrix. In each table, the column labeled M1 displays the average number of basis' columns for solving a problem, and the column labeled \% M1 the percentage of it to the number of rows. Roughly, the average number of basis' columns is only a half of the number of rows. The columns labeled $\% \mathrm{Dfc}$ also give the percentage of deficient basis. The lines labeled Total indicate that 92.81% of bases are deficient totally, and as high as 99.08% for crash and Phase-1. Surprisingly enough, bases are all deficient with about a half of test problems; so, the new codes terminated at a deficient optimal basis with so many problems. It appears that the more (primally) degenerate a problem to be solved is, the fewer columns the basis will have; this means that a high degree of primal-degeneracy could contribute to the method's efficiency. It is noted that the number of zero (or degenerate) iterations is a lot less with the new codes than with CLS. The columns labeled \% Dgn in Tables 1 through 5 lists the percentage of zero iterations. It is seen from the lines labeled Total that overall percentages for CDP1, CDP2, and CLS are, respectively, $3.06 \%, 2.13 \%$, and 27.21% totally, and $2.27 \%, 0.41 \%$, and 34.83% for Phase-1.

It should be pointed out that the merit of the proposed method is also due to the use of the crash heuristic. The associated results with CDP1 and CDP2 are summarized in Table 8, where the two columns under CDP1 and CDP2, respectively, display the percentage of heuristic iterations and time. Its bottom line indicates that the total percentages are as high as 49.47% and 55.03% for CDP1, and 49.55% and 55.38% for CDP2, respectively. This might be a good
indication of the high computational efficiency of the proposed method. Moreover, the column labeled Ninf shows that the numbers of primal infeasibilities yielded from the heuristic are very low relative to problem sizes. In fact, primal feasibility was achieved with ten out of the 25 problems. It seems that the heuristic worked very well, though its capability for achieving dual feasibility is not as satisfactory as that for achieving primal feasibility, as is shown by the column labeled Ndinf in the table.
To conclude, the proposed basis-deficiency-allowing method does perform distinctively and favorably, and is very promising.

REFERENCES

1. G.B. Dantzig, Programming in a linear structure, Comptroller, USAF, Washington, D.C., (February 1948).
2. G.B. Dantzig, Programming of interdependent activities, II, Mathematical model, In Activity Analysis of Production and Allocation, (Edited by T.C. Koopmans), pp. 19-32, John Wiley \& Sons, New York, (1951); Ecomometrica, 17, (3,4), 200-211, (1949).
3. A.J. Hoffman, Cycling in the simplex algorithm, Report No. 2974, Nat. Bur. Standards, Washington, D.C., (1953).
4. E.M.L. Beale, Cycling in the dual simplex algorithm, Naval Research Logistics Quarterly 2, 269-275, (1955).
5. A. Charnes, Optimality and degeneracy in linear programming, Econometrica 20, 160-170, (1952).
6. G.B. Dantzig, A. Orden and P. Wolfe, The generalized simplex method for minimizing a linear form under linear inequality restraints, Pacific Journal of Mathematics 5, 183-195, (1955).
7. R.G. Bland, New finite pivoting rules for the simplex method, Mathematics of Operations Research 2, 103107, (1977).
8. P.M.J. Harris, Pivot selection methods of the Devex LP code, Mathematical Programming Study 4, 30-57, (1975).
9. M. Benichou, J.M. Gauthier, G. Hentges and G. Ribiere, The efficient solution of linear programming problems-Some algorithmic techniques and computational results, Mathematical Programming 13, 280322, (1977).
10. Scicon, Sciconic/VM User Guide, Version 1.40, Scicon Limited, Milton Keynes, (1986).
11. B. Hattersley and J. Wilson, A dual approach to primal degeneracy, Mathematical Programming 42, 135-145, (1988).
12. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, A practical anti-cycling procedure for linearly constrained optimization, Mathematical Programming 45, 437-474, (1989).
13. P.-Q. Pan, Practical finite pivoting rules for the simplex method, Spektrum 1, 219-225, (1990).
14. P.-Q. Pan, A dual projective simplex method for linear programming, Computers Math. Applic. 35 (6), 119-135, (1998).
15. J.J.H. Forrest and D. Goldfarb, Steepest-edge simplex algorithms for linear programming, Mathematical Programming 57, 341-374, (1992).
16. D.M. Gay, Electronic mail distribution of linear programming test problems, Mathematical Programming Society COAL Newsletter 13, 10-12, (1985).
17. M. Bazaraa and J.J. Jarvis, Linear Programming and Network Flows, John Wiley \& Sons, New York, (1977).
18. V. Chvatal, Linear Programming, Freeman and Company, San Francisco, CA, (1983).
19. G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, (1963).
20. S.-C. Fang and S. Puthenpura, Linear Optimization and Extensions: Theory and Algorithms, Prentice Hall, (1993).
21. S.I. Gass, Linear Programming: Methods and Applications, Fifth edition, McGraw-Hill, New York, (1985).
22. D. Goldfarb and J.K. Reid, A practicable steepest-edge simplex algorithm, Mathematical Programming 12, 361-371, (1977).
23. D. Goldfarb and M.J. Todd, Linear programming, in optimization, In Handbook in Operations Research and Management Science, (Edited by G.L. Nemhauser and A.H.G. Rinnooy Kan), Volume 1, pp. 73-170, (1989).
24. G.H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, (1983).
25. H.-J. Greenberg, Pivot selection tactics, In Design and Implementation of Optimization Software, (Edited by H.J. Greenberg), Sijthoff and Noordhoff, pp. 109-143, (1978).
26. D. Luemberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, (1973).
27. K. Murty, Linear and Combinatorial Programming, John Wiley \& Sons, New York, (1976).
28. W. Orchard-Hayes, Background development and extensions of the revised simplex method, Rand Report RM 1433, The Rand Corporation, Santa Monica, CA, (1954).
29. P.-Q. Pan, A simplex-like method with bisection for linear programming, Optimization 5, 717-743, (1991).
30. P.-Q. Pan, Ratio-test-free pivoting rules for a dual Phase-1 method, In Proceedings of the Third Conference of Chinese SIAM, (Edited by S.-T Xiao and F. Wu), pp. 245-249, Tsinghua University Press, Beijing, (1994a).
31. P.-Q. Pan, Achieving primal feasibility under the dual pivoting rule, Journal of Information \& Optimization Sciences 15 (3), 405-413, (1994b).
32. P.-Q. Pan, Composite phase-1 methods without measuring infeasibility, In Theory of Optimization and its Applications, (Edited by M.-Y. Yue), pp. 359-364, Xidian University Press, Xian, (1994c).
33. P.-Q. Pan, New non-monotone procedures for achieving dual feasibility, Journal of Nanjing University, Mathematics Biquarterly 12 (2), 155-162, (1995).
34. P.-Q. Pan, A modified bisection simplex method for linear programming, Journal of Computational Mathematics 14 (3), 249-255, (1996).
35. P.-Q. Pan, The most-obtuse-angle row pivot rule for achieving dual feasibility: A computational study, European Journal of Operations Research 101 (1), 167-176, (1997).
