Constructing the Polynomial Identities and Central Identities of Degree <9 of 3×3 Matrices

Siamack Bondari
Department of Mathematics
Iowa State University
Ames, Iowa 50011

Submitted by Bryan Cain

Abstract

We present an algorithm for computing an independent generating set for the multilinear identities and the multilinear central identities of the $m \times m$ matrices over a field ϕ of characteristic zero or a large enough prime. Then we use it to construct all the multilinear identities and all the multilinear central identities of degree <9 for $M_{3}(\phi)$. © Elsevier Science Inc., 1997

1. INTRODUCTION

Let R be an algebra over a field ϕ, and $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set of symbols. A polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ from the free associative algebra $\phi\langle X\rangle$ is said to be a polynomial identity of R if $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$. It is called a polynomial central identity of R if f is not an identity and $f\left(x_{1}, \ldots, x_{n}\right) \in C(R)$ for all $x_{1}, \ldots, x_{n} \in R$, where $C(R)$ denotes the center of R. We usually just say simply identity and central identity. The degree of each is the degree of the polynomial.

Let $M_{n}(\phi)$ be the ring of $n \times n$ matrices with entries from a field ϕ, and $\operatorname{Sym}(n)$ be the symmetric group of n objects. Define $\left[x_{1}, x_{2}, \ldots, x_{2 n}\right]_{\pi}:=$ $x_{(1) \pi^{-1}} x_{(2) \pi^{-1}} \cdots x_{(2 n) \pi^{-1}}$, where $(i) \pi^{-1}$ is π^{-1} with its argument i written on the left. In a 1951 paper, Amitsur and Levitzki [1] show that $S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right):=\sum_{\pi \in \operatorname{Sym}(2 n)} \operatorname{sgn}(\pi)\left[x_{1}, x_{2}, \ldots, x_{2 n}\right]_{\pi}$ is an identity of $M_{n}(\phi)$. This identity is known as the standard identity of $n \times n$ matrices.

In 1956 Kaplansky [9] asked whether there exists a nonzero central identity for $M_{n}(\phi)$. Obviously, the constant polynomial or the constant polynomial added to the standard identity qualifies. Moreover, the well-known polynomial $(x y-y x)^{2}$ solves the problem for $n=2$.

To avoid the above-mentioned trivial cases, in 1970 Kaplansky [10] rephrased the problem and asked whether there exists a homogeneous multilinear central identity of $M_{n}(\phi)$ of positive degree for $n \geqslant 3$. The same problem was also brought up in the 10th All-Union Algebra Colloquium, which took place in September 1969 in Novosibirsk, Russia. In 1972, Formanek [8] proved the existence of a central identity for each algebra $M_{n}(\phi)$. In the same year, Razmyslov [12] found a finite generating set for the identities of $M_{2}(\phi)$, where ϕ has characteristic zero. In 1973, Razmyslov [13] constructed a new central identity; its degree was $3 n^{2}-1$. In the same year, U. Leron [11] proved that every multilinear identity of $M_{n}(\phi)$ with degree $2 n+1$ is a "consequence" of the standard identity $S_{2 n}$.

In 1983, V. Drensky and A. Kasparian [6] showed that all the identities of degree <9 of 3×3 matrices are "consequences" of the standard identity of degree 6. Furthermore, they found a central identity of degree 8 and showed that there are no central identities of lower degrees (see [5]).

Recently, V. Drensky and G. Piacentini [7] found a central identity of degree 13 for $M_{4}(\phi)$ with ϕ of characteristic zero which agrees with the conjecture [7, p. 1] that the minimal degree of a central identity of $M_{n}(\phi)$ is $\left(n^{2}+3 n-2\right) / 2$.

Our procedure produces an independent generating set that implies all the identities and all the central identities of degree $n<9$ of $M_{3}(\phi)$, where ϕ is a field of characteristic zero or $p>n$.

The method uses group representation theory and relies heavily on computational techniques. We first tested it by finding a set of independent multilinear identities for $M_{2}(Q)$, with Q the rationals, and then comparing the identities with Razmyslov's identities [12] (also see [4]).

Our results for 3×3 matrices are consistent with the literature and yield a new central identity in degree 8 .

2. BASIC DEFINITIONS AND CONCEPTS

Let $A=\left\{f_{1}, \ldots, f_{k}\right\}$ be a nonempty set of polynomials of $\phi\langle X\rangle$ with f_{i} involving n_{i} variables. The so-called T-ideal generated by A is the ideal of $\phi\langle X\rangle$ generated by $B=\left\{f_{i}\left(y_{1}, \ldots, y_{n_{i}}\right) \mid i=1, \ldots, k\right.$ and $y_{j} \in \phi\langle X\rangle$ for $\left.j=1, \ldots, n_{i}\right\}$. The elements in the T-ideal generated by A are called the identities implied by A. An identity of a ϕ-algebra R is said to be minimal if
it is not implied by a set of identities of R of lower degrees. Two identities f and g are said to be equivalent if f implies g and vice versa. Two central identities f and g of the algebra R are called equivalent if f or g, together with the polynomial identities of R, generate the same T-ideal.

Since concepts related to representations theory of the symmetric group of n objects, $\operatorname{Sym}(n)$, play a role in our procedure, we need some definitions due to Young and his students (also see [2]).

The group ring or the group algebra over the symmetric group $\operatorname{Sym}(n)$ consists of all sums of the form

$$
\begin{equation*}
a=\sum_{s \in \operatorname{Sym}(n)} \alpha(s) s \tag{1}
\end{equation*}
$$

with arbitrary coefficients $\alpha(s) \in \phi$. This group ring is denoted by O_{G}.
A frame of degree n consists of n boxes arranged in rows in such a way that the leftmost boxes are located one under another and $m_{1} \geqslant m_{2} \geqslant \cdots \geqslant$ m_{r}, where m_{i} denotes the length of the i th row for $i=1, \ldots, r$. We shall refer to such a frame by (m_{1}, \ldots, m_{r}). Suppose two frames F and F^{\prime} of the same degree are respectively given by $\left(m_{1}, \ldots, m_{r}\right)$ and ($m_{1}^{\prime}, \ldots, m_{k}^{\prime}$). Then we write $F>F^{\prime}$ if the first nonzero $m_{i}-m_{i}^{\prime}$ is positive. The frames of a given degree are always listed in decreasing order. Here are all the frames of degree 4:

A tableau of degree n is created by putting the numbers 1 to n into the n boxes of a frame. A standard tableau is a tableau in which the numbers are increasing in every row from left to right and in every column from top to bottom. We shall enumerate the standard tableaux of a given frame in the "systematic" or "dictionary" order T_{1}, \ldots, T_{f}. The "nonstandard" tableaux are assumed to be ordered in some arbitrary way T_{f+1}, \ldots, T_{n} : As an example, we list all the standard tableaux T_{1}, \ldots, T_{5} of the $(3,2)$ frame:

$[1][2][3]$	$[1][2][4]$	$[1][2][5]$	$[1][3][4]$,	$[1][3][5]$
$[4][5]$	$[3][5]$			

A permutation $\pi \in \operatorname{Sym}(n)$ applied to a tableau T is simply a renumbering of the contents of the boxes in T and is denoted by πT. For instance, if we apply the permutation ($\left.\begin{array}{lll}1 & 3 & 2\end{array}\right)$ to the tableau $[2][1][4][3][5]$, we get [1][3][4][2][5]. If T_{i} and T_{j} are two tableaux belonging to a fixed frame F, then the permutation that takes T_{j} to T_{i} is denoted by $S_{i j}$ or $S_{i, j}$.

Given a tableau T_{i}, set

$$
\begin{equation*}
\bar{e}_{i}:=\sum_{p q} \operatorname{sgn}(q) p q \in O_{G}, \tag{2}
\end{equation*}
$$

the sum being taken over all products $p q$ of permutations, where p is a horizontal and q is a vertical permutation for T_{i}. For instance, for the tableau

$$
T_{2}=\begin{aligned}
& {[1][3]} \\
& {[2][4]}
\end{aligned}
$$

we have

$$
\begin{aligned}
\bar{e}_{2}= & \left\{I+\left(\begin{array}{ll}
1 & 3
\end{array}\right)+\left(\begin{array}{ll}
2 & 4
\end{array}\right)+\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right)\right\} \\
& \times\left\{I-\left(\begin{array}{ll}
1 & 2
\end{array}\right)-\left(\begin{array}{ll}
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)\right\}
\end{aligned}
$$

Let $e_{i}:=(d / n!) \bar{e}_{i}$, where d is the dimension of the left ideal in O_{C} generated by \bar{e}_{i}. Sometimes we use a superscript to distinguish the $e_{i} \mathrm{~S}_{i j}$ belonging to the tableaux of different frames. For example, $e_{i}^{k} S_{i j}^{k}$ belongs to the k th frame. If we are working with the tableaux of one particular frame, we may omit the superscript.

It is known that e_{i} is an idempotent element of O_{C}. Furthermore, all the $e_{i} S_{i j}$ of the standard tableaux of all the frames of a given degree n are linearly independent, and we will show how to express the multilinear identities and the multilinear central identities in terms of these elements.

3. PROCEDURE

We give a procedure that finds all the multilinear identities and all the multilinear central identities of $M_{n}(\phi)$, where ϕ is of characteristic zero or a large enough prime. We thus find all the identities and all the central identities of degree <9 of $M_{3}(Q)$. In this section, " ϕ " denotes Q or Z_{p}. An identity or a central identity of degree n is called multilinear if it is of the form

$$
\begin{equation*}
\sum_{\pi \in \operatorname{Sym}(n)} \alpha_{\pi}\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{\pi} \quad \text { for some } \quad \alpha_{\pi} \in \phi \tag{3}
\end{equation*}
$$

This identity or central identity can be represented by

$$
\begin{equation*}
\sum_{\pi \in \operatorname{Sym}(n)} \alpha_{\pi} \pi \in O_{G} \tag{4}
\end{equation*}
$$

If $I\left(x_{1}, \ldots, x_{n}\right)$ is an identity, then $I \pi\left(x_{1}, \ldots, x_{n}\right):=I\left(x_{(1) \pi^{-1}}\right.$, $\left.\ldots, x_{(n) \pi^{-1}}\right)$ is an identity for any $\pi \in \operatorname{Sym}(n)$. Moreover, if $g=$ $\sum_{\pi \in \operatorname{Sym(n)}} \alpha_{\pi} \pi \in O_{G}$, then $\operatorname{Ig}\left(x_{1}, \ldots, x_{n}\right):=\sum_{\pi \in \operatorname{Sym}(n)} \alpha_{\pi} I \pi\left(x_{1}, \ldots, x_{n}\right)$ is also an identity. Similarly, if $I\left(x_{1}, \ldots, x_{n}\right)$ is a central identity, then $\operatorname{Ig}\left(x_{1}, \ldots, x_{n}\right)$ is a central identity or an actual identity.

We say that a finite set of multilinear identities and central identities $I_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, I_{k}\left(x_{1}, \ldots, x_{n}\right)$ is independent under substitution if for any choice of $g_{1}, \ldots, g_{k} \in O_{G}, I_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)+\cdots+I_{k} g_{k}\left(x_{1}, \ldots, x_{n}\right)=0$ implies that $I_{1} g_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=I_{k} g_{k}\left(x_{1}, \ldots, x_{n}\right)=0$. In the rest of the paper, independent means independent under substitution.

By the identities of a given frame, we mean all the multilinear identities of the form (4) which can be written as a linear combination of the $e_{i} S_{i j}$ of all the standard tableaux of that frame. The procedure described in this section is a general method of finding all the multilinear identities of a fixed frame. In Section 5, we will show that the identities found by our procedure form an independent generating set that implies all the multilinear identities of degree n.

Let F be a fixed frame of degree n with f standard tableaux T_{1}, \ldots, T_{f}. Define

$$
\begin{equation*}
E_{k}:=e_{k} S_{k 1}, \quad k=1, \ldots, f \tag{5}
\end{equation*}
$$

Notice that $e_{k} S_{k 1}=S_{k 1} e_{1}$ (see [3, p. 248]). A crucial point, which we prove later, is that every multilinear identity or multilinear central identity of a frame F may be expressed as a linear combination of E_{k} 's of that frame. If $g=\sum_{\pi \in \operatorname{Sym}(n)} \alpha_{\pi} \pi$, then by $\left[x_{1}, \ldots, x_{n}\right]_{g}$ we mean $\sum_{\pi \in \operatorname{Sym}(n)}$ $\alpha_{\pi}\left[x_{1}, \ldots, x_{n}\right]_{\pi}$. Then a multilinear identity of the given frame is of the form

$$
\begin{equation*}
I\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=1}^{f} \alpha_{k}\left[x_{1}, \ldots, x_{n}\right]_{E_{k}}=\sum_{k=1}^{f} \alpha_{k} E_{k} \tag{6}
\end{equation*}
$$

Thus we want to find coefficients $\alpha_{1}, \ldots, \alpha_{n} \in \phi$, not all zero, such that the following relation holds for any choice of matrices $M_{1}, \ldots, M_{n} \in M_{m}(\phi)$:

$$
\begin{equation*}
\sum_{k=1}^{f} \alpha_{k}\left[M_{1}, \ldots, M_{n}\right]_{E_{k}}=0_{m \times m} \tag{7}
\end{equation*}
$$

Our technique requires several choices of sets of matrices $\left\{M_{1}^{(1)}, \ldots, M_{n}^{(1)}\right\},\left\{M_{1}^{(2)}, \ldots, M_{n}^{(2)}\right\}, \ldots$. For brevity, we will refer to $\left[M_{1}^{(i)}, \ldots, M_{n}^{(i)}\right]_{E_{k}}$ by $h_{i k}$.

We note that (7) gives us a system of m^{2} equations, that is, one equation for each entry of the $m \times m$ matrix. Because of this, it is reasonable to consider the $m \times m$ matrices $h_{i k}$ as $m^{2} \times 1$ column vectors. Returning to (7), our problem simplifies to finding solutions $\left[\alpha_{1}, \ldots, \alpha_{f}\right]^{T}$ of

$$
\left[\begin{array}{ccc}
h_{11} & \cdots & h_{1 f} \tag{8}\\
\vdots & & \vdots \\
h_{r 1} & \cdots & h_{r f}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{f}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

i.e., finding the nullspace of $\left(h_{i j}\right)$. Each row of the block matrix $\left(h_{i j}\right)$ represents m^{2} equations. It may be regarded as an $\left(m^{2} r\right) \times f$ matrix. The number r is the number of trials, and it ought to be chosen large enough to make sure that $\left(h_{i j}\right)$ reaches its maximum rank.

Below, we have given a more detailed outline of the procedure.
Step 1. Set $t=0$.
Step 2. Set $i=1$. Create in dictionary order all the standard tableaux T_{1}, \ldots, T_{f} of F_{t+1}.
Step 3. Create $E_{k}=e_{k} S_{k 1}$ for each $k=1, \ldots, f$.
Step 4. Create $n m \times m$ random matrices $M_{1}^{(i)}, \ldots, M_{n}^{(i)}$, each expressed as a column vector.
Step 5. Compute $h_{i 1}, \ldots, h_{i f}$. We need a program which multiplies the n random matrices in any order, i.e., a program which evaluates [$M_{(1) \pi^{-1}} \cdots$ $\left.M_{(n) \pi^{-1}}\right]$ for any $\pi \in \operatorname{Sym}(n)$.
Step 6. Find the row canonical form of the matrix ($h_{i j}$). The first time that the procedure is executed for a fixed frame, the matrix whose row canonical form is to be computed will be the same as the one that is found in step 5. The row canonical form is stored in some matrix. After that, every time that the procedure is executed, the new $h_{i 1}, \ldots, h_{i f}$ of step 5 are placed at the bottom of the stored matrix, and the row canonical form of the resulting matrix is computed.
Step 7. Augment i and return to step 4. Steps 4, 5, and 6 are repeated until we believe that the row canonical matrix of step 6 has reached its maximum rank (see step 8). The decision to go to step 8 is made after the rank is unchanged through several iterations. If we go to step 8 before reaching the maximum rank, we will discover it later.
Step 8. Find the nullspace of the final matrix. This will give us the set of all possible coefficients $\alpha_{1}, \ldots, \alpha_{f}$ of E_{1}, \ldots, E_{f}, which is an independent generating set of multilinear identities for the given frame.

Step 9. Augment t and go to step 2.
Step 10. Check all the potential identities found in step 8. It is sufficient to check an identity of degree n on all possible sets of $n m \times m$ matrix units, that is, for $\left(m^{2}\right)^{n}$ sets.

4. RESULTS FOR 3×3 MATRICES

Similarly we can obtain an independent generating set that implies all the multilinear central identities of 3×3 matrices. Computations show that all the identities of degree <9 of the 3×3 matrices are consequences of the standard identity $S_{6}\left(x_{1}, \ldots, x_{6}\right)$, as expected (see [6]). We do not include the identities of the frames which did not yield any central identities.

The multilinear central identities appear for the first time in degree 8. The first two multilinear central identities, which are given by (9) and (10), belong to the fourteenth frame F_{14}, which is $(3,3,1,1)$ or

Then

$$
\begin{align*}
I_{c 1}=[& -407 S_{11}-518 S_{21}-814 S_{41}+444 S_{61}+259 S_{71}-222 S_{81} \\
& -259 S_{91}+444 S_{10,1}+407 S_{11,1}+259 S_{12,1}+333 S_{13,1}-481 S_{14,1} \\
& -222 S_{15,1}+111 S_{16,1}+629 S_{17,1}+1110 S_{18,1}+37 S_{19,1} \\
& -999 S_{20,1}-555 S_{21,1}-148 S_{22,1}+370 S_{23,1}-518 S_{24,1}-259 S_{25,1} \\
& -814 S_{26,1}-592 S_{27,1}-481 S_{28,1}+259 S_{29,1}-148 S_{30,1} \\
& -296 S_{31,1}-185 S_{32,1}-481 S_{33,1}+185 S_{34,1}-629 S_{35,1}-148 S_{36,1} \\
& +407 S_{37,1}-1147 S_{38,1}-925 S_{39,1}+222 S_{40,1}-555 S_{41,1}+333 S_{42,1} \\
& +259 S_{43,1}-148 S_{44,1}-1073 S_{45,1}-185 S_{46,1}-666 S_{47,1} \\
& -962 S_{48,1}+333 S_{49,1}-444 S_{50,1}+777 S_{51,1}+518 S_{52,1}-296 S_{53,1} \\
& \left.-925 S_{54,1}-370 S_{55,1}\right] e_{1}, \tag{9}
\end{align*}
$$

$$
\begin{align*}
I_{c 2}=[& -124 S_{11}-31 S_{21}-125 S_{31}+67 S_{41}-85 S_{51}-262 S_{61}-232 S_{71} \\
& +31 S_{81}-23 S_{91}-172 S_{10,1}-246 S_{11,1}-222 S_{12,1}-149 S_{13,1} \\
& -42 S_{14,1}+31 S_{15,1}+87 S_{16,1}-222 S_{17,1}-355 S_{18,1}-51 S_{19,1} \\
& +272 S_{20,1}+255 S_{21,1}-11 S_{22,1}-145 S_{23,1}+94 S_{24,1}+12 S_{25,1} \\
& +152 S_{26,1}+101 S_{27,1}+13 S_{28,1}-67 S_{29,1}-136 S_{30,1}+73 S_{31,1} \\
& +25 S_{32,1}+13 S_{33,1}-95 S_{34,1}+17 S_{35,1}-31 S_{36,1}-46 S_{37,1} \\
& +196 S_{38,1}+160 S_{39,1}-91 S_{40,1}-40 S_{41,1}-104 S_{42,1}-112 S_{43,1} \\
& -11 S_{44,1}+209 S_{45,1}-22 S_{47,1}+111 S_{48,1}-164 S_{49,1}+12 S_{50,1} \\
& \left.-241 S_{51,1}-209 S_{52,1}-22 S_{53,1}+220 S_{54,1}-185 S_{56,1}\right] e_{1} . \tag{10}
\end{align*}
$$

The multilinear central identity (11) and the multilinear identities (12) and (13) belong to the frame F_{15}, i.e., the frame

Then

$$
\begin{align*}
I_{c 3}= & {\left[322 S_{11}+340 S_{21}+438 S_{31}+612 S_{41}+169 S_{51}-380 S_{61}-16 S_{71}\right.} \\
& -3 S_{81}+426 S_{91}-17 S_{10,1}-229 S_{11,1}+6 S_{12,1}+293 S_{13,1}+66 S_{14,1} \\
& +191 S_{15,1}+49 S_{16,1}-140 S_{17,1}+339 S_{18,1}-122 S_{19,1}+211 S_{20,1} \\
& +11 S_{21,1}+143 S_{22,1}+277 S_{23,1}+440 S_{24,1}+55 S_{25,1}-669 S_{26,1} \\
& -252 S_{27,1}-84 S_{28,1}+351 S_{29,1}+182 S_{30,1}-37 S_{31,1}-97 S_{32,1} \\
& -375 S_{33,1}-471 S_{34,1}-136 S_{35,1}+47 S_{36,1}+259 S_{37,1}-53 S_{38,1} \\
& -133 S_{39,1}+454 S_{40,1}-469 S_{41,1}+22 S_{42,1}+356 S_{43,1}+31 S_{44,1} \\
& -314 S_{45,1}-30 S_{46,1}+84 S_{47,1}+93 S_{48,1}+400 S_{49,1}+197 S_{50,1} \\
& -154 S_{51,1}-308 S_{52,1}+43 S_{53,1}-368 S_{54,1}+86 S_{56,1}-98 S_{57,1} \\
& +15 S_{58,1}+46 S_{59,1}+285 S_{60,1}+227 S_{61,1}+453 S_{62,1}+710 S_{63,1} \\
& \left.+119 S_{64,1}-410 S_{65,1}-238 S_{66,1}-43 S_{67,1}-634 S_{68,1}\right] e_{1}, \tag{11}
\end{align*}
$$

$$
\begin{align*}
& I_{1}=\left[-224 S_{11}-422 S_{21}+132 S_{31}-252 S_{41}+55 S_{51}-440 S_{61}-280 S_{71}\right. \\
& -201 S_{81}-24 S_{91}+13 S_{10,1}+29 S_{11,1}-246 S_{12,1}-313 S_{13,1} \\
& -60 S_{14,1}+143 S_{15,1}+223 S_{16,1}-20 S_{17,1}+249 S_{18,1}+52 S_{19,1} \\
& +115 S_{20,1}-37 S_{21,1}-49 S_{22,1}-215 S_{23,1}+194 S_{24,1}-77 S_{25,1} \\
& -219 S_{26,1}+72 S_{27,1}+96 S_{28,1}+81 S_{29,1}+188 S_{30,1}-67 S_{31,1} \\
& +17 S_{32,1}-15 S_{33,1}-75 S_{34,1}+50 S_{35.1}+107 S_{36,1}+37 S_{37,1} \\
& +301 S_{38,1}+413 S_{39,1}+34_{40,1}+203 S_{41,1}-74 S_{42,1}-88 S_{43,1} \\
& +43 S_{44,1}+40 S_{45,1}+42 S_{46,1}+120 S_{47,1}+291 S_{48,1}+304 S_{49,1} \\
& +329 S_{50,1}-76 S_{51,1}-314 S_{52,1}+91 S_{53,1}-14 S_{54,1}+54 S_{55,1} \\
& +290 S_{56,1}-14 S_{57,1}-75 S_{58,1}+76 S_{59,1}+87 S_{60,1}+71 S_{61,1} \\
& +3 S_{62,1}+32 S_{63,1}-37 S_{64,1}+34 S_{65,1}+20 S_{66,1}-91 S_{67,1} \\
& \left.-106 S_{68,1}-54 S_{69,1}\right] e_{1}, \\
& I_{2}=\left[-172 S_{11}-136 S_{21}-132 S_{31}-126 S_{41}-19 S_{51}-118 S_{61}-80 S_{71}\right. \\
& -69 S_{81}-30 S_{91}+77 S_{10,1}+43 S_{11,1}-24 S_{12,1}-47 S_{13,1}+6 S_{14,1} \\
& +37 S_{15,1}+29 S_{16,1}+56 S_{17,1}+75 S_{18,1}+38 S_{19,1}-25 S_{20,1} \\
& -53 S_{21,1}-95 S_{22,1}-73 S_{23,1}-68 S_{24,1}-49 S_{25,1}-51 S_{26,1} \\
& -18 S_{27,1}+12 S_{28,1}+27 S_{29,1}+46 S_{30,1}+31 S_{31,1}+S_{32,1}+15 S_{33,1} \\
& +21 S_{34,1}+22 S_{35,1}+19 S_{36,1}-S_{37,1}+59 S_{38,1}+91 S_{39,1} \\
& +56 S_{40,1}+85 S_{41,1}+2 S_{42,1}-56 S_{43,1}-7 S_{44,1}-4 S_{45,1}+12 S_{46,1} \\
& +42 S_{47,1}+33 S_{48,1}+56 S_{49,1}+13 S_{50,1}-14 S_{51,1}-28 S_{52,1}-S_{53,1} \\
& -4 S_{54,1}-2 S_{56,1}-4 S_{57,1}-33 S_{58,1}-40 S_{59,1}-33 S_{60,1}+S_{61,1} \\
& -57 S_{62,1}-68 S_{63,1}-53 S_{64,1}+2 S_{65,1}+52 S_{66,1}+S_{67,1}+16 S_{68,1} \\
& \left.-54 S_{70,1}\right] e_{1} . \tag{13}
\end{align*}
$$

The last independent central identity belongs to the frame F_{18}, or

> [][]
> [][]
> [][]
> [][]
and is given by

$$
\begin{gather*}
I_{c 4}=\left[4 S_{11}+21 S_{21}+12 S_{31}+21 S_{41}+7 S_{51}+21 S_{61}+8 S_{71}+21 S_{81}\right. \\
\left.+22 S_{91}+8 S_{10,1}+7 S_{11,1}+8 S_{12,1}+12 S_{13,1}+38 S_{14,1}\right] e_{1} \tag{14}
\end{gather*}
$$

As we shall prove in the next section, the multilinear identities and central identities of the frames of degree n found by our procedure form an independent generating set which implies all the multilinear central identities of degree n. Therefore, the central identities (9), (10), (11), and (14) together with the identities implied by S_{6} found by our procedure form an independent generating set which implies all the multilinear central identities of degree 8.

5. PROOFS

In this section, we will prove that the identities of degree n computed by our procedure form an independent generating set for all the multilinear identities of degree n. Similar proofs can be used to show that the identities and the central identities of degree n computed by our procedure form an independent generating set for all the multilinear identities and all the multilinear central identities of degree n. Furthermore, through complete linearization one can prove that every identity of degree n of $M_{m}(\phi)$ is implied by a set of multilinear identities of degrees $\leqslant n$, where ϕ has characteristic zero or $p>n$ [15, pp. 14-17]. Thus we only need to state the proofs for multilinear identities. In the rest of this section, an identity means a degree n identity of $M_{m}(\phi)$. Since we work only with multilinear identities of degree n, for brevity we shall refer to an identity $I\left(x_{1}, \ldots, x_{n}\right)$ by I.

The following theorem is an important result in group representation theory which implies that the product of the $e_{i} S_{i j}$ of different frames is zero. For a proof see [14].

Theorem 1. Let ϕ be a field of characteristic zero or $>n$. Then the $e_{i} S_{i j}$ of the frames of degree n form a basis for the group ring O_{G}. Furthermore, we have $O_{G} \cong F^{1} \oplus \cdots \oplus F^{k}$, where k is the number of frames of degree n, and F^{λ} is the subring generated by the $e_{i}^{\lambda} S_{i j}^{\lambda}$.

Suppose the frame associated with F^{λ} has f standard tableaux. Associate with $A=\left(\alpha_{i j}\right) \in M_{m}(\phi)$ the element $\bar{A}:=\sum_{i=1, j=1}^{f, f} \alpha_{i j} e_{i} S_{i j} \in F^{\lambda}$. Then, using $*$ for multiplication in O_{G}, Clifton [3, p. 249, line 4] tells us

$$
\begin{equation*}
\bar{A} * \bar{B}=\overline{A\left(\varepsilon_{i j}\right) B}, \tag{15}
\end{equation*}
$$

where the numbers $\varepsilon_{i j}$ for $i, j=1,2, \ldots, f$ are defined as follows [3, p. 248]:

$$
\varepsilon_{i j}:= \begin{cases}\operatorname{sgn}(q) & \text { if } \quad S_{j i}=q p\left(\text { for } T_{i}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Let $\left(\varepsilon_{i j}\right)=\varepsilon$. It is easy to verify that ε is an upper triangular matrix with l's on the diagonal; hence invertible. Note that $\operatorname{Ig}\left(x_{1}, \ldots, x_{n}\right)=$ $(I * g)\left(x_{1}, \ldots, x_{n}\right)$.

Lemma 2. If $I=\sum_{i=1, j=1}^{f, f} \alpha_{i j} e_{i} S_{i j}$ is an identity of the frame F, then so is $I_{j}=\sum_{i=1}^{f} \alpha_{i j} e_{i} S_{i j}$ for each $j=1, \ldots, f$.

Proof. Let $I=\bar{A}$, and let $E_{i j}$ be the matrix with 1 in position $i j$ and zeros elsewhere. Then

$$
\sum_{i=1}^{f} \alpha_{i j} e_{i} S_{i j}=\overline{A E_{j j}}=\overline{A \varepsilon \varepsilon^{-1} E_{j j}}=\bar{A} * \overline{\varepsilon^{-1} E_{j j}}
$$

is also an identity.
Similarly,
Lemma 3. If $I_{l}=\Sigma_{i=1}^{f} \alpha_{i} e_{i} S_{i l}$ is an identity of the frame F, then so is $I_{m}=\sum_{i=1}^{f} \alpha_{i} e_{i} S_{i m}$ for each $m=1, \ldots, f$.

Theorem 4. If I is an identity of the frame F, then for some $g_{m} \in O_{G}$, we have $I=\sum_{m=1}^{f} L_{m} * g_{m}$, where each L_{m} is an identity of the form $\sum_{i=1}^{f} \beta_{i 1} e_{i} S_{i 1}$ for some $\beta_{11}, \ldots, \beta_{f 1} \in \phi$.

Sketch of a proof. By Lemma 2, each column of $I=\overline{\left(\alpha_{i j}\right)}$ is an identity of the frame F. Then by Lemma 3, the location of each individual column is immaterial. So we can represent each of them by putting the nonzero column first. In other words, I is equivalent to the identities represented by the matrices $\left(\alpha_{r s}\right) E_{j j}$ for $j=1, \ldots, f$, which in turn are equivalent to the identities represented by the matrices $\left(\alpha_{r s}\right) E_{j 1}$ for $j=1, \ldots, f$.

Hence every identity of the frame F is implied by the set of all the identities of the form $\sum_{i=1}^{f} \alpha_{i 1} e_{i} S_{i 1}$. Thus the identities computed by our procedure imply all the identities of the given frame. The following theorem shows that every multilinear identity is implied by the set of all the identities of all of the frames.

Theorem 5. Let I be a multilinear identity of degree n, and k be the number of frames of degree n. Then $I=I_{1}+\cdots+I_{k}$, where I_{m} is an identity of the frame F_{m} for each $m=1, \ldots, k$.

Proof. By Theorem 1, $I=\sum_{m=1}^{k} I_{m}$, where

$$
I_{m}=\sum_{i=1, j=1}^{f_{m}, f_{m}} \alpha_{i j}^{m} e_{i}^{m} S_{i j}^{m} \quad \text { for some } \quad \alpha_{i j}^{m} \in \phi
$$

We need to show that each I_{m} is an identity. Since I is an identity, then so is $I * g$ for any $g \in O_{G}$. In particular, let $g=\overline{\varepsilon_{-}^{-1}}$, where $\varepsilon=\left(\varepsilon_{i j}\right)$ for the frame F_{m}. Also let A_{m} be the matrix such that $\bar{A}_{m}=I_{m}$, and let the identity $I * g$ be represented by $\left(\overline{A_{1}}+\cdots+\overline{A_{k}}\right) * \overline{\varepsilon^{-1}}$. Then

$$
\begin{aligned}
I * g & =\overline{A_{m}} * \overline{\varepsilon^{-1}} \\
& =\overline{A_{m} \varepsilon \varepsilon^{-1}} \\
& =\bar{A}_{m} .
\end{aligned}
$$

Therefore, I_{m} is also an identity for each $m=1, \ldots, k$.
Next, we will prove that the independent identities for a frame F_{λ} found by our procedure form an independent generating set for all of the identities of that frame.

Lemma 6. A set I_{1}, \ldots, I_{τ} of linearly independent identities of the form $\sum_{i=1}^{f_{\lambda}} \alpha_{i 1} e_{i}^{\lambda} S_{i 1}^{\lambda}$ for a given frame F_{λ} is also independent under substitution.

Proof. Let $I_{m}=\bar{A}_{m}$, where

$$
A_{m}=\left[\begin{array}{cccc}
\alpha_{11}^{m} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{f_{\lambda} 1}^{m} & 0 & \cdots & 0
\end{array}\right] \quad \text { for } \quad m=1, \ldots, \tau
$$

If I_{1}, \ldots, I_{τ} are not independent under substitution, then there exist group ring elements $g_{1}, \ldots, g_{\tau} \in O_{G}$ such that $I_{m} * g_{m} \neq 0$ for some m and

$$
I_{1} * g_{1}+\cdots+I_{\tau} * g_{\tau}=0
$$

Since $O_{G} \cong F^{1} \oplus \cdots \oplus F^{k}$, each $g_{m}=\left(g_{m}\right)_{1}+\cdots+\left(g_{m}\right)_{k}$ for some $\left(g_{m}\right)_{i}$ $\in F^{i}$, and each

$$
I_{m} * g_{m}=I_{m} *\left(g_{m}\right)_{1}+\cdots+I_{m} *\left(g_{m}\right)_{k}
$$

Since the $e_{i} S_{i j}$ of different frames annihilate one another, we get

$$
I_{m} * g_{m}=I_{m} *\left(g_{m}\right)_{\lambda} \quad \text { for } \quad m=1, \ldots, \tau
$$

Hence

$$
I_{1} *\left(g_{1}\right)_{\lambda}+\cdots+I_{\tau} *\left(g_{\tau}\right)_{\lambda}=0
$$

Let $\left(g_{m}\right)_{\lambda}=\overline{\left(G_{m}\right)_{\lambda}}$, and let $\varepsilon\left(G_{m}\right)_{\lambda}$ be represented by the following matrix, where ε is the ($\varepsilon_{i j}$) matrix for the frame F_{λ} :

$$
\varepsilon\left(G_{m}\right)_{\lambda}=\left[\begin{array}{ccc}
\beta_{11}^{m} & \cdots & \beta_{1 f_{\lambda}}^{m} \\
\vdots & \ddots & \vdots \\
\beta_{f_{\lambda} 1}^{m} & \cdots & \beta_{f_{\lambda} f_{\lambda}}^{m}
\end{array}\right] \quad \text { for } \quad m=1, \ldots, \tau
$$

Then

$$
\begin{aligned}
I_{m} * g_{m} & =I_{m} *\left(g_{m}\right)_{\lambda} \\
& =\overline{A_{m}} * \overline{\left(G_{m}\right)_{\lambda}} \\
& =\overline{A_{m} \varepsilon\left(G_{m}\right)_{\lambda}},
\end{aligned}
$$

and

$$
A_{m} \varepsilon\left(G_{m}\right)_{\lambda}=\left[\begin{array}{ccc}
\beta_{11}^{m} \alpha_{11}^{m} & \cdots & \beta_{1 f_{\lambda}}^{m} \alpha_{11}^{m} \\
\vdots & \ddots & \vdots \\
\beta_{11}^{m} \alpha_{f_{\lambda} 1}^{m} & \cdots & \beta_{1 f_{\lambda}}^{m} \alpha_{f_{\lambda} 1}^{m}
\end{array}\right]
$$

We have assumed that $I_{m} * g_{m} \neq 0$ for some m; so let column l of $A_{m} \varepsilon\left(G_{m}\right)_{\lambda}$ be nonzero. Then $\beta_{1 l}^{m} \neq 0$, and

$$
\begin{aligned}
\sum_{m=1}^{\tau} \overline{A_{m} \varepsilon\left(G_{m}\right)_{\lambda} E_{l 1}} & =\sum_{m=1}^{\tau} \overline{A_{m} \varepsilon\left(G_{m}\right)_{\lambda}} * \overline{\varepsilon^{-1} E_{l 1}} \\
& =\left(\sum_{m=1}^{\tau} I_{m} * g_{m}\right) * \overline{\varepsilon^{-1} E_{l 1}}=0
\end{aligned}
$$

since $\sum_{m=1}^{r} I_{m} * g_{m}=0$. But

$$
\begin{aligned}
A_{m} \varepsilon\left(G_{m}\right)_{\lambda} E_{l 1} & =\left[\begin{array}{cccc}
\beta_{11}^{m} \alpha_{11}^{m} & \cdots & \beta_{1 f_{\lambda}}^{m} \alpha_{11}^{m} \\
\vdots & \ddots & \vdots \\
\beta_{11}^{m} \alpha_{f_{\lambda} 1}^{m} & \cdots & \beta_{1 f_{\lambda}}^{m} \alpha_{f_{\lambda} 1}^{m}
\end{array}\right] E_{l 1} \\
& =\left[\begin{array}{cccc}
\beta_{1 l}^{m} \alpha_{11}^{m} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{1 l}^{m} \alpha_{f_{\lambda} 1}^{m} & 0 & \cdots & 0
\end{array}\right] \\
& =\beta_{1 l}^{m} A_{m}
\end{aligned}
$$

Therefore, we have

$$
\beta_{1 l}^{1} I_{1}+\cdots+\beta_{1 l}^{\tau} I_{\tau}=0
$$

which implies that I_{1}, \ldots, I_{τ} are linearly dependent, a contradiction.
Now, we need to show that all of the identities of all of the frames given by the procedure form an independent generating set for all the multilinear identities of degree n.

Theorem 7. Let each H_{λ} be a set of linearly independent identities of the form $\sum_{i=1}^{f_{\lambda}} \alpha_{i 1}^{\lambda} e_{i}^{\lambda} S_{i 1}^{\lambda}$ for each $\lambda=1, \ldots, k$, where k is the number of the frames of degree n. Then the set $\cup_{\lambda=1}^{k} H_{\lambda}$ is independent under substitution.

Proof. Let $I_{1}^{\lambda}, \ldots, I_{\tau_{\lambda}}^{\lambda}$ be the identities of the set H_{λ}. Assume there exist nonzero elements g_{m}^{λ} of the group ring such that

$$
\sum_{\lambda=1}^{k} \sum_{m=1}^{\tau_{\lambda}} I_{m}^{\lambda} * g_{m}^{\lambda}=0
$$

The linear independence of all of the $e_{i} S_{i j}$'s of all of the frames implies that

$$
\sum_{m=1}^{\tau_{\lambda}} I_{m}^{\lambda} * g_{m}^{\lambda}=0 \quad \text { for } \quad \lambda=1, \ldots, k
$$

In other words, the linearly independent identities of each set H_{λ} are not independent under substitution, which contradicts Lemma 6.

We now describe step 10, checking the identities. Suppose that $I\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{f} \alpha_{i} e_{i} S_{i 1}$ is a potential identity of degree n of a frame F_{λ}. To verify that I is an identity, it suffices to show that $I\left(x_{1}, \ldots, x_{n}\right)=0$ for any choice of x_{1}, \ldots, x_{n} of $\left\{E_{i j}\right\}$.

There are $\left(m^{2}\right)^{n}$ choices to check. This checking was done in the following way. We ordered the matrix units $\left\{E_{i j}\right\}$ in some way. For each choice with $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$, we wanted to check for all permutations π that $I \pi\left(x_{1}, \ldots, x_{n}\right)=0$. Normally each choice would require checking $n!$ arrangements of these arguments.

In the matrix representation of I, only the first column of I is nonzero. For $j=1, \ldots, f$ set $I_{j}=\sum_{i=1}^{f} \alpha_{i} e_{i} S_{i j}$, which has the nonzero column moved to the j th column. We checked that $I_{j}\left(x_{1}, \ldots, x_{n}\right)=0$ for $j=1, \ldots, f$. Instead of checking one polynomial expression n ! times, we checked f polynomial expressions one time. This suffices, since by representations theory, $I \pi\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{f} \beta(\pi, j) I_{j}$ for some coefficients $\beta(\pi, j)$.

We can check whether an expression I is a central identity as well. We only need to check that $I_{j}\left(x_{1}, \ldots, x_{n}\right)$ is in the center when $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant$ x_{n} and $j=1, \ldots, f$.

If we tried to check an identity $I\left(x_{1}, \ldots, x_{8}\right)$ of F_{15} for the 3×3 matrices directly, we would have to check $9^{8}=43,046,721$ substitutions. Using the method explained above, there are 12,870 arrangements where $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{8}$ and $f=70$, which gives $(70)(12,870)=900,900$ substitutions which have to be checked.

6. REMARKS

Our further computations showed that the central identity of degree 8 found by V. Drensky and A. Kasparian [5] gives a central identity in F_{14}, a central identity in F_{18}, an identity in each of the frames $F_{16}, F_{19}, F_{21}, F_{22}$, and two identities in F_{20}. The central identity in F_{14} is a consequence of the central identities (9) and (10), while the central identity in F_{18} is the same as the central identity (14), and all of the identities are consequences of the standard identity of degree 6 . Therefore, the central identity (11) which belongs to the frame F_{15} is not a consequence of the one found by Drensky and Kasparian.

The procedure was originally designed to find an independent generating set for all the multilinear identities of $M_{3}(Q)$. But one may encounter roundoff error or some type of numerical problem when the degree $n>7$. However, since the procedure is valid for any field Z_{p} where p is a large enough prime, one may execute it for several primes. Once all the multilinear identities of several $M_{3}\left(Z_{p}\right)$'s are known, one can find all the multilinear identities of $M_{3}(Q)$ among them.

I would like to express my sincere gratitude to Dr. Irvin Hentzel for his assistance and guidance in the preparation of this paper.

The computations were done on a DEC station 5000 / 133 of the Vincent network at Iowa State University.

REFERENCES

1 S. A. Amitsur and J. Levitzki, Remarks on minimal identities for algebras, Proc. Amer. Math. Soc. 2:320-327 (1951).
2 H. Boerner, Representation of Groups with Special Considerations for the Needs of Modern Physics, North-Holland, Amsterdam, 1963.
3 J . Clifton, A simplification of the computation of the natural representation of the symmetric group, Proc. Amer. Math. Soc. 83:248-250 (1981).
4 V. Drensky, A minimal basis of identities for a second-order matrix algebra over a field of characteristic 0 (in Russian), Algebra i Logika 20(3):282-290 (1981); transl., Algebra and Logic 20:188-194 (1981).
5 V. Drensky and A. Kasparian, A new central polynomial for 3×3 matrices, Comm. Algebra 13(3):745-752 (1985).
6 V. Drensky and A. Kasparian, Polynomial identities of eight degree for 3×3 matrices, Annuaire Univ. Sofia 77:175-194 (1983).
7 V. Drensky and G. M. Piacentini, A central polynomial of low degree for 4×4 matrices, J. Algebra 168:469-478 (1994).
8 E. Formanek, Central polynomials for matrix rings, J. Algebra 23:129-132 (1972).

9 I. Kaplansky, Problems in the Theory of Rings, Nat. Acad. of Sci. Nat. Res. Counc. Publ. 502, 1957.
10 I. Kaplansky, Problems in the theory of rings revisited, Amer. Math. Monthly 77:445-454 (1970).
11 U. Leron, Multilinear identities of the matrix ring, Trans. Amer. Math. Soc. 183:175-202 (1973).
12 Yu. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0 (in Russian), Algebra i Logika 12:83-113 (1973); transl., Algebra and Logic 12:47-63 (1973).
13 Yu. Razmyslov, On the Kaplansky problem (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 37:483-501 (1973); transl., Math. USSR Izv. 7:479-496 (1973).
14 D. Rutherford, Substitutional Analysis, Edinburgh U.P., Edinburgh, 1948.
15 I. P. Shestakov, A. I. Shirshov, A. M. Slin'ko, and K. A. Zhevlakov, Rings That Are Nearly Associative, Academic, New York, 1982.

