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The rule of 5 (Ro5) is a set of in silico guidelines applied to drug discovery to prioritize compounds with an
increased likelihood of high oral absorption. It has been influential in reducing attrition due to poor pharmaco-
kinetics over the last 15 years. However, strict reliance on the Ro5 may have resulted in lost opportunities,
particularly for difficult targets. To identify opportunities for oral drug discovery beyond the Ro5 (bRo5),
we have comprehensively analyzed drugs and clinical candidates with molecular weight (MW) > 500 Da.
We conclude that oral drugs are found far bRo5 and properties such as intramolecular hydrogen bonding,
macrocyclization, dosage, and formulations can be used to improve bRo5 bioavailability. Natural products
and structure-based design, often from peptidic leads, are key sources for oral bRo5 drugs. These insights
should help guide the design of oral drugs in bRo5 space, which is of particular interest for difficult targets.
In spite of huge advances in science and technology, research

and development (R&D) costs per new molecular entity have

increased dramatically in preceding decades (Bunnage, 2011;

Kinch et al., 2014; Paul et al., 2010). This decline in efficiency

has been attributed to a number of underlying problems that

have affected the pharmaceutical industry during this time

frame, as recently reviewed (Scannell et al., 2012). Hence, an

increasing number of therapeutic indications are now managed

with established drugs, driving R&D toward complex, hard-to-

treat diseases. In addition, regulatory agencies are less tolerant

to risk, in particular for diseases in which safe drugs already

exist. This translates into more costly and lengthier clinical trials

for broad indications due to the larger patient populations

required, which has induced several companies to focus on

narrow indications or diseases currently without therapeutics.

Overestimation of the ability of new technologies to impact

drug discovery and the trend for ever-increasing resources

were also identified as contributing to declining R&D efficiency.

As a potential consequence of some of these problems, the qual-

ity of target selection has been poor, contributing to low success

rates in phase II due to lack of efficacy (Bunnage, 2011). While

success rates related to target selection remain to be improved,

compound attrition due to poor bioavailability and pharmacoki-

netics (PK) has undergone significant improvements. In 1991,

attrition due to poor bioavailability and PK was responsible for

39% of compounds being halted in clinical studies (Kola and

Landis, 2004). This led to an altered perception of the importance

of investigating PK in early drug discovery and formulation of the

rule of 5 (Ro5), also known as Lipinski’s rules, for in silico assess-

ment of PK (Lipinski et al., 1997). By 2000, attrition due to PK

had already been reduced to 8%, whereas attrition due to

toxicity had increased to 19% and the lack of efficacy remained

relatively constant at 24% (30% in 1991) (Kola and Landis, 2004).

An analysis of attrition in the last decade revealed similar rates

and reasons for attrition as in 2000 (Hay et al., 2014). Despite

this reduction of attrition originating from poor PK, a number of
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commentaries questioning the strict implementation of the Ro5

have emerged, arguing that this may have resulted in lost oppor-

tunities (Abad-Zapatero, 2007; Walters, 2012; Zhang andWilkin-

son, 2007). In order to examine opportunities for discovery of oral

and cell-permeable drugs beyond the Ro5 (bRo5), we have per-

formed an extensive analysis of all known drugs and clinical can-

didates in this chemical space. Our analysis is focused on how

oral bioavailability bRo5 is related to the physicochemical prop-

erties and in vitro cell permeability of compounds in this space.

We have chosen not to include discussions of potency, or related

metrics such as ligand efficiency (LE) (Hann and Keserü, 2012),

to maintain focus on bRo5 PK within the context of this review,

although it is worth mentioning that all compounds discussed

here displayed sufficient potency to be taken into the clinic or

to be marketed as drugs.

Oral Drug Delivery
Oral delivery has many advantages in comparison to other

noninvasive delivery methods, such as buccal, nasal, and trans-

dermal, when systemic exposure of a drug is desired. These

include increased reliability of exposure, ability to deliver large

variations in dosage, and potentially greater stability in storage

of solid forms compared with liquids and suspensions (Smith,

2010). Intracellular targets also require cell permeability, which

is expected for orally absorbed drugs. Oral drug delivery is

also the patient preferred method of drug delivery; for instance,

it is preferred by 54%–89% of oncology patients (Verbrugghe

et al., 2013). In particular, for chronic diseases, quality of life

for patients is increased dramatically compared with intravenous

(i.v.) therapy due to the ability to noninvasively self-administer at

home (O’Neill and Twelves, 2002). It should be pointed out that in

oncology, where i.v. administration predominates, 70%–74% of

patients would not compromise on efficacy for oral dosage (Liu

et al., 1997). While this may be an extreme scenario due to the

terminal nature of the illness, it can be expected that there is a

tradeoff between convenience of delivery and efficacy in other
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therapeutic areas. Systemic oral dosage, however, remains the

preferred delivery method for the vast majority of drug therapies,

and oral bioavailability represents a major hurdle in drug devel-

opment (Thomas et al., 2006).

Absorption after Oral Dosage
Systemic oral dosage requires compound properties that allow

for dissolution and stability in the gastrointestinal (GI) tract,

including the acidic environment of the stomach (pH 1–2 in

fasted state, 3–7 in fed state) and the close to neutral environ-

ment (pH 4.4–6.6) of the small intestine (Kerns and Di, 2008;

Smith, 2010; Smith et al., 2006). The majority of compounds

are absorbed in the first section of the small intestine, called du-

odenum, by specialized epithelial cells, enterocytes. Absorption

can be separated into three categories, paracellular (between

enterocytes), transcellular (passive diffusion through entero-

cytes), and active transport (utilizing transporter proteins) (Ar-

tursson et al., 2012; Smith, 2010). Paracellular absorption is

limited to small hydrophilic compounds having molecular weight

(MW) < 350 Da and a low lipophilicity (LogD(7.4) < 0), which can

pass through the restrictions of tight junctions between entero-

cytes. Active uptake is also known to occur for only a small pro-

portion of drugs (DeGorter et al., 2012; Giacomini et al., 2010;

Sugano et al., 2010; Varma et al., 2010), requiring recognition

by native transporter proteins. Hence, active uptake is usually

limited to analogs of peptides, amino acid, lipids, and sugars.

Transcellular transport is the most common route for drug

absorptionand requirespassivediffusion through theapicalmem-

brane, facing theGI tract, into theenterocyte, followedbydiffusion

across the cell and through the basolateral membrane into the

blood. Enterocytes have a number of efflux transporters such as

P-glycoprotein (Pgp) (Lin and Yamazaki, 2003) that actively trans-

port compounds from the blood into the enterocyte or enterocyte

into the GI tract (DeGorter et al., 2012; Giacomini et al., 2010).

Throughout this absorptive process, enzymes in the GI tract, en-

terocyte, blood, and lymph may metabolize drugs to less active

and less permeable species. Once in the blood, drugs travel via

the portal vein to the liver and undergo hepaticmetabolism before

reaching the systemic circulatory system (Smith et al., 2006). The

overall metabolism during absorption and the first liver passage is

referred to as ‘‘first-pass metabolism’’; hence, oral bioavailability

(F%) constitutes the fraction of the oral dose that reaches the sys-

temic circulation after absorption and first-pass metabolism as

compared with i.v. administration.

Passive diffusion through a cell membrane is a key element of

transcellular absorption. Compounds must be able to partition

into the membrane after desolvation from the polar aqueous

GI tract and then diffuse across the nonpolar membrane and re-

solvate upon exit at the other side. This process is difficult to

study in vivo but can be assessed using in vitro model systems.

The most widely used model is human colorectal carcinoma

(Caco-2) cells grown in a layer that allows measurement of

permeability (Papp) in the apical to basolateral (AB) direction (Ar-

tursson et al., 2012). Caco-2 cells also express a number of

endogenous transporters, and measuring Papp in the basolateral

to apical (BA) direction allows for calculation of the efflux ratio

(ER = PappBA/PappAB), representing the involvement of efflux

transporters (Zhang et al., 2003). Madin-Darby canine kidney

cell systems (Irvine et al., 1999) and the parallel artificial mem-
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brane permeability assay (Kansy et al., 1998) are also used for

assessing passive permeability. The three methods provide

somewhat different permeabilities (Nozinic et al., 2010) and

have different advantages and disadvantages (Avdeef, 2012; Ba-

limane et al., 2006).

Influence of Physicochemical Properties on Oral
Absorption
The processes of desolvation, diffusion, and resolvation required

for passive permeability across a cell membrane are function of a

few fundamental properties of a compound: size, polarity, lipophi-

licity, and conformational dynamics (Guimarães et al., 2012;

Smith, 2010). In order for a compound to be orally bioavailable,

these properties need to be balanced; for example, highly polar

compounds fail to desolvate and enter the membrane, whereas

highly lipophilic compounds may not dissolve in the GI tract or

fail to partition out of the membrane (Wils et al., 1994; Yang

et al., 2012). Absorption is thus a complex process, and in 1997,

Lipinski et al. reported a simple rule of thumb that allowed

in silico prediction of whether a compound falls into chemical

space where solubility and permeability are likely to allow oral

absorption. According to the Ro5, z90% of oral compounds

pass three of four of the following rules: MW % 500 Da,

calculated LogP (cLogP)% 5 andR 0, hydrogen bond acceptors

(HBAs) % 10, and hydrogen bond donors (HBD) % 5 (Lipinski

et al., 1997, 2001). Subsequently, additional in silico properties

such as polar surface area (PSA% 140 Å2), the number of rotat-

able bonds (NRotBs% 10–20), and more complex 3D properties

have been added, thereby expanding the correlations with

absorption, distribution, metabolism, excretion, and toxicity

(ADMET) parameters (Egan et al., 2000; Ghose et al., 2012; Glee-

son, 2008; Guimarães et al., 2012; Johnson et al., 2009; Lajiness

et al., 2004;Meanwell, 2011; Veber et al., 2002;Wager et al., 2010;

Waring, 2009; Yang et al., 2012). The Ro5 and later additions are

used ubiquitously in early stages of drug discovery to identify oral

‘‘drug-like’’ compounds in the pharmaceutical industry (Lipinski,

2004), to an extent where the Ro5 has come to be known as

‘‘commandments’’ (Abad-Zapatero, 2007). However, overinter-

pretation and misuse of the guidelines, for example, requiring all

guidelines to be met at hard cutoffs (Lipinski, 2012) and the fact

that a number of orally bioavailable drugs exist far beyond these

boundaries, have led to commentaries questioning the applica-

tion of the guidelines and their value to the industry (Abad-Zapa-

tero, 2007; Bennani, 2011; Lipinski, 2012; Medina-Franco et al.,

2014; Terrett, 2013; Walters, 2012; Zhang and Wilkinson, 2007).

Recently, there has been a focus on decreasing the emphasis of

hard-cutoff, rule-based classification of compounds, and contin-

uous scales such as the quantitative estimate of drug-likeness

(QED) (Bickerton et al., 2012) have been introduced.

Opportunities with bRo5 Compounds
Analyses of average ligand properties (such as MW and cLogP)

by target class reveal that highly explored classes such as ligand

gated ion channels (MW 359 Da, cLogP 3.0) and aminergic

G-protein-coupled receptors (GPCRs) (MW 378 Da, cLogP 3.8)

have ligands with lower MWs and/or more appropriate lipophilic-

ity compared with classes such as peptidic GPCRs (MW 514 Da,

cLogP 4.3), nuclear hormone receptors (MW 398 Da, cLogP 5.1),

and serine proteases (MW 467 Da, cLogP 2.7) (Morphy, 2006;
d All rights reserved
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Paolini et al., 2006; Vieth and Sutherland, 2006). Therefore,

finding high-affinity orally available ligands for these difficult

target classes and for protein-protein interactions (Surade and

Blundell, 2012) may be enhanced if ligands with physicochem-

ical properties at the borders or beyond Ro5 were explored to

a larger extent. Recent approximations suggest that there

are z1033 compounds <500 Da (heavy atom count [HAC] <

36) compared with z1078 compounds with a MW < 1,000 Da

(HAC < 72) (Polishchuk et al., 2013). Hence, there is potential

for higher degrees of novelty, diversity, and complexity in bRo5

compounds. Although it is also true that we have yet to compre-

hensively sample Ro5 space (Ruddigkeit et al., 2012; Virshup

et al., 2013), there is room for further expansion if bRo5 com-

pounds are considered. Strategies for lead generation such as

natural-product-derived approaches (Li and Vederas, 2009;

Newman, 2008), diversity-oriented synthesis (DOS) (Kesavan

and Marcaurelle, 2013; O’Connor et al., 2012; Schreiber,

2000), and macrocycles (Driggers et al., 2008; Giordanetto and

Kihlberg, 2014; Mallinson and Collins, 2012; Marsault and Peter-

son, 2011; Yu and Sun, 2013) all constitute steps toward capital-

izing on opportunities in bRo5 space.

So far, bRo5 chemical space remains relatively unexplored,

most likely due to the perceived non-oral properties, increased

complexity of compounds in this space, and the synthetic chem-

istry challenges associated with its navigation. We therefore set

out to analyzeapproveddrugs andclinical candidates that belong

to bRo5 space, with emphasis on finding the current limits of oral

bioavailability and identification of what allows compounds close

to the limits to be orally deliverable. In this context, it should also

be pointed out that compounds that are delivered orally should

also be expected to be cell permeable and thus useful for manip-

ulation of intracellular targets. No agreed definition of bRo5 space

exists, but in order to capture themajority of compounds,weused

MW > 500 Da as the criteria to mine databases for bRo5 com-

pounds and also imposed an upper limit (MW < 3,000 Da) to

remove large biologics such as insulin, heparin, and large poly-

peptides from the data set. Many of the oral drugs and clinical

candidates in the resulting data set clustered into what can be

considered an extension of Ro5 space. We therefore conducted

adeeper analysis of a significant subset of compounds that reside

in chemical space close to the limits of oral bioavailability; for the

purpose of this review, ‘‘bRo5’’ refers to this subset, although

other publications may refer to bRo5 as compounds breaking

one or more of Lipinski’s guidelines.

Mapping bRo5 Space
The data set of marketed drugs was compiled using the GVK-BIO

online structure-activity database as described in our recent re-

view of macrocyclic drugs and clinical candidates (Giordanetto

and Kihlberg, 2014; GOSTAR, 2013). Compounds in phases I, II,

and III clinical trials and in the preregistration phase were retrieved

from the Pharmaprojects database (Pharmaprojects, 2013) and

Thomson Reuters Integrity (Thomsonreuters, 2013). In cases of

missing structure, thesewere supplemented fromChemistryCon-

nect (Muresanetal., 2011)or theprimary literature.Compounds for

which structures could not be found were excluded from the data

set. Filtering out veterinary products, contrast agents, mixtures

(with the major component of mixtures chosen if it accounted for

>75%of themixture), biologics (MW> 3,000 Da), and counterions
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for saltsgavea listofcompounds for furtherannotation.Eachcom-

pound was then categorized with regards to the route of adminis-

tration, as oral or parenteral. Agents acting locally in the GI tract

that had lowsystemicbioavailability, e.g., antibiotics forGI tract in-

fections,wereclassedasparenterals. In addition, eachcompound

was classified by indication (chosen based on the disease areas

with the most advanced clinical trials and the highest activity if a

compound was progressed for several indications) and into one

of four chemical classes (peptides and peptidomimetics, natural

products and derivatives, de novo designed, or prodrugs). Classi-

fication into each chemical class was based on the origin and

largest motif of the compounds. Where available, the year of

approval, average dose for an adult (mg/day), permeability in the

Caco-2 cell line in the AB direction (PappAB, 3 10�6 cm/s) and

bioavailability (F%) in humans or preclinical species were

extracted from the literature. To the largest extent possible, chem-

ical structures and all other data were retrieved from the primary

literature or from multiple quality databases (ClinicalTrials.gov,

Micromedex 2.0, Food and Drug Administration [FDA], DailyMed).

These efforts resulted in a data set of 485 annotated compounds.

The percentage of drugs approved that had MW > 500 Da was

calculated by comparison to data from the literature (Mullard,

2013). Statistics were calculated in Graphpad Prism v.5.00.

Prediction of physicochemical properties and relevant 3D

conformations is not straightforward, especially in bRo5 space

where higher molecular size and flexibility increase complexity

and requires more accurate methods. However, by comparing

multiple, widely used, and well-established methods, as des-

cribed in the following, we sought to minimize any potential

bias linked to the arbitrary choice of a single tool. Physicochem-

ical properties were predicted using Instant J Chem 6.2.1

(ChemAxon, 2014), as it is freely available for academics and

provides access to an array of standard computed properties

for analysis. However, the predictions are not entirely accurate

and in some cases are far from the experimentally determined

values. For example, posaconazole has cLogP of 5.4, while the

experimentally determined LogP is 2.4 (Saha and Kou, 2000),

illustrating the need to interpret the predictions with caution.

Different LogP predictors (such as MlogP, AlogP, XlogP) (Mann-

hold et al., 2009) were evaluated but did not significantly alter the

overall conclusions and outcome of the present analysis. In order

to allow comparisons and to facilitate use in prospective design,

we have chosen to use cLogP rather than experimental LogP in

the following discussions of compounds bRo5. QED was calcu-

lated according to the literature (Bickerton et al., 2012). 3D struc-

tures were generated in Omega 2.5.1.4 (OpenEye, 2014), Instant

J Chem 6.2.1 (ChemAxon, 2014), and Corina (Sadowski et al.,

1994). Normalized principal molecular moments of inertia (PMI)

were calculated according to the literature (Sauer and Schwarz,

2003); however, the average normalized PMI of up to 100 struc-

tures foundwithin 2 kcal/mol of the identifiedminimawas used in

our analysis. No distinct differences in the overall distributions of

normalized PMI were found using the different software for

conformation generation. Herein, PSA refers to the topological

PSA (Ertl et al., 2000). As compounds increase in size and

complexity, greater differences in 3D and topological PSA occur

(Guimarães et al., 2012); however, the widespread use of topo-

logical PSA and difficulty in accurately predicting 3D conforma-

tions of larger bRo5 compounds led us to use topological PSA.
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1117
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Figure 1. Distribution of Approved Drugs and Clinical Candidates Having MW > 500 Da
(A) Across therapeutic indications and by route of administration.
(B) Across chemical classes and by route of administration.
(C) Year of approval for oral drugs >500 Da from different chemical classes.
(D) Fraction of drugs approved by the FDA having MW >500 Da.
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As the experimental data analyzed here were extracted from

multiple literature sources, our analysis will be affected by dis-

crepancies caused by differing protocols and experimental in-

consistencies, and conclusions must therefore be judged with

appropriate caution. In order tomitigate some of these concerns,

average values or comparisons from the same source were used

where possible. Caco-2 permeability (PappAB) is known to vary

between sources (Artursson et al., 2012), and our classification

of poor/low and good/high was defined as <1 3 10�6 and

>103 10�6 cm/s, respectively. These cutoff values define the re-

gion where oral bioavailability shifts from consistently low to

consistently high values (Balimane et al., 2006; Li et al., 2007;

Veber et al., 2002).

General Overview of All Drugs and Clinical Candidates
with MW > 500
Database mining gave a set of 182 approved drugs and 303

compounds currently being evaluated in clinical trials that had

a MW > 500 Da. Oncology, infection, and cardiovascular indica-

tions accounted for the majority of these compounds (n = 157,

32%; n = 136, 28%, and n = 62, 13%, respectively; Figure 1A).

Each of the remaining indications does not exceed 4% of the

data set. Forty percent of the approved drugs (n = 73) and
1118 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
50% of clinical candidates (n = 153) are administered orally,

but the split between orals and parenterals varies significantly

between the therapeutic indications (Figure 1A). Among the

three major indications, oncology relies mainly on parenteral

administration of drugs and clinical candidates (62%), whereas

infection and cardiovascular see a larger proportion of orally

administered compounds (60% and 63%, respectively). Inter-

estingly, clinical candidates in oncology are increasingly being

evaluated for oral administration (44% versus 16% for approved

oncology drugs). Only three CNS-approved drugs were found in

the current data set, all of which are administered parenterally,

but it is interesting to note that six of eight compounds in clinical

trials are orals.

The drugs and clinical candidates analyzed here can be clas-

sified into three main chemical classes: peptides and peptidomi-

metics, natural products and derivatives, and de novo designed

compounds. There is also a minor class of prodrugs (Figure 1B).

De novo designed compounds constitute the majority of the

compounds in the data set (n = 210, 43%), followed by equal

numbers of natural products (n = 124, 26%) and peptides and

mimetics (n = 125, 26%). The majority of de novo designed com-

pounds are orally administered (64%), whereas, in line with ex-

pectations, peptides and natural products are mainly parenteral
d All rights reserved
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Figure 2. Physicochemical Property Space of Drugs and Clinical Candidates Having a MW > 500 Da
Approved oral drugs are in dark blue. Oral clinical candidates are in light blue. Oral clinical candidates for CNS are in yellow, and parenteral drugs and clinical
candidates in red. Extended Lipinski’s Ro5 space (solid box, 62% of oral compounds) and limits of oral bRo5 space (dashed box, 93% of compounds) are
indicated. The graph limits have been set so as to include all orals in the data set, resulting in an upper MW cut off at 1,600 Da and a number of parenterals fall
outside of the limits.
(A) cLogP as a function of MW.
(B) Number of HBDs as a function of MW.
(C) PSA as a function of MW.
(D) NRotBs as a function of MW.
(E) Physicochemical property distribution of chemical classes with mean (95% CI of mean) of MW, cLogP, HBD, number of hydrogen bond donors (HBD) and
acceptors (HBA), PSA, NRotB, and Fsp3 carbons.
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(80% and 59%, respectively; Figure 1B). These trends are

consistent across drugs and clinical candidates and highlight

that oral compounds can be designed in chemical space close

to the borders or bRo5 with adequate chemical manipulation.

As is discussed further below, at least part of the difference be-

tween the chemical classes may be explained by oral de novo

designed compounds being closer to Ro5 chemical space

than oral peptides and natural products (cf. Figure 2E). It should

also be mentioned that de novo designed compounds dominate

among oral drugs and clinical candidates in the cardiovascular

and oncology indications (72% and 73% of orals in their thera-

peutic indication, respectively). Among peptides and mimetics,

all peptidomimetics are oral, providing further evidence of the
Chemistry & Biology 2
ability of medicinal chemists to design orally administered com-

pounds with high MW. In contrast, all peptides are administered

parenterally with the exception of a few cyclic peptides, consist-

ing of cyclosporin A and derivatives thereof.

Analysis of the year of approval for oral drugs with MW >

500 Da reveals that approvals increased in the early 1990s,

peaked between 1996 and 1998, and then stabilized at a some-

what lower level in the 2000s (Figure 1C). An increasing number

of oral de novo designed drugs have been approved in the past 2

decades, whereas natural products featured more prominently

prior to 1995. Moreover, when considering the fraction of FDA

drug approvals that originate from MW > 500 Da compounds,

the past 2 decades have seen a constant or slow increase in
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1119
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introduction of orals, while the total share with MW > 500 Da has

increased steadily (Figure 1D).

Extent of Oral Druggable Space for Drugs and Clinical
Candidates with MW > 500 Da
Whereas Lipinski’s rules delineates chemical space with com-

pounds ‘‘more likely to be orally absorbed,’’ we were interested

in defining a more lenient ‘‘possible to be orally absorbed’’

space. An understanding of the approximate limits of this chem-

ical space should help to guide the design of cell permeable and

orally available ligands for less tractable targets, where working

within the Ro5 is less likely to be successful. As a first step to-

ward establishing this insight, the present data set of drugs

and clinical candidates with MW > 500 Da were analyzed with

respect to calculated physicochemical parameters (Figure 2).

Of the 226 orally administered drugs and clinical candidates in

this study, a large proportion (62%, n = 141) cluster into what

can be considered as an extension of Ro5 space and a natural

tail of the distribution of compounds based on Ro5 properties

(Figure 2, solid boxes mark extended Ro5 space; MW % 700,

0 % cLogP % 7.5, HBD % 5, PSA % 200 Å2, NRotB % 20). No

clear and agreed definition of bRo5 chemical space exists, but

for the purpose of this review, ‘‘bRo5 space’’ refers to chemical

space outside the extended Ro5 space that clearly deviates from

the Ro5 model. When applying the QED score (Bickerton et al.,

2012), compounds within the extended Ro5 space had a mean

QED score of 0.31 (95% confidence interval [CI] of mean 0.29–

0.32, SD 0.11) while compounds bRo5 displayed a significantly

lower mean of 0.16 (95% CI of mean 0.14–0.17, SD 0.07). The

QED scores of these two data sets are significantly lower than

the mean QED of 0.49 (SD 0.23) for compounds classified as

‘‘unattractive compounds’’ by medicinal chemist (Bickerton

et al., 2012), which further confirms both data sets. The majority

of orals in the data set (93%, n = 211/226; Figure 2, dashed

boxes) possess physicochemical properties defined by MW %

1000 Da, �2 % cLogP % 10, HBD % 6, HBA % 15, PSA %

250 Å2, and NRotB % 20. Even though these cutoffs are some-

what arbitrary, we propose that this defines the current outer

limits of physicochemical space where orally absorbed com-

poundsmay have a reasonable chance of being designed. Limits

for size (MW) and lipophilicity (cLogP) as compared with Ro5

have increased by a factor of two (MW: 1,000 Da versus 500

and cLogP: 10 versus 5), while the number of HBDs has only

increased by factor of 1.2 (HBD: 6 versus 5). The cutoff for

PSA has increased by a factor of 1.8, from a value of 140 to

250 Å2 (Palm et al., 1997); this could be expected based on the

correlation of PSA to size. The increase in PSA is mainly due to

an increased number of HBAs, and not HBDs. Because of the

correlation of PSA with size, scaling PSA by calculating PSA/

MW revealed no difference between compounds <700 Da

(95% have PSA/MW 0.10–0.35) and those >700 Da (92% have

PSA/MW 0.15–0.30). CNS penetration typically requires more

stringent properties, for example, PSA % 90 Å2, MW % 450

Da, HBD % 3 (Ghose et al., 2012; Wager et al., 2010). Only six

oral CNS compounds are foundwithin the full data set; it is there-

fore not surprising that all of them are in clinical trials. Four of

these compounds are close to Ro5 space being relatively small

and nonpolar. The remaining two compounds despite being

larger in size (735–771 Da) remain nonpolar (PSA 54–95 Å2,
1120 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
0 HBD) and lipophilic (cLogP 5.4–8.1). These results clearly indi-

cate that there are substantial opportunities for design of non-

CNS targeted orally available drugs both in extended and in

bRo5 chemical space, as long as the number of HBDs is kept

under control. CNS-targeted compounds, however, will be

much more difficult to design in extended and bRo5 space.

Nevertheless, it is noteworthy to point out that none of the

calculated molecular descriptors are able to clearly delineate

oral and parenteral property space. For example, a large number

of parenterals are found within the extended Ro5 space (Figures

2A–2D). However, when the data set is analyzed based on

mean property values (95% CIs of mean), significant differences

between orals and parenterals are found. Oral compounds are

smaller, more lipophilic, have fewer polar atoms, and are less

flexible (Figure 2E). These trends are generally maintained within

classes; however, the ranges differ depending on class. Oral de

novo designed compounds are significantly smaller and have

lower HBD, HBA, and PSA than oral peptides and natural

products. Furthermore, de novo designed compounds and nat-

ural products have a similar NRotB, which could be interpreted

as a similar molecular flexibility in spite of the significant differ-

ence in MW. However, the flexibility of natural products is prob-

ably higher than the NRotB suggests, as macrocyclic bonds,

frequently found in natural products, are not counted as rotat-

able in this context. Additionally, lipophilicity, as measured by

cLogP, is the property that varies the least across oral chemical

classes, thus confirming its relevance to oral absorption, as pre-

viously noted by several others (Egan et al., 2000; Gleeson, 2008;

Veber et al., 2002). Fraction of sp3 carbons (Fsp3) increases

progressively from de novo designed to peptides to natural

products, and oral natural products have a higher Fsp3 than

parenteral natural products. Prodrugs, however, show less sig-

nificant differences between oral and parenteral. Physicochem-

ical-driven design can therefore be used for optimization of

compounds in extended Ro5 and bRo5 space, preferably within

the limits indicated by the dashed boxes in Figures 2A–2D.

As previously discussed, calculated physicochemical de-

scriptors are useful but have limitations in their ability to predict

oral bioavailability. However, passive permeability across a cell

membrane is inversely proportional to the compounds hydro-

dynamic radius; i.e., it depends on the size and shape of the

compound (Guimarães et al., 2012). The distribution of molecu-

lar shape, approximated by the normalized PMI (Sauer and

Schwarz, 2003), was therefore investigated for the compounds

in the current data set. The drugs and clinical candidates were

found to predominantly populate rod- and disk-like shapes,

notably due to de novo designed compounds. Peptides and

natural products in the data set displayed a higher proportion

of sphere-like shapes. However, no significant distinction in

shape could be found between oral and parenteral compounds.

Apart from the physicochemical and shape characteristics, the

administereddosecouldaffect oral absorptionofcompounds that

are substrates for efflux transporters as these become saturated

at moderate to high doses (Padovan et al., 2012). Information

about both humanoral bioavailability and therapeutic doses in hu-

mans was found for 61 of the drugs and clinical candidates in the

data set, but were not correlated (rs 0.04). Interestingly, close to

half of the studied oral compounds (42%, n = 74/175 compounds

with oral dosage data) require only low doses (<50 mg/day) to be
d All rights reserved
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orally efficacious. Furthermore, anti-infectives displayed the high-

est doses, some of which were R1 g/day, most likely due to the

concentrations required to obtain satisfactory efficacy and the

greater therapeutic window often found for anti-infectives. From

the compiled Caco-2 data, 57% (n = 37) of oral compounds with

MW > 500 Da had poor permeability (PappAB < 1 3 10�6 cm/s),

and only 9% of compounds had good permeability (PappAB >

103 10�6 cm/s). Oral bioavailability was found for 76 compounds

>500 Da and was low (F% % 30) for 54%, similar to results from

poor permeability; however, the two were not correlated

(rs 0.14). Thus, oral bioavailability was not found to be correlated

to dose, nor to cell permeability, for the current data set.

Analysis of Oral Compounds in bRo5 Chemical Space
As discussed above, almost two thirds of the 226 orally adminis-

tered drugs and clinical candidates in our data set cluster in what

we considered as an extended Ro5 space (Figure 2, compounds

within solid boxes). The remaining 85 oral compounds are found

inwhatwe refer to asbRo5chemical space; i.e., they haveat least

one calculated physicochemical property within the following

ranges: MW > 700 Da, cLogP < 0 or > 7.5, HBD > 5, HBA > 10,

PSA > 200 Å2, or NRotB > 20. This set of bRo5 compounds

resides in chemical space close to the limits of oral bioavailability,

and a comprehensive analysis of their propertieswas undertaken

in order to provide knowledge that can be of use for design of

orally available and cell-permeable compounds bRo5. Additional

information on absorption, transporter-mediated efflux, and up-

take, as well as use of formulations to enhance oral uptake for

these compounds, was therefore compiled and analyzed.

Cardiovascular, infection, and oncology are still the major indi-

cations within this set of 85 oral bRo5 compounds, but the pro-

portion of anti-infectives (58%, n = 49) has increased significantly

as compared with the orals in the data set as a whole (36%, n =

81). When considering chemical class, a lower proportion of de

novo designed compounds (19%, n = 16) and higher proportions

of natural products (40%, n = 34) were observed in oral bRo5

space. This originates from oral de novo designed compounds

being on average closer to Ro5 space than natural product and

peptide classes (Figure 1). Macrocycles are more prominent

among oral bRo5 (38%, n = 32) than in the full oral data set

(15%, n = 34) and full >500 Da set (25%, n = 126), in line with pre-

vious observations (Giordanetto and Kihlberg, 2014). Addition-

ally, native or modified sugars are also present in 21% (n = 18)

of oral bRo5 compared with 8% (n = 19) of all oral compounds

and11% (n=52) of all >500Dacompounds. Acloser examination

of the bRo5 data set revealed that the majority of compounds

could be classified as belonging to a few specific chemical clas-

ses or by being directed to certain targets (cf. Figure 9). Hence,

our subsequent analysis of the oral bRo5 will review compounds

by class. The analysis will focus on the trends observed within

and between classes, with higher emphasis being put on phase

III and approved drugs. This differentiation is due to more data,

in particular human bioavailability and established dose in the

public domain for phase III and approved drugs and expected

attrition of compounds in early development.

Erythronolides
The erythronolides are broad-spectrum antibacterial agents

that inhibit bacterial polypeptide synthesis via binding to the
Chemistry & Biology 2
50S bacterial ribosome. They are 14- to 15-memberedmacrocy-

clic macrolide natural products and have MW > 700 Da and

HBA > 10, often in combination with a PSA > 200 Å2 (Figure 3).

Erythromycin, telithromycin, azithromycin, clarithromycin, and

roxithromycin constitute the most studied drugs in this class.

Development of analogs has focused on increased acid stability

by modifications at C6, C9, C11, and C12 and decreased meta-

bolism by modifications of C8 and C2, which ultimately lead to

improved pharmacokinetic properties, particularly less variable

bioavailability (Omura et al., 2002; Zhanel et al., 2001). Removal

of the C3 L-cladinose as in telithromycin and solithromycin

improves stability and activity against bacterial efflux-mediated

resistance (Zhanel et al., 2001).

Erythronolides generally have poor to moderate oral bioavail-

abilities (10%–57%), except for roxithromycin, which is 78%

orally bioavailable (Giordanetto and Kihlberg, 2014; Nozinic

et al., 2010). The Caco-2 cell permeability in the AB direction

(PappAB) is low or at best moderate, but as erythronolides

are substrates of the efflux protein Pgp (Muni�c et al., 2010;

Nozinic et al., 2010), they have a higher permeability in the

BA direction (PappBA 6.4–163 10�6 cm/s). In line with these ob-

servations, erythronolides display a concentration dependency

in their PappAB, which is proposed to occur via saturation of

efflux transporters such as Pgp at clinically relevant concentra-

tions (Pachot et al., 2003; Padovan et al., 2012). This concentra-

tion dependency is particularly relevant as erythronolides are

given at high doses, and saturation of intestinal efflux may there-

fore account for oral bioavailability higher than predicted from

PappAB values. In addition, erythronolides have been linked to

hepatic organic anion transporting polypeptide (OATP) 1A2,

1A4, 1B1, 1B2, 1B3 and organic anion transporter (OAT) 5

(Franke et al., 2008; Garver et al., 2008; Lam et al., 2006; Lan

et al., 2009; Seithel et al., 2007). Finally, erythronolides have

high volumes of distribution and an uneven tissue distribution.

They accumulate in lung fluid, possibly due to Pgp efflux (Rod-

vold et al., 2011; Togami et al., 2012), and are also enriched in

phagocytic cells, presumed due to accumulation in lysosomes

(Ahmad et al., 2010; Bosnar et al., 2005; Wildfeuer et al., 1996),

both of which lead to higher concentrations at their sites of

action.

Leucomycins
The leucomycin macrolides are 16-membered macrocycles

that are analogs to the erythronolides that have a high MW,

PSA, and HBA (Figure 3). Just as the erythronolides, their anti-

bacterial activity involves inhibiting the 50S bacterial ribosome.

Less information is available regarding the PK of leucomycins

than for the erythronolide antibiotics. However, in spite of the

high MW and large PSA, josamycin has an excellent human

bioavailability, whereas spiramycin is only moderate (Brook,

1998; Giordanetto and Kihlberg, 2014). Spiramycin is also

known to have a large volume of distribution, similar to that

of the erythronolides, and has higher accumulation in lung fluid

than erythromycin (Brook, 1998). A number of transporters are

associated with leucomycin PK, including Pgp, multidrug resis-

tance-associated protein (MRP) 2, and OATP2 (Ito et al., 2007;

Tian et al., 2007); however, high dosage of leucomycins likely

results in saturation of intestinal efflux and contributes to oral

bioavailability.
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Rifamycins
Rifamycins are macrocyclic ansamycin natural product antibac-

terials with highMW,HBA, HBD, and PSA (Figure 3). They bind to

bacterial DNA-dependent RNA polymerase and prevent RNA

synthesis via occlusion of the elongating RNA strand (Selva

and Lancini, 2010). All four rifamycins are derivatives of the nat-

ural product rifamycin B/SV, which has poor cell-based activity

and pharmacokinetic properties (Sensi, 1983). The ansa bridge,

i.e., the aliphatic portion of rifamycins, particularly C21 and C23

aswell as the napthoquinone C1 andC8 polar groups, was found

to be important for antibacterial activity, whereas derivatization

at C3 and C4 can be used to modulate PK to allow oral adminis-

tration (Selva and Lancini, 2010).

Despite their in silico properties, the three approved rifamycins

have good oral bioavailability (50%–70%), although the literature

reports a large variability in bioavailability (Blaschke and Skinner,

1996; Burman et al., 2001; Ellard and Fourie, 1999; Loos et al.,

1985; Rothstein et al., 2006; Selva and Lancini, 2010). In line

with this, moderate to high permeabilities (PappAB) have been re-

ported for the three drugs (Gertz et al., 2010; Gonçalves et al.,

2012; Ranaldi et al., 1992). Intramolecular hydrogen bonds

(IMHBs) between the substituents on C1–C8 and C21–C23

have been reported (Agrawal et al., 2004; Bacchi et al., 1998;

Brufani et al., 1964, 1967; Casey andWhitlock, 1975), with rifam-

picin and rifapentine having also been postulated to make

C4–C11 substituent and N14–N39 hydrogen bonds (Pyta et al.,

2012). Formation of these IMHB will reduce polarity and

contribute to rifamycin’s surprisingly good epithelial cell perme-

ability and oral bioavailability considering their high MW and po-

larity. Rifamycins have been linked to Pgp effluxwith Caco-2 ERs

of 3.3–6 (Gertz et al., 2010), but as dosage is high (300–750 mg/

day), efflux may be saturated and therefore have low impact on

bioavailability. Inhibition of hepatic transporters OATP1B1 and

OATP1B3 (Williamson et al., 2013) as well as induction of higher

expression levels of Pgp, MRP1, MRP2, and CYP3A4 also oc-

curs. These interactions may be the source of the numerous

drug-drug interactions (Baciewicz et al., 2013), variable bioavail-

ability, and decreases in bioavailability during chronic dosage

that have been reported for rifamycins (Blaschke and Skinner,

1996; Ellard and Fourie, 1999; Loos et al., 1985). Higher concen-

trations of the rifamycins also occur in the lungs (Hosoe et al.,

1996; Selva and Lancini, 2010) and macrophages (Mor et al.,

1995), aiding their therapeutic potential for tuberculosis, a com-

mon indication for these antibacterial agents.

HCV NS3/4A Protease Inhibitors
The hepatitis C virus (HCV) NS3/4A protease is a chymotrypsin-

like serine protease that is essential for the cleavage of the viral

polyprotein during the HCV replication process. It has also been

shown to mediate viral evasion of the host immune system by

cleavage of key proteins in the innate immune system. The

NS3/4A protease has a shallow and extended substrate-binding

cleft that most likely explains why all ten inhibitors in clinical

studies, as well as the recently launched simeprevir, have
Figure 3. Structures, Calculated Physicochemical Properties, and Data
and Rifamycin Antibiotics
Dose, F, and Papp are average adult dosage in mg/day, oral bioavailability in hum
found.
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MW > 700 Da (Figure 4). NS3/4A inhibitors were designed start-

ing from a weak hexapeptide lead (Lamarre et al., 2003), and

extensive structure and property-based optimization has led

to both linear and macrocyclic peptidomimetics. Macrocycliza-

tion has been achieved either between P1–P3 (cf. simeprevir)

or P2–P4 (cf. vaniprevir). Interestingly, a comparative study of

some linear and macrocyclic inhibitors revealed that macro-

cycles were generally more potent than linear compounds (Ali

et al., 2013). In addition, P1–P3 macrocyclic inhibitors were

found to be less susceptible to drug resistance compared with

linear and P2–P4 macrocyclic inhibitors.

A moderate (41%) oral bioavailability in humans has been re-

ported for narlaprevir (Gao et al., 2011). Similarly, most of the

other NS3/4A protease inhibitors in phase II and III, as well as

the recently launched simeprevir (Rosenquist et al., 2014),

display either low or moderate bioavailabilities in preclinical spe-

cies (Arasappan et al., 2010; Duan et al., 2012; Jiang et al., 2014;

Liverton et al., 2010; Scola et al., 2014; Sheng et al., 2012;

Summa et al., 2012). Caco-2 cell permeabilities (PappAB) are

also low to moderate (Duan et al., 2012; Jiang et al., 2014;

McPhee et al., 2012; Rosenquist et al., 2014; Sheng et al.,

2012). Significant efflux has been reported for asunaprevir

(McPhee et al., 2012), danoprevir (Jiang et al., 2014), and vedro-

previr (Sheng et al., 2012), the three inhibitors having low PappAB

values, and this was linked to Pgp for asunaprevir. As doses of

HCV protease inhibitors are moderate to high in order to sustain

low viral loads, it can be speculated that efflux transporters in the

intestinal lumen will be saturated and that absorption will not

be affected by efflux to a large extent (Bergström et al., 2009).

Significant accumulation in the liver, with liver/plasma ratios

typically ranging from 30-fold to several hundred fold have

been reported for almost all of the inhibitors in preclinical spe-

cies, which is important, because the liver is the organ affected

by the HCV virus (Duan et al., 2012; Jiang et al., 2014; Liverton

et al., 2010; Rosenquist et al., 2014; Scola et al., 2014; Summa

et al., 2012; Yang et al., 2014). For several of the inhibitors, i.e.,

simeprevir, faldaprevir (Ramsden et al., 2014), danoprevir (Jiang

et al., 2014), and MK 5172 (Summa et al., 2012), accumulation

has been linked to uptake by OATPs such as 1B1 (Kalliokoski

and Niemi, 2009). OATP-mediated uptake is likely to affect

many NS3/4A inhibitors, particularly due to the carboxylic acid

(faldaprevir) or bioisosteric cyclopropanesulfonamide in all but

narlaprevir. Another consequence of this active uptake is that

oral bioavailabilities are most likely low to moderate because

of significant first-pass clearance to the liver.

HCV NS5A Inhibitors
NS5A is essential for the HCV replication cycle, but its precise

function is unknown (Manns and von Hahn, 2013). As a conse-

quence, the mode of action of NS5A inhibitors is also unclear.

However, as first demonstrated by daclatasvir, NS5A inhibi-

tors provide a rapid decline in viral load and development of

resistance to them has been mapped to NS5A (Gao et al.,

2010). Leads for development of inhibitors of NS5A have been
of Relevance for Oral Administration of Erythronolide, Leucomycin,

an or preclinical species (p), and Caco-2 AB permeability in 10�6 cm/s where
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discovered using high-throughput phenotypic screens, and opti-

mization revealed that symmetry is important for potent antiviral

activity. All five NS5A inhibitors in the oral bRo5 set have high

MWs and PSAwith their structures characterized by a rigid linear

aromatic core that has derivatives of the dipeptide Val-Pro

attached at both ends (Figure 5).

Daclatasvir was found to have good human oral bioavailability

(66%–79%) (Jiang et al., 2012), while the other four NS5A

inhibitors all displayed bioavailabilities that ranged from low to

moderate in preclinical species (Coburn et al., 2013; DeGoey

et al., 2014; Kazmierski et al., 2014; Link et al., 2014). In line with

the observed bioavailability, daclatasvir has intermediate Caco-2

permeability (PappAB) and a moderate ER of 5.8 (Bilello et al.,

2011). A recent study indicates that an IMHB is formed between

the imidazole NH and the carbamate carbonyl group in each of

the dipeptidic parts of daclatasvir in nonpolar environments

(Wakenhut et al., 2014). Identical or similar IMHB could also be

formed for the other four NS5A inhibitors and may contribute to

increasing their membrane permeability and oral bioavailability.

HIV-1 Protease Inhibitors and Related
Pharmacoenhancers
Inhibitors of HIV type-1 (HIV-1) protease represent an important

component of successful antiretroviral therapies for HIV

infections. These inhibitors are normally coadministered with

pharmacoenhancers (additional compound/s to improve the

pharmaceutical properties of the parent drug) to maximize their

therapeutic efficacy. Because of the structural requirements

imposed by the HIV-1 protease active site, all HIV-1 protease

inhibitors have MW > 500 Da. The two HIV protease inhibitors

atazanavir and TMC-310911 and two pharmacoenhancers

ritonavir and cobicistat stand out by having MW > 700 Da

(Figure 5).

While no pharmacokinetic information has been disclosed

for TMC-310911, atazanavir is reported to have a good oral

bioavailability in the range of 60%–68% (Hsu et al., 1998; Kis

et al., 2013; Le Tiec et al., 2005; Patel et al., 2004). Because of

its limited and pH-dependent solubility, atazanavir absorption

can be enhanced by coadministration with food, but absorption

is significantly reduced by proton pump inhibitors (Kiser et al.,

2006; Luber et al., 2007; Tomilo et al., 2006). Atazanavir’s cellular

permeability is greatly affected by transporters and metabolizing

enzymes, and it has been reported to interact with Pgp, MRPs,

breast cancer resistance protein (BCRP), OATPs, CYP3A, and

UDP glucuronosyltransferase (UGT) 1A1 in vitro (Bousquet

et al., 2008; Kis et al., 2013; Perloff et al., 2005; Zhang et al.,

2005a). Because of its broad transporter profile and transporter

activity saturation, atazanavir’s permeability is highly concentra-

tion dependent (Kis et al., 2013). Atazanavir has been identified

as a compound that can form IMHBs in nonpolar solvents; this

property may also contribute to epithelial cell permeability and

thereby to oral absorption (Alex et al., 2011).

Ritonavir and cobicistat are mechanism-based CYP3A inhibi-

tors that may be administered to enhance the pharmacokinetic
Figure 4. Structures, Calculated Physicochemical Properties, and Dat
Inhibitors
Dose, F, and Papp are average adult dosage in mg/day, oral bioavailability in hum
found.
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profile of drugs metabolized by these enzymes. While ritonavir

also displays intrinsic HIV-1 protease inhibition, cobicistat is

devoid of anti-HIV activity (Xu et al., 2010). The absorption profile

of both drugs is modulated by several transporters, including

Pgp, BCRP, and OATPs (Alsenz et al., 1998; Annaert et al.,

2010; Lepist et al., 2012; Profit et al., 1999). Accordingly, satura-

tion of transporters resulting in disproportional absorption has

been observed (Parker and Houston, 2008). Based on the

observed biological profiles at transporters and metabolizing

enzymes, HIV protease inhibitors and associated pharmacoen-

hancers display a high tendency for additional drug-drug interac-

tions, requiring careful coadministration monitoring (Chauvin

et al., 2013; Deeks, 2014; Fukuda et al., 2013; von Hentig, 2008).

Ascomycins and Rapamycins
The three rapamycins (sirolimus, everolimus, and ridaforolimus)

and the ascomycin tacrolimus are macrolides that have high

MW, HBA, and PSA (Figure 6). They are immunosuppressants

primarily used to reduce rejections after organ transplants.

Tacrolimus (FK-506) binds to the immunophilin FK506 binding

protein 12 (FKBP12), creating a new complex that binds to

calcium, calmodulin, and calcineurin, thus inactivating the phos-

phataseactivity of calcineurin andactivationof Tcells (Patel et al.,

2012;Pirschet al., 1997; Tadaet al., 2005). The rapamycins, how-

ever, inhibit mammalian target of rapamycin (mTor) through for-

mationof a complexwithFKBP12, arrestingT lymphocyte growth

(Kirken and Wang, 2003; Sehgal, 2003). Rapamycins also have

application in cancer therapy through inhibition of the PI3K/akt/

mTor signaling pathway, which regulates cell proliferation, sur-

vival, and angiogenesis (Dancey, 2010; Gabardi and Baroletti,

2010). Everolimus and ridaforolimus are derivatives of sirolimus

at position 40, developed to improve thePK, particularly solubility

and oral bioavailability (Kirchner et al., 2004).

Tacrolimus has variable and low bioavailability partly due to its

low solubility; therefore, several formulation approaches such as

oil solutions, solid dispersions, complexation with cyclodextrins,

and liposomes have been investigated (Patel et al., 2012), as well

as prodrugs such as temsirolimus. Tacrolimus is also known to

interact with Pgp, BCRP, and MRP-1 (Pawarode et al., 2007).

Rapamycins have low bioavailability (14%–20%), and Caco-2

studies of sirolimus and everolimus indicate moderate PappAB

with saturation of efflux at higher concentrations (Lamoureux

et al., 2012). Sirolimus and everolimus are substrates of Pgp

and inhibitors of OATP1A2, OATP1B1, and OATP1B3 which

are expressed in the intestine and liver (Picard et al., 2011).

Rapamycins are administered at low doses; hence, efflux is un-

likely to be saturated and will play a role in their absorption from

the intestine. They are also enriched in the liver via Pgp, and there

are speculations of additional involvement of transporters

(Lamoureux et al., 2012).

Cyclosporins
Cyclosporin A is an 11-residue cyclic peptide immunosuppres-

sant and the only approved cyclic peptide drug that is
a of Relevance for Oral Administration of HCV NS3/4A Protease

an or preclinical species (p), and Caco-2 AB permeability in 10�6 cm/s where
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administered orally. Cyclosporins bind to cyclophilin, the

complex of which then inhibits calcineurin, which inhibits

T cell activation. Elongation of the original (4R)-4-[(E)-2-

butenyl]-4,N-dimethyl-L-threonine residue at position 1 of cy-

closporin A by one carbon atom to give a terminal diene

yields voclosporin, a significantly more potent immunosuppres-

sive agent (Aspeslet et al., 2001; Giordanetto and Kihlberg,
1126 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
2014) (Figure 6). In contrast to cyclosporin A and voclosporin,

SCY 635 and alisporivir are not immunosuppressive, but are

potential treatments for hepatitis C due to their inhibitory effect

on cyclophilin (Flisiak et al., 2012; Hopkins et al., 2010; Wata-

shi, 2010). All four cyclosporins have a very high MW, HBA,

and PSA and have only minor variations at amino acids 1, 3,

and 4.
d All rights reserved
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Cyclosporin A is a well-known substrate of Pgp; however, it

also interacts with a number of additional efflux transporters

such as MRP-1 and BCRP and consequently has a highly var-

iable oral bioavailability (Fahr, 1993; Pawarode et al., 2007;

Ptachcinski et al., 1985). The ERs for the analogs can be sub-

stantially lower, as demonstrated for SCY 635 (ER = 16.5)

compared with cyclosporin A (ER = 279), indicating that SCY

635 is transported less efficiently (Hopkins et al., 2010). When

considering its MW and polarity, cyclosporin A has an unex-

pectedly high permeability and bioavailability. Extensive nu-

clear magnetic resonance (NMR), small molecule X-ray, and

computational studies indicate that these properties originate

from conformational flexibility that allows formation of IMHBs

that shield polarity during passage across nonpolar environ-

ments such as cell membranes (Alex et al., 2011; Augustijns

et al., 1993; El Tayar et al., 1993; Khojasteh et al., 2011;

Lown et al., 1997; Ptachcinski et al., 1985). The specific pattern

of N-methylation of nonintramolecular hydrogen bonded am-

ides has also been linked to reducing polarity in the intramolec-

ular hydrogen bonded conformation. As voclosporin, SCY 635,

and alisporivir are close analogs of cyclosporin A, it can be

assumed that their cell permeability and oral bioavailability

are also facilitated by the same type of IMHB (Giordanetto
Chemistry & Biology 2
and Kihlberg, 2014). Various formulation strategies ranging

from soft gelatine capsules, oral solutions (Sandimmune), a

microemulsion (Neoral), topical emulsions, and inhaled forms

have been employed to obtain more consistent plasma levels

of cyclosporin A (Fatouros et al., 2007; Iacono and Bartley,

2002).

Azoles
Azole antifungals inhibit lanosterol 14-a-demethylase, thereby

inhibiting synthesis of ergosterol, an essential component of

the fungal membrane (Maertens, 2004). The three azoles in the

bRo5 data set all have MW > 700 Da, but isavuconazonium is

an oral prodrug of ravuconazole with improved solubility and

as such is not discussed further (Thompson and Wiederhold,

2010) (Figure 7). A number of lower MW azole antifungals (MW

< 500 Da), such as fluconazole and voriconazole, that have

excellent bioavailability (>90%) exist on the market but have a

reduced spectrum of activity (Li et al., 2010). Development of

azole antifungals has centered on obtaining a broad spectrum

of activity, reduced toxicity, and drug-drug interaction caused

by binding to human CYP enzymes. For example, posaconazole

has an improved spectrum of activity and reduced binding to hu-

man CYP enzymes compared with itraconazole, making it less
1, September 18, 2014 ª2014 Elsevier Ltd All rights reserved 1127
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Chemistry & Biology

Review
prone to toxicity and drug-drug interactions (Lipp, 2010; Torres

et al., 2005).

The oral bioavailability of itraconazole capsules is variable with

a mean of 55%, potentially due to poor solubility (Peeters et al.,

2002) and dependence on dosage with food/gastric pH. Hence,

an oral suspension with cyclodextrins was developed, which

reduced variability and improved the mean bioavailability to

72% (Prentice and Glasmacher, 2005). Posaconazole has a

high permeability; however, it also suffers from poor solubility

(Saha and Kou, 2000) and benefits from cyclodextrin formula-
1128 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
tion-improving oral bioavailability from 14% to 52% in monkeys

(Courtney et al., 2003; Nomeir et al., 2000). Both itraconazole and

posaconazole are substrates of Pgp (Keogh and Kunta, 2006; Li

et al., 2010; Merck, 2006, NOXAFIL-posaconazole suspension

label), but as doses of both compounds are high, it can be postu-

lated that efflux does not have amajor impact on oral absorption.

Finally, itraconazole has a nonlinear dose dependency, postu-

lated to be caused by saturation of liver metabolism, which con-

tributes to its good oral bioavailability at the high dose given

(Prentice and Glasmacher, 2005).
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Taxanes
Paclitaxel is probably most well known for its semisynthetic

method of production and the novel mechanism of anticancer

activity, i.e., b tubulin binding and microtubule stabilization that

prevents G2-M cell progression (Cragg, 1998) (Figure 7). It is

administered intravenously, but suffers from poor solubility and

requires long infusion times with Cremophor EL. Cremophore

EL is anz3 kDa polyethylene glycol derivative used as a formu-

lation aid for a number of drugs and is thought to cause toxicity

and hypersensitivity reactions as well as nonlinear kinetics of

paclitaxel (Gelderblom et al., 2001). Consequently, substantial

effort has been placed on the development of analogs that are

orally bioavailable and that also overcome drug resistance,

mainly Pgp-mediated efflux and tubulin mutations (Ferlini et al.,

2008). Three such taxanes with high MW (852–882 Da) and

high PSA (203–246 Å2) are in phase II trials. Changes to the pacli-

taxel structure in positions C7, C10, C14, and C30 have been

found to improve potency and/or modulate the Pgp-mediated

efflux of taxanes (Jing et al., 2014). It is noteworthy that all three

analogs have a somewhat increased cLogP (4.1–4.7 versus 3.5)

as compared with paclitaxel and a reduced number of HBD

(3 versus 4).

The epithelial cell permeability (PappAB) of paclitaxel is low;

however, to a large extent, this is due to Pgp-mediated efflux

as demonstrated by an ER of �34 (Jing et al., 2014). The role

of efflux is illustrated by the increase in oral bioavailability of

paclitaxel from a low 6% to 47% when dosed with cyclosporin

A, a Pgp inhibitor (Meerum Terwogt et al., 1999). Phase I/II clin-

ical trials of paclitaxel codelivered with the Pgp inhibitor

HM30181 are underway and may provide a viable oral delivery

of paclitaxel. Ortataxel, in contrast, has z3-fold greater PappAB

and a reduced ERz7 (Jing et al., 2014; Vredenburg et al., 2001),

with a corresponding improvement in human oral bioavailability

to 25%. TPI-287 has shown potential of blood-brain barrier

penetration (Fitzgerald et al., 2012) andmouse oral bioavailability

(McChesney et al., 2008); however, clinical trials currently focus

on i.v. administration.

Cardiac Glycosides
Digoxin and ouabain are natural products and possibly endoge-

nous hormones (Nicholls et al., 2009) acting as inotropic agents.

They inhibit the membrane bound a-subunits of the Na+/K+-

ATPase, leading to an increased Ca2+ level in heart muscle cells,

which ultimately results in stronger contractions of the heart

(Schoner and Scheiner-Bobis, 2007). Digoxin is included in the

bRo5 data set because of high MW, HBD, and PSA, whereas

the cLogP remains acceptable despite the trisaccharide moiety.

Oubain is smaller but highly polar (PSA = 207 Å2, HBD = 8) with a

low cLogP (�2.8) due to its polyhydroxylated nature.

The oral bioavailability of ouabain is very low (1%) and varies

between individuals and therefore oral treatment with ouabain

is rare (Belz et al., 1984; Nordqvist et al., 2004). Digoxin has

a higher and less variable bioavailability (Cohen et al., 1993;

Ochs et al., 1981) and is still prescribed, although the identifica-

tion of angiotensin-converting enzyme inhibitors, b-adrenergic

blockers and angiotensin-receptor blockers has significantly

reduced its clinical use. Digoxin is one of the best analyzed

substrates of Pgp, as it is frequently used as reference com-

pounds in transporter studies (Cavet et al., 1996; Xu et al.,
Chemistry & Biology 2
2003). Digoxin is also described as a substrate of MDR1 and

MDR2, but with contradictory information on effects on OATP

transporters (Khojasteh et al., 2011; Taub et al., 2011). It is inter-

esting to note that, in spite of Pgp-mediated efflux, low-dose and

a low epithelial cell permeability the oral bioavailability of digoxin

is still high.

Prodrugs
Six prodrugs are included in the oral bRo5 set, the majority due

to a high NRotBs. Four of these conform to well-established

ideas for improving solubility or providing extended release.

However, the antiviral prodrugs brincidofovir (hexadecyloxy-

propyl-cidofovir, CMX-001) (Marty et al., 2013) and CMX-157

(Lanier et al., 2010) (Figure 7) are lysophosphatidylcholine mi-

metics that are proposed to be absorbed through endogenous

fatty acid uptake pathways to the blood or lymph (Painter and

Hostetler, 2004).

The oral bioavailability of brincidofovir is 88% in mice (Ciesla

et al., 2003) compared with the parent drug, cidofovir, which

is <5% in humans (Wachsman et al., 1996). Once absorbed

into the bloodstream, brincidofovir and CMX-157 remain as

theprodrug, thereby avoidinguptake in the kidneysby theorganic

anion transport protein hOAT1,whichhasbeen linked to theneph-

rotoxicity of cidofovir (Ciesla et al., 2003; Hostetler, 2010). Cellular

uptake then occurs via endocytosis or with the aid of flippases in

themembrane, followed by cleavage and phosphorylation to give

the active, antiviral drug in cells (Hostetler, 2010).While not typical

of the compounds in the oral bRo5 data set, these two prodrugs

illustrate an interesting development in prodrug technologywhere

rational design for incorporation into uptake pathways provides

better oral absorptionanddecreased toxicity in spiteof increasing

the MW > 500 Da.

Selected Compounds that Have No Analogs in the Oral
bRo5 Data Set
In addition to the classes of compounds discussed above, there

are 26 compounds that have no close analogs in the oral bRo5

data set. Analysis of these focuses on the eight approved drugs

and the only compound in phase III, with illustrative points rather

than detailed discussion of all (Figure 8). As less information is

available for the compounds in phases I and II (phase I: 6, phase

II: 11), these will not be covered here. The nine late-stage com-

pounds have varying indications, and in some cases, their exact

mechanism of action is poorly understood (e.g., Auranofin [Walz

et al., 1983; Eisler, 2003]). Their physicochemical properties also

differ with no common property leading to their inclusion in bRo5

space (Figure 8). Bioavailabilities and Caco-2 permeability

are low to moderate, i.e., similar to the other major classes of

bRo5 drugs (ambenonium chloride [Havard and Fonseca,

1990], amiodarone [Shukla et al., 1994], auranofin [Blocka,

1983; Walz et al., 1983], dipyridamole [Bjornsson and Mahony,

1983; Terhaag et al., 1986; Elsby et al., 2008; Zhang et al.,

2005b], etoposide [Hande, 1998; Guo et al., 2002], ivermectin

[Fox, 2006; Griffin et al., 2005], montelukast [Mougey et al.,

2009],thiocolchicoside [Sandouk et al., 1994; Trellu et al.,

2004], anacetrapib [Kumar et al., 2010; Tan et al., 2010]). Three

also display highly variable bioavailability (amidoarone, dipyrida-

mole, and etoposide). Some compounds have been linked

to efflux transporters such as Pgp, BCRP, MRP1, and OATP
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Figure 8. Structures, Calculated Physicochemical Properties, and Data of Relevance for Oral Administration of Other Approved and Phase III
Compounds in the Oral bRo5 Set
Dose, F, and Papp are average adult dosage in mg/day, oral bioavailability in human or preclinical species (p), and Caco-2 AB permeability in 10�6 cm/s where
found.
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(amiodarone [Segawa et al., 2013; Cermanova et al., 2010],

etoposide [Stephens et al., 2002], and montelukast [Roy

et al., 2009]). Of all the bRo5 compounds investigated, only mon-

telukast has data suggesting that it is actively taken up in the in-

testine (Mougey et al., 2009; Mougey et al., 2011); however, con-

flicting data also exist (Chu et al., 2012; Kim et al., 2013). A

number also display poor solubility and can benefit from alter-

nate formulations or dosage with food (amiodarone [Meng

et al., 2001], dipyridamol [Kostewicz et al., 2002], ivermectin

[Edwards et al., 1988], montelukast [Okumu et al., 2008], anace-

trapib [DiNunzio et al., 2012; Geers et al., 2011; Kumar et al.,

2010]). From comparison to the avermectin B1a crystal structure

(Springer et al., 1981), intramolecular hydrogen bonding has

been suggested between O1 and O7 of ivermectin, but NMR

does not support this (Neszmélyi et al., 1989). For thiocolchico-
1130 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
side, the glycoside itself is not detectable in blood; rather, the

aglycone is found (which is Ro5 compliant) and thus may be

the absorptive species (Sandouk et al., 1994; Trellu et al., 2004).

The Landscape of bRo5 Space
It has been argued that strict implementation of the Ro5

may have resulted in lost opportunities in drug discovery

(Abad-Zapatero, 2007; Walters, 2012; Zhang and Wilkinson,

2007). As an extension of our previous review of macrocycles

(Giordanetto and Kihlberg, 2014), we therefore performed an

exhaustive review of all known drugs and clinical candidates

having a MW > 500 Da. As discussed in greater detail in this

section, our analysis of how oral bioavailability is related to the

physicochemical properties and in vitro cell permeability of the

compounds in the data set led to several key findings. First, it
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Figure 9. Overview of Chemical Space for Drugs and Clinical
Candidates with MW > 500 Da and Trends Found for Orals bRo5
(A) Oral and parenteral categories of drugs and clinical candidates having a
MW > 500 Da and extent of ‘‘possible to be oral’’ chemical space.
(B) Major classes of oral drugs and clinical candidates bRo5, common
trends that affect oral bioavailability, and origin of leads for the different
classes.
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was established that the chemical space where orally bioavail-

able compoundsmay be designed extends far bRo5. In addition,

hits and leads for compounds currently found in this bRo5 space

were found to predominantly originate from natural products and

peptides, with several interesting approaches being explored

preclinically. Opportunities to improve compound properties

and thereby facilitate oral administration in design of compounds

bRo5were identified, e.g., intramolecular hydrogen bonding and

tailor-made formulations. Finally, risks in this chemical space,

such as efflux at the blood-brain barrier of compounds intended

for CNS applications, are summarized.

Extent of Chemical Space Where Oral Drugs Can Be
Found
Our analysis reveals that the proportion of approved drugs that

have a MW > 500 Da has increased steadily during the last 2

decades. This increase has mainly been driven by approval of

increasing numbers of de novo designed compounds, whereas

natural products previously dominated approvals in this chemi-

cal space. Even though ADMETmay be a hurdle whenmolecular

size and complexity increases, analysis of the current data set
Chemistry & Biology 2
suggests that the limits for oral bioavailability extend to approx-

imately MW % 1000 Da, �2 % cLogP % 10, HBD % 6, HBA %

15, PSA% 250 Å2, and NRotB% 20 (Figure 9A). This represents

a significant expansion of the traditional ‘‘likely to be oral’’ Ro5

chemical space to a substantially larger ‘‘possible to be oral’’

space. It should be pointed out that whereas most calculated

physicochemical properties can be increased significantly as

compared with the Ro5, this is not the case for the number of

HBD. Consequently, HBA rather than HBD are largely respon-

sible for the increased PSA of high-MW orally available com-

pounds. Interestingly, there are still a few oral compounds that

have properties outside the ‘‘possible to be oral’’ space, such

as cyclosporin A and derivatives. Without doubt, additional com-

pounds with properties far outside Ro5 space will therefore be

discovered in the future and contribute to our understanding of

the extent of oral druggable space.

The Origin of Drugs and Clinical Candidates bRo5
It is important to define the sources of hits and leads for drugs

and clinical candidates close to the limits of oral bioavailability

(Figure 9B). Traditionally, natural products have been a rich

source of drugs in oral bRo5 space, with many being discovered

over 2 decades ago. As the parent natural product often had

nonoptimal ADME properties, modification was required to pro-

vide satisfactory oral bioavailability (cf. erythronolides, rifamy-

cins, rapamycins, and taxanes). More recently, peptides have

appeared as starting points for discovery of oral bRo5 com-

pounds even though few have properties suitable for oral deliv-

ery, with cyclosporin A being a notable exception. However,

optimization based on a combination of structure based design

and use of peptidomimetics tactics to improve PK has led to the

successful oral delivery of bRo5 compounds at the border of the

peptidomimetic and de novo designed classes. HCV NS3/4A

and HIV protease inhibitors are prominent examples of oral com-

pounds in bRo5 space developed from peptides. For more

peptidic compounds, formation of IMHBs and N-methylation of

amide bonds has been demonstrated to be important for oral

bioavailability (Rezai et al., 2006a; White et al., 2011). High-

throughput screening has also been applied to identify leads in

bRo5 space, with HCV NS5A inhibitors originating from pheno-

typic screens. The azole antifungals exemplify how a continued

development starting from the 1944 discovery that benzimid-

azole had antifungal activity may lead into bRo5 space.

The recent advances in development of antivirals reveal that

we are able to design oral compounds in bRo5 space from start-

ing points other than natural products. Hence, the low proportion

of de novo designed compounds bRo5 is likely a result of

perceived ‘‘bad ADMET bRo5’’, which has led to less effort in

this chemical space. Our understanding of ADMET has pro-

gressed substantially over the last 15 years; hence, the lack of

de novo designed compounds bRo5 indicates a significant

area of potential future growth. Success will partly rely on our

ability to discover hits and leads that are substantially different

from those originating from traditional small molecule screening

collections. To facilitate this, several interesting approaches are

already being explored, including use of small tethered oligopep-

tides (Terrett, 2010), larger cyclic peptides (Josephson et al.,

2014; Obrecht et al., 2012), diversity-oriented synthesis (O’Con-

nor et al., 2012; Schreiber, 2000), and a resurged interest in
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natural product derived approaches (Li and Vederas, 2009; New-

man, 2008). Alternately, traditional small molecule screening col-

lections may be used, provided that a significant change in the

mindset and goals of the optimization is allowed.

Intramolecular Hydrogen Bonding
Formation of IMHBs is a structural feature that has been re-

ported to contribute to improvement of cell permeability and

oral bioavailability for several chemical classes in bRo5 space

(Figure 9B). Incorporation of IMHB during design therefore rep-

resents an important opportunity to improve compounds prop-

erties bRo5. In the current data set, natural products such as

cyclosporins, rifamycins, and ivermectin as well as de novo de-

signed peptidomimetic HIV protease inhibitors and HCV NS5A

inhibitors have been reported to form IMHB. Cyclosporins

and rifamycins stand out due to their high calculated polarity

(5–6 HBD, 12–15 HBA, and PSA >200 Å2) yet maintain mo-

derate to good oral bioavailabilities of 30%–70%. For cyclo-

sporin A, extensive investigations demonstrate formation of

several IMHB in nonpolar solvents, effectively shielding polar

groups, and improving cell permeability (Alex et al., 2011; El

Tayar et al., 1993). Additionally and importantly, solubility is

maintained as IMHB dissociate in aqueous environments

exposing polar groups. Rifamycins have been less extensively

investigated; however, studies indicate formation of two to

four IMHB (Agrawal et al., 2004; Bacchi et al., 1998; Brufani

et al., 1964, 1967; Casey and Whitlock, 1975). HIV protease

and HCV NS5A inhibitors are less polar (3–5 HBD, 6–9 HBA,

PSA 145–205 Å2), but formation of IMHB may also improve

cell permeability and absorption for these drugs. It should

also be noted that all 17 bRo5 compounds that may

form IMHB have high MW (705–1,322 Da), but 11 maintain

cLogP < 5, possibly indicating that larger compounds require

more polar groups to maintain cLogP and subsequently form

IMHB to reduce the number of exposed polar atoms when

passing through a cell membrane.

A number of studies describe design or investigations of

IMHB in compounds for improved permeability, including linear

and cyclic peptides (Beck et al., 2012; Bockus et al., 2013; Rafi

et al., 2012; Rand et al., 2012; Rezai et al., 2006a; Rezai et al.,

2006b; White et al., 2011), as well as drug discovery leads

(Ashwood et al., 2001; Ettorre et al., 2011; McDonagh and

Lightner, 2007; Over et al., 2014; Sasaki et al., 2003; Wu

et al., 2001). This further demonstrates the opportunity of using

IMHB to tune and improve compound properties during

design. It also highlights the need for methods that can predict

and identify IMHB (Goetz et al., 2014; Jansma et al., 2007; Sha-

laeva et al., 2013), particularly for compounds requiring CNS

penetration or having a high HBD count. A systematic review

of crystal structural data revealed a number of preferred

IMHB geometries (Kuhn et al., 2010), which were dominated

by flat 5- and 6-membered rings, that may be utilized in com-

pound design. In addition to geometry, the use of different

acceptors and donors should also be considered to adjust

the strength of IMHB in order to provide compounds possess-

ing appropriate properties (Desai et al., 2012). In such efforts,

medicinal chemists can also draw on the understanding gained

from intermolecular hydrogen bonding (Bissantz et al., 2010;

Laurence et al., 2009).
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Macrocyclization
Macrocyclization is another structural feature that has been

highlighted to convey drug-like properties, including oral bio-

availability, in bRo5 space (Brandt et al., 2010; Driggers et al.,

2008; Giordanetto and Kihlberg, 2014; Mallinson and Collins,

2012; Marsault and Peterson, 2011). This finding is further sup-

ported by the observation that macrocycles are enriched in

oral bRo5 space (Figure 9B), with 38% (n = 32 of 85) found

bRo5 as compared to 15% (n = 34 of 226) in the entire oral

data set. Moreover, intramolecular hydrogen bonding in macro-

cycles such as cyclosporins is generally believed to improve

absorption from the intestine. Improved diffusion coefficients

across membranes have been demonstrated for macrocyclic

model compounds compared to acyclic matched pairs (Bogdan

et al., 2011; Rezai et al., 2006b). Generally, this is thought to

be due to changes in conformation and shape; however, this

remains to be proven experimentally. Additional advantages

of macrocyclization have been postulated in drug discovery,

including improved affinity for the target due to a reduction in

the entropy of binding (Driggers et al., 2008; Mallinson and

Collins, 2012). However, studies indicate that this relationship

is complex and does not necessarily occur by default but re-

quires careful design and screening of macrocycle linker types

(Delorbe et al., 2010). Improved selectivity and reduced meta-

bolism have also been reported for a number of specific exam-

ples (Driggers et al., 2008; Mallinson and Collins, 2012).

Transporter-Mediated Efflux and Saturation
The majority of the classes in bRo5 space have been linked to

the Pgp efflux transporter, as either substrates or inhibitors.

Interactions with additional transporters such as MRPs, BCRP,

and OATPs also feature in several classes (Figure 9B). These

transporters may reduce the oral bioavailability of low-dose

drugs through efflux toward the GI tract, uptake into the liver,

or excretion in the kidneys. As efflux transporters are saturable,

the effect on efflux from the GI tract is commonly overcome by

the high local concentration obtained in the intestine on admin-

istration of moderate to high doses. For instance, saturation of

intestinal efflux has been suggested for erythronolides, HCV

NS3/4A protease, and HIV protease inhibitors (Bergström

et al., 2009; Padovan et al., 2012; Parker and Houston, 2008)

and may also occur for a number of other bRo5 drugs. It is little

surprise that 22 of 26 oral bRo5 drugs with high dosage are anti-

infectives, as high dosage is often administered to prevent devel-

opment of resistance. In addition, anti-infectives target proteins

not found in humans, leading to large therapeutic windows and

hence opportunities to administer high doses without toxicities.

As noted above, there are few oral CNS-penetrant com-

pounds in the data set. This is consistent with the conclusion

that Pgp and other efflux transporters are much more important

for CNS-targeted drugs as drug plasma concentrations rarely

reach saturation levels at the blood-brain barrier (Desai et al.,

2013; Hitchcock, 2012). Tumor, testis, placenta, and retina

also express high levels of efflux transporters, and drugs target-

ing these organs/tissues may also have a greater dependence

on efflux compared with drug targeting other organs/tissues.

Efflux may also be taken advantage of to reduce CNS side ef-

fects, as seen with some classes of drugs (Chen et al., 2003;

Hitchcock, 2012).
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While Pgp efflux has a limited impact on intestinal absorption,

expanding the role of bRo5 drugs to CNS targets will require

significant effort. Pgp has been extensively studied, and a num-

ber of in silico parameters are correlated to Pgp efflux, including

increasing MW, HBA, HBD, PSA, and the most basic pKa (Desai

et al., 2013; Hitchcock, 2012; Demel et al., 2008). Consequently,

strategies that influence theses parameters can be used to

overcome Pgp efflux at the blood-brain barrier and also in the in-

testine (Desai et al., 2013; Hitchcock, 2012). Another approach

illustrated in the current data set involves administration of phar-

macoenhancers, such as ritonavir and cobicistat. These act by

inhibition of CYP3A4 metabolism and Pgp-mediated efflux and

are administered to enhance the bioavailability of other anti-

HIV drugs. Coformulations of Pgp inhibitors with paclitaxel for

improved bioavailability are also in development. However, in

this context, it should be noted that saturation and inhibition of

transporters and metabolism can have disadvantages, leading

to potential drug-drug interactions complicating the therapy of

patients on multiple medications. Our knowledge of the impor-

tance of transporters in ADMET is constantly growing (DeGorter

et al., 2012; Giacomini et al., 2010; Sugano et al., 2010; Varma

et al., 2010), and computational models for investigating the

role and saturation of transporters have recently been disclosed

(Fenu et al., unpublished data), both of which should also facili-

tate drug discovery bRo5.

Active Uptake and Distribution Effects
Active uptake from the intestine has been suggested only for

montelukast among oral bRo5 drugs and clinical candidates

(Mougey et al., 2009). This reveals that active uptake is not a

common route to improved bioavailability for oral bRo5 com-

pounds and indicates that it may be difficult to capitalize on in

future drug discovery, a conclusion that is consistent with

several other reviews (DeGorter et al., 2012; Giacomini et al.,

2010; Sugano et al., 2010; Varma et al., 2010). Variable bioavail-

ability caused by genetic and environmental variation in trans-

porters is a noted disadvantage of reliance on active uptake.

Interestingly, the two prodrugs Brincidofovir and CMX-157 that

mimic the active absorption of lysophosphatidylcholine (Painter

and Hostetler, 2004) could represent amore generally applicable

method for introducing active uptake of drugs.

The current bRo5 data set reveals that improved distribution

to target organs through interaction with transporters is of

greater importance than active drug uptake from the intestine.

Erythronolides, leucomycins, and rifamycins accumulate in

lung fluid, likely due to Pgp-mediated efflux for erythronolides

and leucomycins (Brook, 1998; Rodvold et al., 2011; Togami

et al., 2012). Erythronolides and rifamycins have also been

noted to accumulate in phagocytic cells, thought to be due to

accumulation of the cationic species in lysosomes (Ahmad

et al., 2010; Bosnar et al., 2005; Mor et al., 1995; Wildfeuer

et al., 1996). HCV NS3/4A inhibitors are enriched in the liver,

which has been linked to uptake via OATP1B1 and a sodium-

dependent uptake mechanism (Kalliokoski and Niemi, 2009).

Transporters are found throughout the body, but given the prev-

alence of efflux transporters in the liver and kidneys, it is reason-

able to speculate that compounds with sites of action in these

organs may benefit from improved uptake by transporters

such as OATP and Pgp.
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Formulation Improvements
Improved formulations have been used for some of the drugs

and clinical candidates in the oral bRo5 data set to overcome

poor solubility resulting in low and variable bioavailability

(Figure 9B). Thus, formulation of cyclosporin A and tacrolimus

has been investigated extensively, resulting in major reductions

in the variability of human plasma levels (Fatouros et al., 2007; Ia-

cono and Bartley, 2002; Patel et al., 2012). Reformulation of the

azole anti-infective itraconazole with cyclodextrin raised the oral

bioavailability and reduced variability in humans; this was also

achieved for administration of posaconazole to monkeys. For

anacetrapib, the use of an optimized amorphous dispersion

gave improved bioavailability (DiNunzio et al., 2012; Geers

et al., 2011). A number of improved pharmacokinetic formula-

tions are currently on the market for bRo5 drugs such as cyclo-

sporin A (Neoral) and ritonavir (Norvir) employing lipid-based

formulations (O’Driscoll and Griffin, 2008). In addition to use

of pharmaceutical formulations, administration with or without

food has long been recognized to effect bioavailability; often

administration with food improves the solubility of a drug in the

intestine, thereby enhancing bioavailability. However, food may

also lead to competition with and/or upregulation of efflux trans-

porters and metabolizing enzymes, which alters bioavailability.

Similarly, the use of cyclodextrin formulations can cause unde-

sired side effects (Stella and He, 2008). It can, however, be ex-

pected that the use of tailor-made formulations to improve low

and/or variable bioavailability will become increasingly important

for future development of drugs in bRo5 space.

Risks with Compounds bRo5
Working in bRo5 space will most likely result in increased risks,

some of which have been mentioned above. Here we therefore

endeavor to summarize and discuss risks often touted in the

literature as being correlated to bRo5 properties. First, low sol-

ubility is correlated to increasing MW and cLogP, especially

for uncharged compounds (Lipinski, 2000; Meanwell, 2011).

While a number of compounds in the current oral bRo5 data

set have poor solubility, intramolecular hydrogen bonding and

formulation may compensate for this issue. In addition, natural

products as well as drugs and clinical candidates have been

found to have improved solubility if the proportion of saturated

carbons (Fsp3) and the number of chiral centers is increased,

i.e., they are made less flat (Lovering et al., 2009). Solubility

may therefore be one reason why de novo designed com-

pounds, which are commonly flatter than natural products and

peptidomimetics, are predominantly found within the extended

oral Ro5 space and less so in the oral bRo5 data set

(cf. Figure 2E). However, with increasing complexity, synthetic

tractability must also be considered, and systematic exploration

of complex structures represents a challenge for medicinal

chemistry in a drug discovery context. Poor permeability across

intestinal epithelial cells has been correlated to increasing MW

and polarity and to decreasing lipophilicity and reaches an opti-

mum for cLogP between 0 and 5 (Guimarães et al., 2012; John-

son et al., 2009; Meanwell, 2011; Waring, 2009; Yang et al.,

2012). The majority of bRo5 compounds in this analysis did

display low to moderate permeability in the Caco-2 cell assay,

but for the 28 drugs where human bioavailability and Caco-2

cell permeability were available, no correlation was found
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between permeability and oral bioavailability. Most likely this

finding is due to saturation of efflux transporters, as concentra-

tion-dependent Caco-2 cell permeability has been described for

a number of these bRo5 drugs. The lack of correlation between

permeability and oral bioavailability, in combination with the

noted variability in the Caco-2 cell assay between laboratories

(Artursson et al., 2012), indicates that prediction of oral bioavail-

ability based on epithelial cell permeability data for bRo5

compounds is currently poorly understood. Additionally, the

multitude of membrane transporter interactions reported for

bRo5 compounds might constitute a potential drug-drug inter-

action risk during the development of compounds for multidrug

therapies. Issues related to metabolism have also been

commonly associated with bRo5 compounds. A number of rela-

tionships between enzymes belonging to the CYP family and

in silico compound properties have been published in the litera-

ture; the primary concern for bRo5 space is inhibition of

CYP3A4, which is correlated to increasing MW and cLogP as

well as decreasing Fsp3 (Gleeson, 2008; Johnson et al., 2009;

Lovering, 2013; Meanwell, 2011). This may lead to issues with

clearance as well as drug-drug interactions. Toxicity is also cited

as a reason not to work in bRo5 space, predominantly because

of increasing cLogP being correlated to toxicity and promiscuity

(Hopkins et al., 2006; Leeson and Springthorpe, 2007; Mean-

well, 2011; Price et al., 2009). Studies, however, show that as

MW increases promiscuity decreases (Hopkins et al., 2006), in

line with the idea that higher MW compounds are more complex

and hence less likely to bind to multiple targets. Inhibition of the

hERG ion channel is also correlated with increasing cLogP and

with a larger value for the fraction of the molecular framework

(number of atoms in the molecular framework divided by the to-

tal number of atoms in the molecule) (Yang et al., 2012). Hence,

small lipophilic molecules are more likely to have off-target ef-

fects resulting in toxicity than larger complex ones. In summary,

increased lipophilicity appears to be associated with greater

risks than high MW in bRo5 chemical space. However, as mo-

lecular complexity usually increases for large compounds,

higher lipophilicity may be more acceptable in bRo5 space

than within Ro5 space; the finding that oral druggable space

bRo5 may extend up to a cLogP of 10 provides some support

for this speculation (cf. Figure 2A).

Conclusions and Future Oulook
Failure of clinical candidates because of lack of efficacy in phase

II trials constitutes one of the current major problems in drug dis-

covery and has been proposed to originate from poor target

selection (Bunnage, 2011). In part, this might be due to the fact

that effective drugs already exist for a number of diseases,

necessitating expansion into new and higher risk therapeutic

areas (Scannell et al., 2012). Lack of success in efforts to develop

ligands for target classes, such as peptidic GPCRs, nuclear hor-

mone receptors and proteases but also for protein-protein

interactions may also contribute to these difficulties. We suggest

that a too strict reliance on the Ro5 has led to reduced explora-

tion of bRo5 space and subsequently to poor success in efforts

to find ligands for such difficult targets. The observation that

ligands for difficult targets have higher MW and greater lipophi-

licity than highly explored classes (Morphy, 2006; Paolini et al.,

2006; Vieth and Sutherland, 2006) lends support to this hypoth-
1134 Chemistry & Biology 21, September 18, 2014 ª2014 Elsevier Lt
esis. As discussed herein, the existence of a significant number

of orally bioavailable drugs and clinical candidates in this space

further points to the opportunities bRo5. Moreover, the low-QED

scores found for compounds bRo5 in our data set indicates that

a change in mindset will be required for drug discovery in this

chemical space.

Discovery of oral drugs bRo5 remains largely uncharted terri-

tory and can be expected to be associated with increased

risks. Problems with solubility, cell permeability, metabolism,

and toxicity have all been correlated to increases in physico-

chemical properties. However, both low solubility and issues

with toxicity have been observed to decrease with higher Fsp3,

i.e., increasing molecular complexity, indicating that these prob-

lems may be less severe than otherwise expected. Synthetic

chemistry and purification challenges associated with iterative

and exhaustive modifications of complex molecules must also

be considered, especially for natural product leads. Recent

and future advances in synthetic methods may reduce this

concern (Marsault and Peterson, 2011). Intestinal efflux can

also be an issue, which can be overcome by appropriate dosage

and formulations. However, as increased dosage will have little

impact on CNS-targeted drugs, further strategies to overcome

efflux are required (Hitchcock, 2012). Some drugs, however,

benefit from efflux transporters, enabling increased distribution

to specific organs such as the liver, kidneys, and lungs.

The current analysis of drugs and clinical candidates contrib-

utes insight on how bRo5 space could be explored in the future.

Hit finding strategies based on natural products, DOS, structure-

based methods, macrocycles, and peptides are of high interest

in order to provide starting points of sufficient diversity and

complexity for oral bRo5 drug discovery. Moreover, our ability

to design oral drugs bRo5may not be limited to medicinal chem-

istry starting from bRo5 leads. Simply adjusting guidelines and

metrics such as QED scores and LE, could allow projects origi-

nating from high-throughput screening and fragment-based

lead discovery to progress into this space. Optimization, using

structure-based designwhen possible, and based on our current

understanding of ADMET bRo5, can then provide oral clinical

candidates, even though this may be more challenging than

in Ro5 space. Our analysis indicates that the number of HBD

may increase only slightly on moving into bRo5 space, while a

larger lipophilicity window appears to be available for optimiza-

tion, and significant expansions in MW, PSA, and HBA are

allowed. Use of intramolecular hydrogen bonding and macro-

cyclization to tune compound properties, or use of alternate

formulations and moderate to high dosage to improve oral

bioavailability are tactics that appear to be of particular value

for drug discovery in this space.
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Demel, M.A., Schwaha, R., Krämer, O., Ettmayer, P., Haaksma, E.E., and
Ecker, G.F. (2008). In silico prediction of substrate properties for ABC-multi-
drug transporters. Expert Opin. Drug Metab. Toxicol. 4, 1167–1180.

Desai, P.V., Raub, T.J., and Blanco, M.J. (2012). How hydrogen bonds impact
P-glycoprotein transport and permeability. Bioorg. Med. Chem. Lett. 22,
6540–6548.

Desai, P.V., Sawada, G.A., Watson, I.A., and Raub, T.J. (2013). Integration of
in silico and in vitro tools for scaffold optimization during drug discovery: pre-
dicting P-glycoprotein efflux. Mol. Pharm. 10, 1249–1261.

DiNunzio, J.C., Zhang, F., Martin, C., and McGinity, J.W. (2012). Melt extru-
sion. In Formulating Poorly Water Soluble Drugs, R.O. Williams, III, A.B. Watts,
and D.A. Miller, eds. (New York: Springer), pp. 311–362.

Driggers, E.M., Hale, S.P., Lee, J., and Terrett, N.K. (2008). The exploration of
macrocycles for drug discovery—an underexploited structural class. Nat. Rev.
Drug Discov. 7, 608–624.

Duan, J., Yong, C.-L., Garneau, M., Amad, M., Bolger, G., De Marte, J., Mont-
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