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ABSTRACT

Generalized Additive Models (GAMs) with natural cubic splines (NS) as smoothing functions have become a standard
analytical tool in time series studies of health effects of air pollution. However, standard model selection procedures
ignore the model uncertainty that may lead to biased estimates, in particular those of the lagged effects. We
addressed this issue by Bayesian model averaging (BMA) approach which accounts for model uncertainty by
combining information from all possible models where GAMs and NS were used. Firstly, we conducted a sensitivity
analysis with simulation studies for Bayesian model averaging with different calibrated hyperparameters contained in
the posterior model probabilities. Our results indicated the importance of selecting the optimum degree of lagging for
variables, based not only on maximizing the likelihood, but also by considering the possible effects of concurvity,
consistency of degree of lagging, and biological plausibility. This was illustrated by analyses of the Allegheny County Air
Pollution Study (ACAPS) where the quantity of interest was the relative risk of cardiopulmonary hospital admissions
for a 20 μg/m3 increase in PM10 values for the current day. Results showed that the posterior means of the relative risk
and 95% posterior probability intervals were close to each other under different choices of the prior distributions.
Simulation results were consistent with these findings. It was also found that using lag variables in the model when
there is only same day effect, may underestimate the relative risk attributed to the same day effect.
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1. Introduction

Generalized additive models (GAMs) have been used as a
standard analytical tool to investigate the effect of air pollution on
public health in time series studies. Due to the characteristics of
time series data, the effects of long–term trends and seasonality,
meteorological variability, and day of the week effects need to be
removed. GAMs have the advantage of allowing non–linear
relationships between predictor variables and the selected
response. The smoothers and the degrees of smoothing for the
predictor variables need to be specified in the fit of GAMs. The
most common choices for smoothers are natural cubic spline,
smoothing spline, and LOESS, where natural cubic spline is a
parametric smoother, and smoothing spline and LOESS are the
nonparametric smoothers. When a natural cubic spline is used in a
GAM, it becomes a fully parametric generalized linear model
(GLM). The model building procedures for both GAMs and GLMs
usually follow the standard rule, where a subset of predictor
variables gets selected according to their statistical significance
levels. However, as the predictor variables are usually found to be
multicollinear, selection of these variables becomes a major
statistical issue.

Let us consider the issue of the lagged effects of ambient air
levels of a criteria pollutant (e.g. PM10: particulate matter with
diameter 10 μm or less) on cardiopulmonary distress. Theoreti
cally, the effect of PM10 on cardiopulmonary distress can last for
more than one day. Therefore, it is important to find exactly how

long this effect usually lasts. Using data from the study in
Birmingham, Smith et al. (2000) applied standard model selection
procedures to determine the number of lag variables of different
lengths for PM10 and found that none of the lag variables were
statistically significantly associated with non–accidental elderly
mortality. However, Schwartz (1993) used the average of PM10 for
the three previous days and found a statistically significant effect
between PM10 and non–accidental elderly mortality. In the analysis
of Allegheny County Air Pollution Study (ACAPS) where the health
effects of PM10, on daily hospital admissions from cardiopulmonary
disease in Allegheny County, Pittsburgh, PA from 1995 through
2000 was assessed and only the same day level of PM10 was found
to have an effect (relative risk 1.012256). Wordley et al. (1997)
used Birmingham, UK, data from 1992 to 1994 and included PM10
on the same day, lagged by up to three days, and a three day mean
(mean of the same day and the two previous days) as the effect of
PM10 in the model. Statistically significant associations of these
variables with all respiratory hospital admissions were found.
However, the standard model selection approaches (e.g., AIC
criterion was used in the ACAPS) did not take into account
uncertainties associated with them.

Bayesian model averaging (BMA) provides an approach to take
into account model uncertainty by combining information from a
pre–determined subset of all possible models and obtaining a
weighted average for the quantity of interest over these models
(Hoeting et al., 1999). One advantage of BMA is that it can include
all predictor variables in the model. Variables that are less
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important have smaller weights. Implementation of BMA requires
the specification of prior distributions for parameters within
models and prior weights for each model. Clyde (2000) developed
a class of objective prior distributions for parameters within
models. These objective prior distributions have a hyperparameter
that is used to calibrate the priors based on classical model
selection criteria. As the conclusions can be sensitive to the choices
of the hyperparameter, Clyde (2000) suggested providing estima
tes for several prior distributions, i.e., from several choices of the
hyperparameter, thus suggesting a sensitivity analysis (Clyde,
2000). Applications of Bayesian methods have recently been seen
in air pollution studies (Nikolov et al., 2007; Lee and Shaddick,
2008; Liu et al., 2008).

Section 2 presents a brief description of BMA and methods for
its implementation. An illustrative example using ACAPS data is
presented in Section 3. A simulation study is given in Section 4
followed by a discussion in Section 5.

As background to this paper we provide a brief summary of
ACAPS where the health effects of PM10, on daily hospital
admissions from cardiopulmonary disease was assessed in
Allegheny County from 1995 through 2000 (Arena et al., 2006).
They derived models of daily hospital admissions from
cardiopulmonary disease as a function of daily mean level of PM10,
weather, long term trends and seasonality and day of the week
using generalized additive models (GAM) with locally weighted
regression smoother (LOESS). Models were derived using same day
as well as up to five previous days of PM10 levels. Findings
suggested that there is a positive association of current day PM10
levels with cardiopulmonary hospital admissions in this population
independent of long–term trends and seasonality, weather
(average daily temperature and average daily relative humidity),
and the day of the week. Considering a 20 g/m3 change in current
day PM10, the estimate of the relative risk was 1.012256.

2. Bayesian Model Averaging

2.1. Bayesian model averaging (BMA)

BMA starts with a set of plausible models and averages the
posterior distributions of the quantity of interest obtained under
each of these models, weighted by the corresponding posterior
model probabilities. Let denote the quantity of interest that has
the same interpretation in each of the models considered (e.g. the
relative risk associated with a particular increment in the air
pollutant level on health outcome). The posterior distribution of
Y can be written as:

1

Pr( | ) Pr( | , )Pr( | )
K

m m m
m

Y Y M M Y (1)

whereMm is themth model under consideration and m is the
quantity of interest in Mm with m=1,…, K and K is the size of the
set of all models being considered. The first term on the right hand
side of Equation (1) is the posterior distribution of m given a
particular model Mm and the data, and the second term is the
posterior probability of the modelMm.

2.2. Implementation of BMA

The posterior distribution of given a particular model Mm
and data Y in Equation (1) is given by:

Pr( | , ) Pr( | , , )Pr( | , )m m m m m m m mY M M Y M Y d (2)

where, m is the vector of parameters for the model Mm. As
Equation (2) may not provide any closed form solutions, we used
maximum likelihood estimate (MLE) of m to approximate it giving:
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The posterior probability for modelMm is given by:
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where,

Pr( | ) Pr( | , )Pr( | )m m m m m mY M Y M M d (5)

Pr( m Mm) is the prior density of m under model Mm, and
Pr(Mm) is the prior density of the model Mm. In order to derive the
posterior model probability, these prior densities for models and
parameters within each model need to be specified in advance.

We followed the formulation of Clyde (2000) for a generalized
linear model. The prior distributions for the regression parameters
in the models that describe the relationship between the outcome
variable and the explanatory variables were objective priors based
on Jeffrey’s modification of Calibrated Information Criterion (CIC)
prior distributions with a hyperparameter g. Specific choices of g
reconciled classical model selection with Bayesian model selection
based on posterior model probabilities. For the calibration of
posterior model probabilities, we used uniform priors, i.e., non–
informative priors on different models (Mm, m=1,2,3,…,K).

Thus we have Pr(Mm)= (Mm) ~ uniform and Jeffrey’s
modification of the CIC prior distribution under modelMm

m 1d 2 1 2
m m 0
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where dm, is the dimension of model Mm, g is the
hyperparameter used in calibration of posterior model
probabilities, ˆ )mI( is the observed Fisher information for Mm

evaluated at the ˆMLEs m with (j,k)th elements,

jk[ ]
2

m m( |M ) with ( |M )
j k

LmI( ) L as the log likelihood

under Mm, j is the indicator variable, 1 if xj is included under
Mm,0 otherwise, 0( )j is the degenerate distribution that
degenerates at 0 if variables are not in Mm.

For the Poisson regression model with log link, the observed
information matrix is '

m m
ˆ ˆ)=X ( )XVm mI( , where ( )V m denotes the

covariance matrix for Y with elements mexp(X )m on the diagonal
and zero elsewhere. The posterior model probability is then given
by

(7)

where Dm is the model deviance which is the usual deviance
( 2 times the log likelihood) under the null model minus the
deviance under Mm, dm is the dimension of m, and g is the
hyperparameter (Clyde, 2000).

A second issue for the implementation of BMA is to find data
supported models. There are up to 2p possible models when p
predictor variables are under consideration. As p increases, the
number of models in BMA becomes larger leading to
computationally expensive operations. Moreover, many of these
models may have very little support from the data and their
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inclusion will not have practical importance. One way to
approximate Equation (1) is by averaging over the better models
only. Madigan and Raftery (1994) proposed Occam’s Window
approach that includes models with the higher posterior model
probabilities and excludes models with posterior model
probabilities lower than any of their simpler sub–models. The
posterior mean and variance of are given by Hoeting et al.
(1999):

1

( | ) ( | , )Pr( | )
K

m m m
m

E Y E Y M M Y (8)
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(9)

In the CIC g prior of the parameters m the choice of g
controls model selection in a way that small g tends to concentrate
the prior on saturated models with small coefficients and large g
concentrates the prior on parsimonious models with a few large
coefficients (George and Foster, 2000). It has been shown that the
posterior model probabilities under a g prior can be calibrated to
different classical model selection criteria such as AIC and BIC
(Clyde, 2000). In addition, the Empirical Bayes (EB) approach was
developed to provide adaptive estimates of g. The local EB
approach (George and Foster, 2000; Hansen and Yu, 2003; Hansen
and Yu, 2001) estimates g from the data and assumes that
different models have different estimates of g.

In this paper, we have implemented BMA under:

(i) AIC prior, where the posterior model probabilities under
this prior can be calibrated to the classical model selection
criterion in AIC by using log (g) = 2;

(ii) BIC prior, where the posterior model probabilities under
this prior can be calibrated to the classical model selection
criterion in BIC by using log (g) = log (n) with n as the number of
observations; and

(iii) local EB approach estimate of ˆEBL
mg , where ˆEBL

mg is the
MLE for g by using the local EB approach and is constrained to be
nonnegative. This estimate of g is given by

ˆ ˆ ˆ( )ˆ max( 1,0)
T

EBL m m m
m

m

I
g

d
for a GLM with dispersion parameter

of 1, where ˆ
m is the MLE of m and dm is the dimension of model

Mm .

The BMA approach was implemented by modifying the S–Plus
program that calculates the BMA based on BIC, bic.glm, to
correspond to the prior choices based on AIC, BIC, and local EB
approach.

The quantity of interest in this paper is the relative risk
associated with air pollutant level on cardiopulmonary hospital
admissions. We used the following formulas to calculate it. Based
on a 20 μg/m3 increase in all the PM10 variables (PM10_lag0, ,
PM10_lagm), in model Mm the relative risks for each model were
given by:

(10)

wherem is the lag length of the PM10.

The posterior distribution for the relative risk given Mm
follows a log–normal distribution

(11)

where 2
m =

2
|20 (1 1)

PM m

T
M with 1 (1, ,1)T of dimensionm

and |PM mM is the covariance matrix for the PM10 variables under

model Mm derived from the Fisher information under model Mm

(Clyde, 2000). The posterior means of the log relative risk and the
95% posterior probability intervals are calculated using Equations
(8), (9) and (11).

3. Application of BMA method to the ACAPS data

3.1. Starting model for ACAPS data

ACAPS contained time series data for the counts of daily
cardiopulmonary hospital admissions, daily meteorological data,
and daily ambient air levels of a criteria pollutant (PM10) for
Allegheny County from 1995 to 2000 (Arena et al., 2006). The daily
cardiopulmonary hospital admissions included records with a
discharge diagnosis of the circulatory system or respiratory system
for Allegheny County residents >65 years of age. The daily mean
temperatures were used as the meteorological data in our study.
Ambient air levels of a criteria pollutant (PM10) were recorded in
every hour for each of the 8 monitoring sites. The mean of the site
specific daily average PM10 values across all monitoring sites was
used as the pollutant level. Since only two sets of data out of 2 192
were missing on dates 03/24/1998 and 11/04/1998, they were
ignored and we had a total of 2 190 observations for data analysis.

Arena et al. (2006) used unconstrained lag models to evaluate
the association between PM10 and daily cardiopulmonary hospital
admissions. They used GAM to fit the logarithm of the number of
daily hospital admissions as a sum of smooth functions of long–
term trends and seasonality, temperature and relative humidity,
day of the week, and PM10 levels for the current day and previous
days up to five days. LOESS was used as the smooth function with
smoothing parameters (span) of 0.06 for seasonal trends and 0.5
for temperature and relative humidity. AIC criterion was used for
model selection.

The humidity included in ACAPS study did not show significant
association with the hospital admissions. Therefore, we did not
include it as a predictor variable in the present study. Hence, the
selected predictor variables in the present study included the
levels of PM10 for same day and lagged up to five days (PM10_lag0,…,
PM10_lag5), the daily mean temperature (temp), the seasonal trend
(time), and day of the week (DOW), which consists of six indicator
variables. The natural cubic spline was used as the smooth
function. We based this choice based on the following. When
considering GAMs with smoothing spline and GLMs with natural
cubic spline, He et al. (2006) showed that GLM with natural cubic
spline performs better with respect to the bias and variance
estimates when concurvity exists in the data. Concurvity is a
nonparametric analogue of multicollinearity where a function of a
predictor can be approximated by a linear combination of
functions of other predictors (Ramsay et al., 2003).

In our ACAPS, the degrees of smoothing for the long–term
trend and seasonality were determined by fitting the smooth
function of long–term trend and seasonality with a range of
degrees of smoothing on cardiopulmonary hospital admissions
using GLMs with natural cubic splines. They were chosen from the
fitted model that has the smallest AIC; the smaller AIC indicating
the better the model fit. In addition, the residual plots were used
to examine whether the seasonal variation has been removed. We
then considered the short–term effects by adding six indicator
variables for day of the week and the smooth function of
temperature into the model and repeated the same procedure to
find the degrees of smoothing for the temperature variable. This
resulted in 5 degrees of freedom per year for long–term trend and
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seasonality, and 7 degrees of freedom for daily mean temperature.
We note that all subsequent analyses are conditional to this
starting model.

The GLM with natural cubic spline used in this paper is given
by:

~ ( )t tY Poisson

0 0 10_ 0 5 10_ 5log( ) log( )t lag lagPM PM

( , 5/ ) ( , 7) DOWns time df year ns temp df I

(12)

where Yt is the counts of daily cardiopulmonary hospital
admissions, which we assume to follow a Poisson distribution
(count data) with mean μt and dispersion parameter of 1,
PM10_lag0,…, PM10_lag5 are the levels of PM10 for same day and
lagged up to five days, ns (time, df = 5/year) is the natural cubic
spline function of calendar time with 5 degrees of freedom per
year, ns (temp, df = 7) is the natural cubic spline function of
temperature with 7 degrees of freedom, IDOW are the six indicator
variables for days of the week.

3.2. Bayesian model averaging analysis

The model given in Equation (12) includes 49 predictor
variables resulting in 249 possible models.

Occam’s Window was applied to find the data–supported
models through the modified bic.glm package in S–Plus (http://
www2.research.att.com/~volinsky/software/bic.glm). It ranked the
models and we used the 150 top ranked models that had the
highest posterior model probabilities. To examine which predictor
variables were chosen under each of the selected models, we
constructed model matrices for BMA under the three priors. Model
matrices have the advantages of not only allowing us to visually
identify which variables have more influence on the outcome
variable but also reflect model uncertainties through the posterior
model probabilities. The top 25 models under AIC, BIC, and local EB
estimate are shown in Figure 1.

Figure 1 also includes posterior model probabilities and
probabilities of inclusion of the predictor variables in the models.
The y–axis represents the selected models ordered from the best
to the worst (moving from bottom to top) based on the ranks using
posterior model probabilities that are given on the right side. The
x–axis shows the predictor variables included in the model, the
predictor variables are given on the top of the figures and the
probabilities of inclusion in the model are given in the bottom of
the figures. The names of the predictor variables with “time” and
“temp” on the x–axis represent the smooth functions for long–
term trend and seasonality and for daily mean temperature,
respectively. The number followed by “time” or “temp” is the knot
number specified through the degree of freedom of the natural
cubic spline. The dark squares in the matrix represent the predictor
variables that were excluded under a given model. The histograms
in Figure 2 show the posterior distributions of the relative risk for
an increase of 20 μg/m3 in the same day level for the three prior
choices. Comparing to BIC prior, posterior distributions under AIC
prior and EB estimate were found to be more dispersed indicating
more uncertainties of model and parameters. The green lines in
the histograms represent the posterior means.

The posterior means of the relative risk and the 95% posterior
probability intervals derived from Equations (8), (9) and (11) were
reported in Table 1. Based on a 20 μg/m3 increase in the same day
PM10 variables (PM10_lag0), the posterior means of the relative risk
ranged 0.9980 to 1.0022. The posterior probability intervals for
BMA with the BIC prior and local EB estimate were found wider Figure 1. Plots of model space (BIC, AIC and EBL).
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than those for BMA with the AIC prior. BIC prior and local EB
estimate utilize the information from the data to estimate the
hyperparameter g and this could lead to some greater levels of
uncertainty.

Figure 2. Posterior distributions of relative risks given same day level of
PM10 included (BIC, AIC and EBL).

Table 1. Summary of the posterior distribution of relative risk associated
with a 20 μg/m3 increase in the same day level of PM10 under BMA

Prior Posterior mean of
relative risk

95% posterior probability interval
of relative risk

AIC 1.0001 (0.9984, 1.0017)

BIC 1.0001 (0.9980, 1.0022)

Local EB 1.0001 (0.9982, 1.0020)

We should note here that our approach of choosing the
predictor variables during the BMA procedure is novel. We started
with a model with spline smoothers with degrees of freedom
5/year for time and 7 for temp. Under a Bayesian perspective, it
has been increasingly common and standard to use splines for
which the number and location of knots are free parameters
(DiMatteo et al., 2001; Holmes and Mallick, 2003). Because we
consider including/excluding each basis function separately, our
approach for smooth functions can be viewed as the method of
free–knot splines, which is more flexible and parsimonious than
treating each smooth function as a single unit for inclusion/
exclusion. The free–knot splines are also advantageous because
the amount of data smoothing can be determined in a locally
adaptive manner by including/excluding each basis function
separately.

4. Simulation Study

To demonstrate how the results from BMA approach under
different prior choices vary, we provided a simulation study.
Following the earlier work of simulation procedures in He et al.
(2006), we generated the time series data using ACAPS data.

To generate a 6–year hospital admissions time series, we used
the following model:

 

(13)

μ0 in Equation (13) represents the mean of daily
cardiopulmonary hospital admissions over the 6–year period and
was estimated from ACAPS data as 115.07. 0 is the true PM10
effect and are the true effects for day of the week. Both effects
were initially estimated by fitting the following model to the
observed ACAPS data:

 

(14)

where Yt is the counts of daily cardiopulmonary hospital
admissions, which follows a Poisson distribution with mean μt, 0 is
the log relative rate of Yt associated with a 1 μg/m3 increase in the
same day level of PM10, ns (time, df = 5/year) is the natural cubic
spline function of calendar time with 5 degrees of freedom per
year, ns (temp, df = 7)) is the natural cubic spline function of
temperature with 7 degrees of freedom, IDOW are the six indicator
variables for days of the week, and log (μ0)and are unknown
parameters.

The
~

10_ 0lagPM values in Equation (13) were based on the
following scheme. Since the degree of concurvity found in the
ACAPS data was 0.613, we introduced this same degree of
concurvity into the simulated data. The degree of concurvity in the
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ACAPS data was estimated by the correlation between the series of
daily observed PM10 (PM10_lag0) and the corresponding fitted values
( 10_ 0lagPM ) from the additive model given by
PM10_lag0 = ns (time, df = 5/year) + ns (temp, df = 7). For the simula
tion, a new PM10 series (

~

10_ 0lagPM ) was generated by
~

10_ 0lagPM = 2
10_ 0 (0, )lagPM N , where 2 was chosen so that the

correlation between
~

10_ 0lagPM and 10_ 0lagPM was calculated as
0.613.

The long–term trend and seasonality data for 6–year time
series was generated using

1 0.6cos(2 ) 0.4cos(2 )
365.25 365.25

(1358 1732)

day day
Trend I

day
 (15)

The factor used to rescale the trend effect in Equation (13) is
set to be 0.25 (He at al., 2006). A comparison of the observed and
simulated long–term and seasonal trend pattern in Figure 3
indicates the similarity of the patterns and the coherence of the
peaks.

The daily mean temperature series, temp.s, was estimated
from (14) by temp.s = Xn beta.temp, where Xn is a basis matrix
generated from ns (temp, df = 7) in S–plus and beta.temp is a
vector of the estimated coefficients for temperature in Equation
(14). The comparison of the observed and simulated temperature
pattern in Figure 3 indicates similarity of the patterns.

We generated 1 000 sets of 2 190 observations for the
hospital admissions, conducted BMA analyses under AIC prior, BIC
prior, and local EB estimates and calculated summary statistics. In
our ACAPS the relative risk for a 20 μg/m3 increase in the same day
level of PM10 was estimated at 1.0003. We assumed this value to
represent the true risk and compared it with the value obtained
under the BMA analysis. We also investigated whether the BMA
approach could correctly identify the same day PM10 effect when
the true effect of air pollutant existed only for the same day level
of PM10 but the model incorrectly included several PM10 lag

variables. Therefore, we used two models: one included all the
time and temperature predictor variables in Equation (14), and the
same day PM10 term, and the other model added PM10 lag
variables for the five previous days together with the time and
temperature variables.

With the model that included only the same day level of PM10
the BMA method consistently selected the same day level of PM10.
The estimate of relative risk was found to be close to the true
value of relative risk under all three priors (Table 2. ). With the
model that contained same day level of PM10 and PM10 lagged by
five days was used, where the underlying true model is the same
day model, the BMA approach correctly selected the models that
have only the same day level of PM10 582 to 597 times out of
1 000. This showed that as PM10 lag variables are included the BMA
approach could still have high probability to identify the true
effect. However, the estimates had changed to be smaller than 1.
This, we strongly believe, is due to the concurvity in the data. The
PM10 values over different days are found to be correlated and
inclusion of collinear variables in regression models usually results
in biased estimates.

Table 2. Posterior means of relative risk associated with a 20 μg/m3

increase in the same day PM10 variable with 95% posterior probability
intervals under BMA a

PM10 covariates in
the fitted model

AIC BIC Local EB

Same day of PM10
1.0006

(0.9975, 1.0030)
1.0009

(0.9972, 1.0036)
1.0008

(0.9973, 1.0034)

Same day and five
previous days of
PM10

0.9993
(0.8695, 1.1495)

0.9984
(0.8468, 1.1792)

0.9992
(0.8558, 1.1677)

a The true model used for simulation study is the same day model where the same day
level of PM10, ns (time=5/year), ns (temp, df=7), and day of the week variables are
included in the model. The true relative risk under the assumed same day model is
1.0003.

Figure 3. Empirical and simulated effects of seasonal and long–term trend on hospital admissions.
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5. Discussion

In this study, we had conducted the sensitivity analysis for
BMA under AIC prior, BIC prior, and the local EB estimates in a time
series study of air pollution using both the ACAPS data set and
simulated data sets. An important limitation of conventional
methods for analyzing air pollution time series is the failure to
account for model uncertainties. Model uncertainties include
several components, such as uncertainties about the variable
selection procedure, uncertainties about functional forms of
predictor variables, and uncertainties about the model itself. In this
paper, we have considered two sources of uncertainties: (1) the
uncertainties associated with the model selection procedure,
which we investigated through the modeling of the ACAPS data set
and (2) the uncertainty about the lagged effects. We investigated
this through simulations.

We found the posterior means of the relative risk estimated
by BMA under AIC prior, BIC prior, and local EB estimate were
similar, ranging between 0.9980 and 1.0022 for a 20 μg/m3

increase in all PM10. Arena et al. (2006) reported a higher risk of
1.012256 for the current day level of PM10, and the BMA method
provides smaller estimates. The BMA estimates account more for
uncertainties. We also found that the choice of prior may not be
critical, at least with data similar to the ACAPS data.

Regarding the uncertainties associated with the selection of
predictor variables, we found that the choice of the degree of
lagging for the air pollution term was important. Results from our
simulations showed that if the lag variables of PM10 were
incorrectly considered in the model, the estimates of relative risk
could change and in our case decreased. We attribute this to the
concurvity problem that results from the inclusion of lag variables
of PM10. Because these lagged predictor variables are collinear,
GAMs, which are based on the backfitting algorithm, can present
instability with respect to the order of variables or to the subset of
variables in the fitting process. Future research may apply other
methods, such as projection methods, which perform a nonlinear
transformation from the space of the inputs and then a linear
transformation from this new space, that are not affected by the
collinearity into BMA. It should also be noted that these results are
based on the simulation of a particular data set and degree of
concurvity; other data sets may show changes of a greater or lesser
degree and in either direction (a risk that is biased upwards or
downwards). These results indicate the importance of selecting the
correct degree of lagging for variables, not based on only
maximizing the likelihood, but by considering the amount of
concurvity, and biological plausibility. It is also important to
investigate whether BMA could correctly identify a true, multiday
lagged effect which is beyond the scope of the present paper. We
leave this for future work. In these analyses we have not
considered the uncertainties associated with the functional form of
the model. This source of uncertainty is as important as the others,
and possibly the most difficult to assess.

Regarding the interpretation of the pollutant effect arising
from a BMA analysis when BMA is considered to be more suited
for prediction rather than interpretation of a specific regression
coefficient (Thomas et al., 2007), we note that that the assumed
invariance of the interpretation of this effect in each competing
BMA model poses no problem as we have only one pollutant in our
model.
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