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ABSTRACT 

We present an algorithm for computing an independent generating set for the 
multilinear identifies and the multilinear central identities of the m × m matrices 
over a field ~b of characteristic zero or a large enough prime. Then we use it to 
construct all the multilinear identifies and all the multilinear central identities of 
degree < 9 for Ma(~b). © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

Let  R be  an a lgebra  over a field ~b, and X = {x 1, x 2 . . . .  } be  a countable  
set o f  symbols. A polynomial  f ( x  1 . . . . .  x n) from the free associative a lgebra  
~b (X)  is said to be  a polynomial identity of  R i f f ( x  1 . . . . .  x n) = 0 for all 
x 1 . . . . .  x ,  ~ R. It  is cal led a polynomial central identity of  R if  f is not  an 
ident i ty  and f ( x  1 . . . . .  x , )  ~ C(R)  for all x 1 . . . . .  x ,  ~ R, where  C(R)  de- 
notes the  cen te r  of  R. W e  usually just  say simply identity and central 
identity. The degree of  each is the  degree  of  the  polynomial .  

Let Mn(~)  be the r ing o f  n × n matr ices  with entr ies from a field ~b, and 
Sym(n)  be  the  symmetr ic  group of  n objects.  Def ine  [x 1, x 2 . . . . .  x2,]  ~ .'= 
x~l)~-lx(2)~-~ "" x(2,)~-~, where  (i)Tr -1 is rr - I  with its a rgument  i wri t ten 
on the left. In  a 1951 paper ,  Amitsur  and Levitzki [1] show that  

S2n(X 1 . . . . .  X 2 , )  := ~],n.~Sym(2n) Sgu(TT)[X1, X2, . . . ,  Xzn]l r is an ident i ty  of  
Mn(~b). This ident i ty  is known as the  s tandard  ident i ty  of  n x n matrices.  
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In 1956 Kaplansky [9] asked whether there exists a nonzero central 
identity for M,(~b). Obviously, the constant polynomial or the constant 
polynomial added to the standard identity qualifies. Moreover, the well-known 
polynomial (xy  - yx) z solves the problem for n = 2. 

To avoid the above-mentioned trivial cases, in 1970 Kaplansky [10] 
rephrased the problem and asked whether there exists a homogeneous 
multilinear central identity of Mn(qb) of positive degree for n t> 3. The same 
problem was also brought up in the 10th All-Union Algebra Colloquium, 
which took place in September 1969 in Novosibirsk, Russia. In 1972, For- 
manek [8] proved the existence of a central identity for each algebra Mn(qb). 
In the same year, Razmyslov [12] found a finite generating set for the 
identities of M2(~b), where ~b has characteristic zero. In 1973, Razmyslov [13] 
constructed a new central identity; its degree was 3n 2 - 1. In the same year, 
U. Leron [11] proved that every multilinear identity of Mn(qb) with degree 
2n + 1 is a "consequence" of the standard identity S2n. 

In 1983, V. Drensky and A. Kasparian [6] showed that all the identities of 
degree < 9 of 3 × 3 matrices are "consequences" of the standard identity of 
degree 6. Furthermore, they found a central identity of degree 8 and showed 
that there are no central identities of lower degrees (see [5]). 

Recently, V. Drensky and G. Piacentini [7] found a central identity of 
degree 13 for Ma(qb) with ~b of characteristic zero which agrees with the 
conjecture [7, p. 1] that the minimal degree of a central identity of Mn(~b) is 
(n 2 + 3n - 2)/2.  

Our procedure produces an independent generating set that implies all 
the identities and all the central identities of degree n < 9 of M3(~b), where 
~b is a field of characteristic zero or p > n. 

The method uses group representation theory and relies heavily on 
computational techniques. We first tested it by finding a set of independent 
multilinear identities for Me(Q), with Q the rationals, and then comparing 
the identities with Razmyslov's identities [12] (also see [4]). 

Our results for 3 × 3 matrices are consistent with the literature and yield 
a new central identity in degree 8. 

2. BASIC DEFINITIONS AND CONCEPTS 

I~t  A = {fl . . . . .  fk} be a nonempty set of polynomials of ~b( X ) with 
involving n i variables. The so-called T-ideal generated by A is the ideal of 
~b(X) generated by B = {fi(Yl . . . . .  y . ) l i  = 1 . . . . .  k and yj ~ ~b(X) for 

j = 1 . . . . .  ni}. The elements in the T-ideal generated by A are called the 
identities implied by A. An identity of a ~b-algebra R is said to be minimal if 
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it is not implied by a set of  identities of  R of lower degrees. Two identities f 
and g are said to be equivalent if f implies g and vice versa. Two central 
identities f and g of  the algebra R are called equivalent if f or g, together 
with the polynomial identities of R, generate the same T-ideal. 

Since concepts related to representations theory of the symmetric group 
of n objects, Sym(n), play a role in our procedure, we need some definitions 
due to Young and his students (also see [2]). 

The group ring or the group algebra over the symmetric group Sym(n) 
consists of  all sums of the form 

a =  E a ( s ) s  (1) 
s ~ S y m ( n )  

with arbitrary coefficients ~(s )  ~ ~b. This group ring is denoted by O c- 
A frame of degree n consists of  n boxes arranged in rows in such a way 

that the leftmost boxes are located one under another and m 1 >~ m 2 /> "" >~ 
mr, where m i denotes the length of the ith row for i = 1 . . . . .  r. We shall 
refer to such a frame by (m 1 . . . . .  mr). Suppose two frames F and F '  of the 
same degree are respectively given by ( m l , . . . ,  m r) and (m' 1 . . . . .  re'k). Then 
we write F > F '  if the first nonzero m i - m' i is positive. The frames of a 
given degree are always listed in decreasing order. Here  are all the frames of 
degree 4: 

[ ] [ ]  [ ]  
[ ] [ ] [ ]  [ ] [ ]  [ ]  [ ]  

, , , [ ] .  [ ] [ ] [ ] [ ] '  [] [ ] [ ]  [] [] 

A tableau of degree n is created by putting the numbers i to n into the n 
boxes of a frame. A standard tableau is a tableau in which the numbers are 
increasing in every row from left to right and in every column from top to 
bottom. We shall enumerate the standard tableaux of a given frame in the 
"systematic" or "dictionary" order T 1 . . . . .  Tf. The "nonstandard" tableaux are 
assumed to be ordered in some arbitrary way T/+ 1 . . . . .  Tn~ As an example, we 
list all the standard tableaux T 1 . . . . .  T 5 of the (3, 2) frame: 

[1] [2] [3]  [1] [2] [4]  [1] [2] [5]  [1] [3] [4]  [1] [3] [5]  
[4][5]  ' [3][5]  ' [3][4]  ' [2][5]  ' [2][4]  
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A permutation 7r e Sym(n) applied to a tableau T is simply a renumber- 
ing of the contents of the boxes in T and is denoted by 7rT. For instance, if 
we apply the permutation (1 3 2) to the tableau [2][1114][3][5], we get 
[1][3][4][2][5]. If T i and Tj are two tableaux belonging to a fixed frame F, then 
the permutation that takes T; to T/ is denoted by Sij or Si,j. 

Given a tableau Ti, set 

~, := E s g n ( q )  pq ~ 0 c, (2) 
Pq 

the sum being taken over all products pq of permutations, where p is a 
horizontal and q is a vertical permutation for T i. For instance, for the tableau 

[11[3] 

= [ 2 1 [ 4 1 '  

we have 

e2= {I + (1 3) + (2 4) + (1 3)(2 4)} 

× { I  - (1 2) - (3 4) + (1 2) (3  4) } .  

Let e i := (d/n!)~i, where d is the dimension of the left ideal in O c 
generated by ei. Sometimes we use a superscript to distinguish the ei Sij 
belonging to the tableaux of different frames. For example, e~S~ belongs to 
the k th frame. If we are working with the tableaux of one particular frame, 
we may omit the superscript. 

It is known that e i is an idempotent element of O c. Furthermore, all the 
ei Sij of the standard tableaux of all the frames of a given degree n are 
linearly independent, and we will show how to express the multilinear 
identities and the multilinear central identities in terms of these elements. 

3. PROCEDURE 

We give a procedure that finds all the multilinear identities and all the 
multilinear central identities of M,,(~b), where ~b is of characteristic zero or a 
large enough prime. We thus find all the identities and all the central 
identities of degree < 9 of M3(Q). In this section, "~b" denotes Q or Zp. An 
identity or a central identity of degree n is called multilinear if it is of the 
form 

F__, o,.[x, ,x2 . . . . .  x . ] .  forsome o<,,e (3) 
~'~ Sym(n) 
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This identity or central identity can be represented  by 

a,~Tr ~ 0~.  (4) 
7 r ~  S y m ( n )  

I f  I ( x  1 . . . . .  x n) is an identity, then ITr(x 1 . . . . .  x n) := I ( xo ) , -~ ,  
. . . .  x(,)~-l)  is an identity for any ~ - ~  Sym(n).  Moreover,  if g = 

F, ~ Sym(,)a~Tr ~ 0 ~ ,  then I g ( x  l . . . . .  x n) :~"~- ) '~ .  ~ Syrn(n)Ol,n. ITt'(X 1 . . . . .  Xn) i s  
also an identity. Similarly, if I (Xl  . . . . .  x , )  is a central identity, then 
I g ( x  1 . . . . .  x , )  is a central identity or an actual identity. 

We  say that a finite set of  multil inear identities and central identities 
Ii( x 1 . . . . .  x n) . . . . .  Ik ( x 1 . . . . .  x , )  is i ndependen t  u n d e r  subst i tut ion if for any 
choice of  gl  . . . . .  gk ~ Oc ,  I l g l ( x l  . . . . .  Xn) + "'" + I k g k ( x l  . . . . .  X~) = 0 
implies that I l g l ( X  1 . . . . .  X n) . . . . .  I k g k ( X  1 . . . . .  X n) = 0. In the rest of  
the paper,  i ndependen t  means independent  under  substitution. 

By the identities o f  a given f rame ,  we mean all the multil inear identities 
of  the form (4) which can be writ ten as a linear combinat ion of  the e~ S,j of  all 
the standard tableaux of  that frame. The  procedure  described in this section 
is a general  me thod  of  finding all the multilinear identities of  a fixed frame. 
In Section 5, we will show that the identities found by our  procedure  form an 
independent  generat ing set that  implies all the multil inear identities o f  
degree  n. 

Let  F be  a FLxed f rame of  degree  n with f s tandard tableaux T 1 . . . . .  Tf. 
Define 

E k := e k Ski, k = 1 . . . . .  f .  (5)  

Notice that ekSkl  = Skle  I (see [3, p. 248]). A crucial point, which we 
prove later, is that every multil inear identity or multil inear central identity of  
a f rame F may be expressed as a linear combinat ion of  E k's of  that frame. I f  
g = ~,~.~Sym(n)Og~rT/', then  by [x 1 . . . . .  Xn]g we m e a n  E ~ S y m ( , )  
a~[ X l . . . . .  X,]~. Then  a multil inear identity of  the given f rame is of  the form 

f f 
I ( x  I . . . . .  x , )  = E a k [ x l  . . . . .  X,]Ek = ~', a k E k .  (6)  

k = l  k = l  

Thus we want  to find coefficients og 1 . . . . .  o~ n ~ ~b, not all zero, such that 
the following relation holds for any choice of  matrices M 1 . . . . .  M n E Mm((~):  

f 
E a k [ M 1  . . . . .  M~]E~ = 0 m ×  m • (7)  

k = l  
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Our  technique  requires several choices of  sets of  matrices 
{M~ 1) . . . . .  M~)},{M~ 2) . . . . .  M~ 2)} . . . . .  For brevity, we will refer to 
[M~ ') . . . . .  M~')le~ by h,k. 

We note that (7) gives us a system of m 2 equations, that is, one equation 
for each entry of the m × m matrix. Because of this, it is reasonable to 
consider the m × m matrices h~k as m z X i column vectors. Returning to 
(7), our problem simplifies to finding solutions [ oq . . . .  , af]  T of 

hit1 ... h ~ J  2 i  = [ i ] '  (8) 

i.e., finding the nullspace of (h~j). Each row of the block matrix (hij) 
represents m 2 equations. It may be regarded as an (mZr)  × f  matrix. The 
number r is the number of trials, and it ought to be chosen large enough to 
make sure that (h 0 reaches its maximum rank. 

Below, we have given a more detailed outline of the procedure. 

S t e p l .  S e t t - - 0 .  
Step 2. Set i = 1. Create in dietionary order all the standard tableaux 

T l . . . . .  Tf of Ft+ I. 
Step 3. Create E k =ekSkl  for each k = 1 . . . . .  f .  
Step 4. Create n m x m random matrices M~), • -. ,  -.-nM (~), each expressed as 

a column vector. 
Step 5. Compute hi1 . . . .  , hif.  We need a program which multiplies the n 

random matrices in any order, i.e., a program which evaluates [M(1)~-1 ... 
M(,)~-I] for any 7r ~ Sym(n). 

Step 6. Find the row canonical form of the matrix (h~,). The first time that 
the procedure is executed for a fixed frame, the matrix whose row 
canonical form is to be computed will be the same as the one that is found 
in step 5. The row canonical form is stored in some matrix. After that, 
every time that the procedure is executed, the new hi1 . . . . .  h~y of step 5 
are placed at the bottom of the stored matrix, and the row canonical form 
of the resulting matrix is computed. 

Step 7. Augment i and return to step 4. Steps 4, 5, and 6 are repeated until 
we believe that the row canonical matrix of step 6 has reached its 
maximum rank (see step 8). The decision to go to step 8 is made after the 
rank is unchanged through several iterations. If we go to step 8 before 
reaching the maximum rank, we will discover it later. 

Step 8. Find the nullspace of the final matrix. This will give us the set of all 
possible coefficients a 1 . . . . .  a f  of E 1 . . . . .  Ey, which is an independent 
generating set of multilinear identities for the given frame. 
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Step 9. Augment  t and go to step 2. 
Step 10. Check all the potential identities found in step 8. It is sufficient to 

check an identity of  degree n on all possible sets of  n m × m matrix units, 
that is, for (me)"  sets. 

4. RESULTS F O R  3 × 3 MATRICES 

Similarly we can obtain an independent  generating set that implies all the 
multilinear central identities of  3 × 3 matrices. Computations show that all 
the identities of  degree < 9 of  the 3 × 3 matrices are consequences of  the 
standard identity S6(x  1 . . . . .  x6),  as expected (see [6]). We do not include the 
identities of  the frames which did not yield any central identities. 

The multilinear central identities appear for the first t ime in degree 8. 
The first two multilinear central identities, which are given by (9) and (10), 
belong to the fourteenth frame Fa4, which is (3, 3, 1, 1) or 

[ ][ ] [ ]  
[ ] [  ] [ ]  
[ ]  
[ ]  

Then 

Ic l  ~ [ - 4 0 7 S  u - 5 1 8 S e l  - 814S41 + 444S61 + 259S71 - 222S81 

-259S91 + 444S10,1 + 407Su, 1 + 259S12,1 + 333S13,1 - 481S14,1 

-222S15,1 + 111S16,1 + 629S17,1 + 1110S18,1 + 37S19,1 

- 999S20,1 - 555S21,1 - 148S22,1 + 370S2a 1 - 518S24.1 - 259S25,1 

- 814S26,1 - 592S27,1 - 481S2s, 1 + 259S29,1 - 148S30,1 

- 296S31,1 - -  185S32,1 - 481S33,1 + 185S34,1 - 629S35,1 - 148S36,1 

+ 407S37,1 - 1147S3~, 1 - 925S39,1 + 222S40,1 - 555S41,1 + 333Saz, 1 

+ 259S43,1 - 148S44, ~ - 1073S45, ~ - 185S46,1 - 666S47,1 

- 962S4s, 1 + 333S49,1 - 444S50, ~ + 777S51,1 + 518S52,1 - 296S53,1 

- 925S54,1 - 370S~, 1 ]el ,  (9) 
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Ic2 = [ - - 1 2 4 S l l  - 31S21 - 125S31 + 67S41 - 85S51 - 262S61 - 232S71 

+31S81 - 23S91 - 172Slo, 1 - 246Sl1,1 - 222S12,1 - 149S13,1 

- 42S14,1 + 31S15, l + 87S16,1 - 222 $17 ' 1 - 355S1s, 1 - 51S19,1 

+ 272 S~o ' 1 + 255S21,1 - 11S22 ' 1 - 145S2a, l + 94 $24 ' 1 + 12 $25 ' 1 

+152S26,1 + 101S27,1 + 13S28,1 - 67S29,~ - 136S3o,1 + 73S31,1 

+25S3z,1 + 13S33,1 - 95S34,1 + 17S35,1 - 3]$36,1 - 46S37,1 

+ 196S38,1 + 160S39,1 - 91S4o, l - 40S41,1 - 104S4e, 1 - 112S4a, 1 

-11S44 ,1  + 209S45,1 - 22S47,1 + 111S4s,1 - 164S49,1 + 12S5o, 1 

-241S51 ,1  - 209S52,1 - 22S5a,1 + 220S54,1 - 185S56,1]e 1. (10)  

T h e  mul t i l i nea r  cen t ra l  iden t i ty  (11) a n d  the  mul t i l i nea r  ident i t ies  (12) 
a n d  (13) b e l o n g  to the  f rame Fa,~, i.e., the  f rame 

[ 1 [  ][ 1- 
[ ] [ ]  

[ ] [ ]  
[ ]  

T h e n  

I c a =  [322S  H + 340S21 + 438S31 + 612S41 + 169S51 - 380S61 - 16S71 

- 3 S 8 1  + 426S91 - 17Slo, 1 - 229S11,1 + 6S12,1 + 293S13,1 + 66S14,1 

+191S15,1 + 49S16,1 - 140S17,1 + 339Sls,  1 - 122S19,1 + 211Seo, l 

+ l l S z l , 1  + 143Se2,1 + 277S23,1 + 440S9.4,1 + 55S25,1 - 669Se~,1 

-252S27 ,1  - 84Sz~,1 + 351Sz9,1 + 182Sao, t - 37S31,1 - 97Sa2,1 

-375S33 ,1  - 471S34,1 - 136S35,1 + 47S36,1 + 259S37,1 - 53S38,1 

- 133S39 ' 1 + 454 $4o ' 1 - 469S 41,1 + 22 S4e ' 1 + 356 S4a ' 1 + 31S44 ' l 

- 314S45 ,1  - 30S46,1 + 84S47,1 + 93S4s,1 + 400S49,1 + 197S5o,1 

- 154S51,1 - 308S5z, 1 + 43S5a, 1 - 368S54,1 + 86S56,1 - 98S57,1 

+ 15S58,1 + 46S59,~ + 285S6o, ~ + 227S61, ~ + 453S~z,1 + 710S~3,1 

+ 119S64,1 - 410S65,1 - 238S~6.~ - 43S6v, a - 6 3 4 S 6 s , 1 ] e l ,  (11)  
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I l = [ - 2 2 4 S u  - 422S21 + 132S31 - 252S41 + 55S51 - 440S61 - 280S71 

- 2 0 1 S s l  - 24S91 + 13Slo, l + 29Sl1,1 - 246S12,1 - 313S13,1 

- 6 0 S 1 4 , 1  + 143S15,1 + 223S16,1 - 20S17,1 + 249S18,1 + 52S19,1 

+ 115S2o, 1 - 37S21,1 - 49S22, 1 - 215S2a I + 194S24, l - 77S25, 1 

- 2 1 9 S z 6 ,  t + 72S27,1 + 96Szs, 1 + 81S29,1 + 188S3o,1 - 67S31,1 

+ 17S3e, 1 - 15S33,1 - 75S34,1 + 50S35,1 + 107S36,1 + 37S37,1 

+301S38,1 + 413S39,1 + 344o,1 + 203S4L ~ - 74S4e,1 - 88S43,1 

+43S44,1 + 40S45,1 + 42S46,1 + 120S47,1 + 291S48,1 + 304S49,1 

+ 329S56,1 - 76S51,1 - 314S52,1 + 91S~3,1 - 14S54, 1 + 54S55,1 

+290S56,1 - 14S57,1 - 7 5 S 5 8 , 1  + 76S59,1 + 87S6o,1 + 71S61,1 

+3S62,1 + 32S63,1 - 37S64,1 + 34S6~,1 + 20S66,1 - 91S67,1 

- 106S6s, 1 - 54S69,1 ]el ,  (12 )  

I z = [ - 1 7 2 S  n - 136Sel  - 132S31 - 126S41 - 19S51 - 118S61 - 8 0 S 7 1  

- 6 9 S s l  - 30S91 + 77Slo, 1 + 43Sl1,1 - 24S12,1 - 47S13,1 + 6S14,1 

+37Sl~ ,1  + 29S16,1 + 56S17,1 + 75S18,1 + 38S19,1 - 25Se9,1 

-53S21 ,1  - 95S22,1 - 73S23,1 - 68S24, l - 49S25,1 - 51S26,1 

-18S27 ,~  + 12Szs, 1 + 27S29,1 + 46S3o,1 + 31S31,1 + $32,1 + 15S33,1 

+21S34,1 + 22Sa5,1 + 19S36,~ - -  $37,1 "4- 59S38,1 + 91S39,~ 

+56S4o,1 "+- 85S41,1 "4- 2 S 4 z , 1  - -  5 6 S 4 3 , 1  - 7S44,1 - 4S45,1 "4- 12S46,1 

+42S47,~ + 33S48,~ + 56S49,~ + 13S~o,1 - 14S~L 1 - 28S5z,~ - S~3,~ 

-4S54 ,1  - 2S56,1 - 4S57,1 - 33S~s,1 - 40S59,1 - 33S6o,~ + S~I,~ 

-57S62 ,1  - 68S63,1 - 53S64,1 "4- 2S~5,1 -1- 52S66,1 -t- $67,1 q- 16S~8,1 

- -  54 $7o ' ~ ] e l .  ( 1 3 )  
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The last independent central identity belongs to the frame Fls, or 

[ ] [ ]  
[ ] [ ]  
[ ] [ ]  
[ ] [ ]  

and is given by 

It4 = [4Sll + 21S21 + 12S31 + 21S41 + 7S51 + 21S61 + 8S71 + 21Ssl 

+22S91 + 8S10.1 + 7Sll, 1 + 8S12,1 + 12S13,1 + 38S14,1]e 1. (14) 

As we shall prove in the next section, the multilinear identities and central 
identities of the frames of degree n found by our procedure form an 
independent generating set which implies all the multilinear central identities 
of degree n. Therefore, the central identities (9), (10), (11), and (14) together 
with the identities implied by $6 found by our procedure form an indepen- 
dent generating set which implies all the multilinear central identities of 
degree 8. 

5. PROOFS 

In this section, we will prove that the identities of degree n computed by 
our procedure form an independent generating set for all the multilinear 
identities of degree n. Similar proofs can be used to show that the identities 
and the central identities of degree n computed by our procedure form an 
independent generating set for all the multilinear identities and all the 
multilinear central identities of degree n. Furthermore, through complete 
linearization one can prove that every identity of degree n of Mm(q~) is 

implied by a set of multilinear identities of degrees ~< n, where th has 
characteristic zero or p > n [15, pp. 14-17]. Thus we only need to state the 
proofs for multilinear identities. In the rest of this section, an identity means 
a degree n identity of Mm(¢~). S i n c e  w e  work only with multilinear identities 
of degree n, for brevity we shall refer to an identity I ( x  1 . . . . .  x , )  by I. 

The following theorem is an important result in group representation 
theory which implies that the product of the e~ S~j of different frames is zero. 
For a proof see [14]. 
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THEOREM 1. Let ~b be a field of  characteristic zero or > n. Then the 
e, Sq of  the frames of  degree n form a basis for  the group ring 0 c. 
Furthermore, we have 0 c -~ F 1 • "" • F k, where k is the number of frames 
of  degree n, and F a is the subring generated by the eiXS~. 

Suppose the frame associated with F x has f standard tableaux. Associate 
with A = (ai j)  H Mm(dp) the element A : =  El'__ f , _ l a q e i S i  ~ F a. Then, 
using * for multiplication in Oc, Clifton [3, p. 249~ line 4] tells us 

A * B  = A ( e i j ) B ,  (15) 

where the numbers 6q for i, j = 1, 2 . . . . .  f are defined as follows [3, p. 248]: 

(~gn(q)  if Sj, = q p  ( f o r T  i), 

8iJ : =  otherwise. 

Let (6ii) = ~. It is easy to verify that 6 is an upper triangular matrix with l 's 
on t h e  diagonal; hence invertible. Note that Ig (x  1 . . . . .  Xn) = 
( I  * g)(x  1 . . . . .  Xn). 

LEMMA 2. I f  I = z ( - f l  j~lOtijeiaij is an identity of  the frame F, then so 
is Ij = Y"(= 10tij e, Sij for  eac~ j = 1 , . . . ,  ]. 

Proof. Let ! = ,~ and let Eq be the matrix with 1 in position /j and 
zeros elsewhere. Then 

f 
E a,jeiSq = AEjj -= Aee - 'E j j  = 71. 8-1Ejj 

i=1  

is also an identity. • 

Similarly, 

LEMMa 3. I f  I t = ]~f=laie, Sa is an identity of  the frame F, then so is 
I m =  Y'~(= 10ti e, Sire f o r  each m = 1 . . . . .  f .  

THEOREM 4. I f  I is an identity of  the frame F, then for  some gm ~ OG, 
we have I = Ef= 1Lm * gm, where each L m is an identity of the form 
~(=l[Jileia,l  f o r s o m e  ~11 . . . . .  ~ f l  ~ ~)" 
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Sketch o f  a proof. By Lemma 2, each column of I = (c~,j) is an identity 
of the frame F. Then by Lemma 3, the location of each individual column is 
immaterial. So we can represent each of them by putting the nonzero column 
first. In other words, I is equivalent to the identities represented by the 
matrices (ars)Ej j  for j = 1 . . . . .  f ,  which in turn are equivalent to the 
identities represented by the matrices (ar,~)Ejl for j = 1 . . . . .  f .  • 

Hence every identity of the frame F is implied by the set of all the 
identities of the form Y',f=laileiSil. Thus the identities computed by our 
procedure imply all the identities of the given frame. The following theorem 
shows that every multilinear identity is implied by the set of all the identities 
of all of the frames. 

THEOREM 5. Let I be a multilinear identity o f  degree n, and k be the 
number  o f  f rames  o f  degree n. Then I = 11 + "" + I  k, where  I m is an identity 
o f  the f rame  F m f o r  each m = 1 . . . . .  k. 

Pro@ By Theorem 1, I = k F~m = 1 Ira, where 

fm, fm 
Im = E %~'e;"Si"j ~ for some a,~ ~ ~b. 

i= l , j= l  

We need to show that each I m is an identity. Since I is an identity, then so is 

I * g  for any g ~ 0 c. In particular, let g = e - l ,  where ~ = ( c i j )  for the 
frame F m. Also let A m be the matrix such that A m = I m, and let the identity 
I * g be represented by ( A71 + --" + AT k) * ~- 1. Then 

I * g  = A m *  ~ 1 

= AmgoO- i  

= , ~ .  

Therefore, I m is also an identity for each m = 1 . . . . .  k. I 

Next, we will prove that the independent identities for a flame F A found 
by our proeedure form an independent generating set for all of the identities 
of that flame. 
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LEMM* 6. a set 11 . . . . .  I~ of linearly independent identities of the form 
~,fL1 ailei~S~ for a given frame F a is also independent under substitution. 

Proof• Let I,n = Am, where  

[ al~ 0 "" 0 
A m = for m = 1 . . . . .  r .  

t~' m 6 L f , l  "'" 0 

I f  I 1 . . . . .  I~ are not i n d e p e n d e n t  under  substi tution,  then there  exist group 
ring e lements  g l  . . . . .  g~ ~ Oc such that  I,,, * g,, -7s 0 for some m and 

I i * g l  +''" + I ~ * g ~ = 0 .  

Since O c ~ F  1 q ) - . .  ~ F  k, each gm =(gm)l +''" +(gm)~ for some (g,,,)i 
F ~, and each 

Im* gm =Im * ( g m ) l  + "'" +Ira *(gm)k" 

Since the  e~ Sq of  different  frames annihilate one another ,  we get 

I m * g m = I , , * ( g m ) ,  for m = l  . . . . .  ~-. 

Hence  

I I * ( g l ) X  + " ' "  + l * * ( g , ) ,  = O .  

Let  (gm),= (Gin)a, and let  e(G,,,), be r ep re sen ted  by the following matrix, 
where  e is the  (eij) matrix for the f rame F,: 

Then 

= 

I . ,*  gm = I m * ( g m ) *  

=Am* ( Gm ),~ 

= A m P ( C , , , ) , ,  

for m = 1 , . • . , ' r .  



246 

and 

SIAMACK BONDARI 

A . , , ~ (  G m ) .~  = 

/3 ltl~ O~ 1 r] .-- /3 ln) O/1 t] ] 

/31n~ o/fr~l "-- /3 lr~,~ Odfxrn 1 

W e  have assumed that I m * g,,, ¢ 0 for some m; so let column 1 of  A m 6(Gm),~ 

be nonzero• Then  /3~}* # 0, and 

A m , ~ ( g , n ) x E l l  = ~ A m g ( g m ) x  * g - l E l l  
rn=l m=l 

= I m * g,,, * ,~ - lE l l  = O, 
m = 1 

since FTm=lI,n * g m  = 0. But 

a m 6 ( G m ) x E l l  = 

/31~ O/lira "'" /3 lr~a O~lr~ ] Ell  

/31ml Ol]~tl "'• /313,~ Ol m 

/317a1'] 0 --. 0 

~1 n] O~f~.ml 0 "•" 0 

m 
= /311 Am• 

Therefore ,  we have 

/3111I 1 q- "'" -4- /3 ~ i I, r = O, 

which implies that  I 1 . . . . .  I ,  are linearly dependent ,  a contradiction. • 

Now, we need to show that all of  the identities of  all of  the frames given 
by the p rocedure  form an independent  generat ing set for all the multilinear 
identities of  degree  n. 
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THEOREM 7. Let each H a be a set of  linearly independent identities o f  
the form E:,*=_lOlile )toOilA for  each A = 1, . . . ,  k, where k is the number of  the 
frames of degree n. Then the set U ka = 1 Ha is independent under substitution. 

Proof. Let  11, I x be the identities of  the set H a. Assume there exist 
nonzero elements g X of  the group ring such that 

k ra 

E E t2,g2=0. 
A = I  m = l  

The linear independence of  all of  the e i Sij's of  all of  the frames implies that 

r,  

Y', Im~*g ,a ,=0  for A = I  . . . . .  k. 

In other words, the linearly independent  identities of  each set H a are not 
independent  under  substitution, which contradicts Lemma 6. • 

We now describe step 10, checking the identities. Suppose that 
I (x  l . . . . .  x,,) = Y',f_laieiSil is a potential identity o f  degree n of  a frame F a. 
To verify that I is an identity, it suffices to show that I (x  1 . . . . .  x , )  = 0 for 
any choice of  x 1 . . . . .  x,, of  {Eij}. 

There are (m2) " choices to check. This checking was done in the 
following way. We ordered the matrix units {Eij} in some way. For  each 
choice with x I ~< x 2 ~< --- ~ x, ,  we wanted to check for all permutations rr 
that Irr(x l . . . . .  x , )  = 0. Normally each choice would require checking n! 
arrangements of  these arguments.  

In the matrix representation o f  I, only the first column of  I is nonzero. 
For  j = 1 . . . . .  f set Ij = E / = l a ,  e, S,j, which has the nonzero column moved 
to the j t h  column. We checked that I j(x 1 . . . . .  x , )  = 0 for j = 1 . . . . .  f .  
Instead of  checking one polynomial expression n! times, we checked f 
polynomial expressions one time. This suffices, since by representations 
theory, Irr(x 1 . . . . .  x , )  = Ef= l ~(rr, j ) I j  for some coefficients fi(Tr, j ) .  

We can check whether  an expression 1 is a central identity as well. We 
only need to cheek that Ij(x l . . . . .  x , )  is in the center  when x 1 < x 2 ~< ..- ~< 
x ,  and j = 1 . . . . .  f .  

I f  we tried to cheek an identity l ( x  1 . . . . .  x s) of  F1s for the 3 × 3  
matrices directly, we would have to check 9 s =  43,046,721 substitutions. 
Using the method explained above, there are 12,870 arrangements where 
x 1 ~< x 2 ~< "-. ~< x s and f = 70, which gives (70)(12,870) = 900,900 substi- 
tutions which have to be checked. 
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Our further computations showed that the central identity of degree 8 
found by V. Drensky and A. Kasparian [5] gives a central identity in F14, a 
central identity in Fls, an identity in each of the frames F16, Fig, F21, F22, 
and two identities in F20. The central identity in Fl4 is a consequence of the 
central identities (9) and (10), while the central identity in Fls is the same as 
the central identity (14), and all of the identities are consequences of the 
standard identity of degree 6. Therefore, the central identity (11) which 
belongs to the frame F1s is not a consequence of the one found by Drensky 
and Kasparian. 

The procedure was originally designed to find an independent generating 
set for all the multilinear identities of Ma(Q). But one may encounter 
roundoff error or some type of numerical problem when the degree n > 7. 
However, since the procedure is valid for any field Zp where p is a large 
enough prime, one may execute it for several primes. Once all the multilinear 
identities of several Ma(Zp)'S are known, one can find all the multilinear 
identities of Ma(Q) among them. 

I would like to express my sincere gratitude to Dr. Irvin Hentzel for  his 
assistance and guidance in the preparation of this paper. 

The computations were done on a DEC station 5000 / 133 of the Vincent 
network at Iowa State University. 
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