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ABSTRACT Processive molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into mechanical energy
by hydrolyzing ATP. The mechanical energy is used for moving in discrete steps along the cytoskeleton and carrying a molecular
load. Single-molecule recordings of motor position along a substrate polymer appear as a stochastic staircase. Recordings of
other single molecules, such as F1-ATPase, RNA polymerase, or topoisomerase, have the same appearance. We present a
maximum likelihood algorithm that extracts the dwell time sequence from noisy data, and estimates state transition probabilities
and the distribution of the motor step size. The algorithm can handle models with uniform or alternating step sizes, and
reversible or irreversible kinetics. A periodic Markov model describes the repetitive chemistry of the motor, and a Kalman filter
allows one to include models with variable step size and to correct for baseline drift. The data are optimized recursively and
globally over single or multiple data sets, making the results objective over the full scale of the data. Local binary algorithms,
such as the t-test, do not represent the behavior of the whole data set. Our method is model-based, and allows rapid testing of
different models by comparing the likelihood scores. From data obtained with current technology, steps as small as 8 nm can be
resolved and analyzed with our method. The kinetic consequences of the extracted dwell sequence can be further analyzed in
detail. We show results from analyzing simulated and experimental kinesin and myosin motor data. The algorithm is imple-
mented in the free QuB software.

INTRODUCTION

Kinetic analysis of data from individual biological molecules

started in the 1970s, with the development of the patch clamp

technique for ion channels (1). Motor proteins, such as kinesin

(2,3), myosin (4), and dynein (5,6), are now studied at the

single-molecule level. The motor protein converts chemical

energy into mechanical energy by hydrolyzing ATP. The

mechanical energy is used for transporting cargo in discrete

steps along cytoskeletal filaments, such as microtubules for

kinesin and dynein, and actin for myosin. Since motor func-

tion is independent of the length of the substrate, the process

can be simplified to an infinite chain of identical reaction

units (7), where a unit is the set of conformations assumed by

the motor protein while it moves one step along the substrate.

The location of individual motors as a function of time can

be measured with nanometer precision using fluorescence

microscopy (6,8,9). Typically, a fluorescent probe is attached

to the motor, and a charge-coupled device camera on an

optical microscope records the position of the probe. The

motors—driven by ATP hydrolysis—track along cytoskel-

eton filaments immobilized on a glass substrate (8), and their

location is traced from frame to frame. The frame rate deter-

mines the time resolution of the measurements. The data

consist of a time series of the probe position projected along

the filament axis. Since the motor proteins generally move

forward in discrete steps, the data look like a staircase, al-

though backward steps may occasionally occur, as predicted

for all reversible reactions.

A staircase step, i.e., a segment in the data where the mea-

sured position of the probe is constant, is called a ‘‘dwell’’.

The duration of each step (the dwell time) is stochastic, with

exponential distribution. There may be multiple con-

formational states associated with a single position of the

probe—analogously to the multiple ‘‘closed’’ states of ion

channels—and transitions between them are not distinguish-

able as individual events. Nevertheless, the existence of these

unobservable states can be inferred statistically from the dis-

tribution of the observed events (10). We denote by ‘‘state’’

the combination of biochemical and positional states. Due to

the finite sampling time and exponential distribution of event

durations, there will always be missed events. The effect of

missed events upon the interpretation of reaction kinetics has

been extensively studied in the context of single ion channel

kinetics (11–14). In the case of molecular motor data, the

same considerations apply. This means that not only are the

estimated rate constants in error, but the motor may take one

or more steps during a single frame and some of the observed

movements will reflect multiple steps.

In this article, we present a maximum likelihood algorithm

that extracts the most likely (highest probability) dwell time

sequence from the data and returns the global parameters that

describe the step size distribution and the rate constants (10).

The method relies upon the large knowledge base developed

over the last 30 years for the analysis of single ion channel

data (11–30). Our main objective is to realistically model the

mechanochemistry of the motor in terms of the kinetics and
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step size distributions, and to take into account instrumental

limitations, including various noise sources. The noise com-

ponents can be described by a continuum of states. These

include wideband noise arising from random photon statis-

tics, digitizing errors, and the Brownian motion of the motor.

There are also low frequency noise sources arising from drift

of the microscope, and errors in correcting for the bending of

the substrate filament. We have modified and combined

algorithms for hidden Markov models (31) to describe the

discrete states of the motor, and Kalman filters (32) for the

continuous states of the noise. Thus, we model the mech-

anochemistry with a periodic Markov chain, as required by

the identical chemistry of each step, whereas the Kalman

filter models the variability of the motor step and of the

baseline. A modified Baum-Welch algorithm (31) recur-

sively extracts (i.e., ‘‘idealizes’’) the most likely sequence of

motor positions (the dwells), and subsequently calculates

maximum likelihood estimates for the state transition prob-

abilities, for the mean and standard deviation of the step size

distribution, and for the measurement noise. We found that

including the Kalman filter also made the algorithm less

sensitive to initial parameter estimates.

The algorithm is general, capable of dealing with arbitrary

kinetic models, with a wide set of available a priori con-

straints and step size distributions. The most common kinetic

models in the literature have one or two states per reaction

unit, irreversible kinetics and uniform steps. Our method is

applicable to any staircase-style data, such as that generated

by F1-ATPase, where the rotational angle of the rotary motor

is traced from frame to frame (33,34), tracking RNA poly-

merase along the DNA template (35), or tracking topoiso-

merase activity (36). A distinct advantage of our method is

that it fully utilizes the correlation between sequential dwell

times that is a consequence of the topology of connections

between states (37,38). Since the algorithm is fast, it allows the

user to easily compare different models—quantitatively—by

computing the likelihoods. Our method is global, in that the

model is fitted to all the data at once, whether in a single or in

a collection of data files. In comparison, the t-test (39) is a
local extraction method, with the generally implicit assump-

tion of a model with only two states and with uniform steps.

We take advantage of the periodic structure of the Markov

model (10) to make the algorithm efficient and fast. Staircase

data can be fitted to a traditional finite state Markov model

(40), but—with the assumption that the minimum number of

states is the number of discrete positions of the motor—large

data sets would generate huge transition matrices. For

example, if there were 100 steps in the data set, one would

have to use a matrix of at least 104 elements. Our algorithm is

implemented in Windows, and freely downloadable along

with other tools, such as single molecule simulators (41). The

user graphically inputs a state model of three consecutive re-

action units, and a set of initial parameter values. The model

can include constraints such as detailed balance or fixed

rates, etc. The program internally creates a list of the most

likely state at each data point, and uses it to create a sequen-

tial list of the dwell times at each position of the motor. This

idealized list is an abbreviated data set (there are fewer

dwells than there are data points) that can be used to further

explore different kinetic models (10).

Our results show that, as with all fitting algorithms, con-

fidence in the output depends upon the signal/noise ratio

(SNR) and the length of the data set. We define the SNR as

the ratio of the mean step size (allowing for multimodal dis-

tributions) to the standard deviation of the background noise.

Ideally, the SNR should be .2. The noise level of current

experiments is;1–3 nm (5,6,8,9), so that steps as small as 8

nm (e.g., kinesin or dynein) can be successfully analyzed. As

shown further, the SNR has a strong effect upon the esti-

mated kinetic parameters, and in many cases it is worth

sacrificing the time resolution by reducing the bandwidth of

the data with appropriate resampling to maintain the validity

of the first order Markov assumption. Our studies show that,

as expected, the variance of the step size (whether intrinsic to

the mechanochemistry or caused by instrumental noise) has a

significant effect on the step resolution, and in general we

recommend selecting a unit model with only a few steps of

fixed amplitude (a multimodal distribution of the step sizes),

without intrinsic variance. This multimodal distribution may

reflect, for example, the availability of multiple binding sites

for the same motor step, or an asymmetrical positioning of

the fluorescent probe on the motor.

MODEL AND ALGORITHM

A cartoon representation of a typical molecular motor—

myosin V—is depicted in Fig. 1 A. This dimeric protein has

two chains twisted around each other, forming the ‘‘stalk’’.

One end of the stalk has the cargo-binding domain. The other

end of the stalk splits into two, with each end terminating

into a catalytic motor ‘‘head’’ (42,43). Myosin V walks with

a hand-over-hand mechanism (8) along the actin filament,

with the stalk taking 37 nm steps per ATP hydrolyzed. To

walk, the motor alternately rotates its two heads about the

stalk: the rear head moves 74 nm forward (twice the stalk

movement) to become the leading head, and so on (Fig. 1 A).
Kinesin has a similar mechanism (9).

STAIRCASE DATA

Fig. 1 B shows how the ‘‘staircase’’ position data are gener-

ated, and illustrates some of our definitions. ‘‘Positions’’ are

the sites on the substrate where the motor binds during its

walk. A ‘‘step’’ is the unitary translation of the motor

between two consecutive positions, as would be seen with a

perfect instrument. ‘‘Jump’’ refers to the observed amplitude

of the riser in the staircase. With perfect data, an observed

jump would be the same as a motor step. Note that the motor

may take more than one step within the sampling interval,

e.g., the missed event between positions Pi and Pi12. We call
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the jumps between consecutive positions ‘‘first order’’, and

jumps between nonconsecutive positions ‘‘higher order’’.

For example, the jump Pi / Pi12 in Fig. 1 B is ‘‘second

order’’. Inferring the jump order from the observed jump

amplitude can only be done in a probabilistic way, as

discussed below. We denote by mJ and sJ the mean and

standard deviation of the jump size corresponding to a dis-

placement between discrete positions of the motor.

A ‘‘dwell’’ is a horizontal segment in the staircase se-

quence. The observed position of the motor is constant during

a dwell. We say observed because the motor may in fact

undergo reversible transitions during this time that are too

short to be observed. The dwell times have exponential

distribution. The ‘‘amplitude’’ of a dwell is the mean vertical

position (the y coordinate) of those data points within the

dwell time. We denote by mk the mean amplitude of the kth
dwell in the staircase sequence. By definition, two consec-

utive dwells are separated by a jump. However, two con-

secutive dwells do not necessarily correspond to consecutive

positions because of the potential for missed events. We

approximate the measurement noise of the probe position

(primarily determined by the number of photons per pixel,

FIGURE 1 Modeling the mechanochemistry of a molecular motor. (A) Myosin walks hand-over-hand along the actin filament, with the stalk taking 37 nm

steps per ATP. The motor alternately swings its heads to walk: the rear head moves 74 nm (twice the stalk movement) and becomes the leading head. (B)
Staircase data from single molecule measurements. Each data point is the position of the fluorescent probe measured along the axis of the filament, as a function

of time. The motor may take more than one step within the sampling interval (notice the missed event between positions Pi and Pi12). (C) The position of the

fluorescent probe within the motor protein results in different step patterns. The mechanochemistry is modeled as an infinite chain of identical reaction units. At

least two kinetic states per unit are necessary to describe the ATP binding step and the position translocation.
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per frame) as a d-correlated Gaussian with zero mean and

standard deviation sM.

STEP SIZE DISTRIBUTION

The motor protein has a certain degree of structural flexi-

bility, so that in a single step it may reach over a variable

distance, and hence it can potentially bind to several sites.

Thus, the ideal distribution of the step size is discrete. How-

ever, the very flexibility of the motor (twisted polymers with

allowable backbone rotations) and that of the substrate, to-

gether with other sources of variability, spread these discrete

probabilities into a continuous, multimodal distribution. In

the interest of simplicity in explaining the method, in the

following we will discuss only the cases of uniform steps and

of alternating small and large steps. In either case, each step

has a unimodal Gaussian distribution. Nonetheless, exten-

sion to other models is straightforward.

The observed jump amplitude—noted ‘‘J’’ in Fig. 1 B—
follows the distribution of the step size, but it is also affected by

the location of the fluorescent probe within the motor molecule

(9). Different jump patterns occur as follows:

i. A fluorophore positioned on the stalk produces uniform

jumps (Fig. 1 C1) with J;N(mJ;sJ), where N refers to

the Gaussian distribution function.

ii. A fluorophore attached to the lever arm connecting the

stalk to the head results in alternating small and large

jumps (Fig. 1 C2). In this case, J is distributed as the sum
of two weighted Gaussians, reflecting the two possible

step sizes of the probe: J;P1 3N(mJ1 ;sJ1 )1P23
N(mJ2 ;sJ2 ). For the physical models under consider-

ation, the two unequal steps must alternate, hence the

weighting factors P1 and P2 are in fact conditional prob-

abilities that alternate between 0 and 1. The sum of two

such unequal jumps is equal to twice the jump of the

stalk:mJ11mJ2 ¼ 2mJ. Regardless of fluorophore posi-

tion, the molecular structure remains the same, and thus

it seems reasonable to assume that the combined vari-

ance of a pair of unequal jumps is twice the variance of

the uniform jump. Hence, we also assume that the

relative variance of each jump in the pair is proportional

to the relative jump amplitude: mJ1 3sJ121mJ2 3sJ22 ¼
2mJ3sJ2.

iii. Finally, a probe attached to a head results in uniform

jumps, but twice larger than the jump of the stalk, and

with slower apparent kinetics (Fig. 1 C3). In this case,

the motor takes two single steps for each first order ob-

served jump, and J;N(2mJ;
ffiffiffi
2

p
sJ). Note that, since the

amplitude of first order jumps is modeled as a random

Gaussian variable, the amplitude of a higher order jump

is also a random Gaussian variable. As with any fitting

program, the most rapid convergence and most reliable

parameters come from the best starting guesses. If one

knows a priori the location of the probe within the mo-

tor, the appropriately constrained model should be used

in the analysis.

KINETIC MODEL

The mechanochemistry of molecular motors is a repetitive

chain of identical reaction units (7), where each unit corre-

sponds to a position on the substrate. A minimum kinetic

model must include at least two distinct states per unit

(Fig. 1 C): an ATP binding step and a position translocation

step. Although the motor appears stationary, it actually

undergoes conformational transitions between these two (or

more) states. If NS is the number of states per reaction unit

and NP is the number of all the substrate positions occupied

by the motor within a given data set, then the process can be

described by a Markov model with NS 3 NP states (10). The

frequency of transition between kinetic states is quantified by

rate constants, conventionally grouped into a rate matrix Q.

For our idealization algorithm, we focus on the probability of

observing a transition between any two states, within a sam-

pling interval dt. These probabilities are grouped into a

matrix noted A, which can be calculated as A ¼ exp(Q3dt).

The properties of the Q and A matrices—notably the

periodicity constraints—and their computational details are

given in Milescu et al. (10). Transitions between states

within the same reaction unit cannot be directly observed,

but their statistical properties can be inferred from the dis-

tribution and cross correlations of dwell times.

LIKELIHOOD FUNCTION

The cost function of our algorithm is the likelihood, defined

as the conditional probability of observing the data given a

model M:

L ¼ pðYjMðuÞÞ; (1)

where Y ¼ fy0, . . .yt, . . .yTg is the set of noisy position

measurements, indexed by the discrete time variable t (i.e.,
from frame to frame), andM is a topological model with a set

of parameters u. ‘‘Topological’’ refers to the number of

states and their connectivity, and the parameters u describe

the state transitions and the step size distribution. Note that

the absolute value of the likelihood is only used to compare

models. The likelihood function includes all possible states

occupied by the motor at each time t. Its calculation must

take into account all possible state sequences and their

intrinsic probabilities

L ¼ +
X

pðY;XjMðuÞÞ ¼ +
X

½pðYjX;MðuÞÞ3 pðXjMðuÞÞ�;

(2)

where X¼ fx0, . . .xt, . . .xTg is the sequence of Markov states

occupied by the motor, indexed by the discrete time variable

t, with x taking values between [0. . .(NS 3 NP)].
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Of special interest is the sequence of states that maximizes

the likelihood

XML ¼ argmax
X

fpðYjX;MðuÞÞ3 pðXjMðuÞÞg: (3)

Due to the memory-less character of a first order Markov

process and the assumptionofd-correlatedmeasurement noise,

the argument in the above expression can be simplified to

pðYjXÞ3 pðXÞ ¼ pðy0jx0Þ3 pðx0Þ3
YT
t¼1

pðytjxtÞ3 pðxtjxt�1Þ:

(4)

Note that for simplicity we have excluded M(u), but the
dependency on model and parameter values is implicit. The

probabilities in the above expression have been presented

many times before, for ion channels (30,44,45). Briefly, the

state conditional probabilities are the elements of the tran-

sition matrix A:

pðxtjxt�1Þ ¼ A½i ¼ xt�1; j ¼ xt�: (5)

The ‘‘hidden’’ character of the Markov process comes

from the fact that one has to observe the state sequence in the

presence of noise, so that neither the state nor the amplitude

can be known unequivocally at any data point. The proba-

bility of picking the state of correct amplitude at any given

data point generally comes assuming a Gaussian distribution

of errors. Thus, the conditional probability of making a mea-

surement yt given a state x is the following Gaussian:

pðytjxÞ ¼ Nðmx;s
MÞjyt ; (6)

where the mean mx is a function of the state x (see the

Appendix). With processive motor data, the mx values repre-

sent the positions successively occupied by the motor on the

substrate. These values are stochastic quantities, because the

difference between two consecutive positions is equal to

the step size, which is itself stochastic, as discussed above.

We cannot directly measure the size of the motor steps,

due to finite temporal resolution and background noise.

Hence, the step sizes must be inferred from the mean dwell

amplitudes mk, discussed above. The result is that the model

contains some parameters that are stochastic quantities—the

mk values—and the likelihood function must be modified to

include the probability of a particular set of mean dwell

amplitudes, as follows:

pðYjm;XÞ3 pðmjXÞ3 pðXÞ ¼ pðy0jx0Þ3 pðx0Þ

3
YT
t¼1

pðytjxtÞ3 pðxtjxt�1Þ

3
YK
k¼2

pðmkjmk�1Þ; (7)

where m ¼ fm0, . . . mk, . . . mKg is the sequence of mean

dwell amplitudes (there are K dwells), and p(mkjmk�1) is the

conditional probability that the kth dwell has mean amplitude

mk, given that the previous dwell had mean amplitude mk�1.

This probability is implicitly a function of the state(s) oc-

cupied by the motor during the respective dwells, and its

form depends on how the step probability distribution is de-

fined, as discussed above. Obtaining theXML sequence, while

at the same time estimating the parameters u, is the goal of
the idealization algorithm presented next.

IDEALIZATION ALGORITHM

Each point must be assigned to a state in the reaction scheme,

and implicitly to a discrete position along the substrate. The

staircase data are then partitioned into a sequence of dwells,

as defined above. Generally, the Forward-Backward proce-

dure (31), or the Viterbi algorithm (46,47) is used to opti-

mally idealize Markov data in the presence of noise when the

parameters are known. The result is the most likely state

sequence XML, out of all possible sequences. Given that

the true parameters are unknown (except for simulations),

the strategy is to run an optimizing algorithm based on the

Expectation-Maximization framework (48), such as Baum-

Welch (31), or segmental k-means (30,49). There are several

reasons why we cannot directly apply these algorithms to

molecular motor staircase data:

i. If the size of the motor step is variable, as previously

discussed, then the magnitude of the observed jumps is

also variable. Hence, the algorithm should be formulated

for Markov models with stochastic parameters (such as

the step size).

ii. The data may be corrupted by low frequency noise such

as microscope stage drift.

iii. The number of steps taken by the motor during the

recording—and thus the numbers of occupied positions and

observed dwells—is not known a priori. Consequently,

the number of states in the Markov model is unknown.

Fortunately, the periodic structure of the Markov model

(10) permits a simple solution to the unknown number of

states. We advance hierarchically in complexity, starting

with a small number of unitary steps, and add more states as

it becomes necessary. To gain efficiency, the state space is

truncated to eliminate those transitions that are not likely to

happen (10). To deal with the complications caused by step

size variability and baseline drift, we take an approach based

in part on our previous work idealizing single-channel data

with nonstationary baseline (50). Thus, we use the hidden

Markov model to describe the state transitions of the motor,

and a continuous Gaussian model (51) to describe the base-

line and—more importantly—the variability of the motor

step size. Note that only the relatively small and continuous

component of step variability is handled this way, whereas

the larger and discrete step variability, such as that due to

alternating small and large steps, is explicitly included in the

Markov model. Thus, we regard all motor steps of the same

kind (e.g., small or large, etc.) as having constant amplitude

Idealization of Motor Data 3139
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throughout the data, and account for variability in the ob-

served jumps through the baseline noise distribution. In its sim-

plest form (i.e., an unbiased random walk), the baseline

model is given by the equation

bt ¼ bt�1 1vt; (8)

where bt is the baseline position at time t, and vt is Gaussian

noise modeled as N(0;sB
t ) that adds random changes to bt.

The standard deviation sB
t is assumed small relative to the

step size, as the baseline is expected to deviate little between

two consecutive data points. To allow for step variability,

ðsB
t Þ2 is augmented at jump points by a quantity proportional

to the step variance and the jump order. Note that, in addition

to baseline drift and step variability, the Gaussian process

implicitly includes the uncertainty in the initial step size

estimate.

The Kalman filter (32,51) is commonly used to estimate

the continuous state sequence generated by a noisy Gaussian

process—the baseline position in our case. For each data

point, the filter provides the most likely baseline from a

Gaussian probability distribution, with mean bt and variance

Vt. Obviously, we cannot apply the Kalman filter directly to

the staircase data, as the Markov data are summed with the

baseline, and there is some cross talk between the Markov

and Kalman estimators, since a variation in probe position

could be attributed to either process. It is the job of the

optimizing algorithm to best separate the two processes. Note

that, even though the baseline drift is essentially determin-

istic, its direction is initially unknown. Hence, from an al-

gorithmic point of view, the baseline can be conveniently

modeled as a random process with small variance. Our tests

showed that adding a deterministic bias is an unnecessary

complication.

We implemented the idealization as an Expectation-

Maximization (EM) optimizer, based on a modified Baum-

Welch algorithm. The EM optimizer alternates two

computational steps:

i. An ‘‘Expectation’’ step estimates the conditional prob-

ability that each data point came from a particular state,

given thewhole data sequence and the current parameters.

ii. This is followed by a ‘‘Maximization’’ step, which is

actually a prediction of a better set of parameters than

the last one.

These two steps are iterated until satisfying a convergence

criterion (e.g., only a small change in likelihood). The final

Expectation step finds the most likely sequence of Markov

states and calculates the likelihood, whereas the Maximiza-

tion step obtains the maximum likelihood parameters. Next,

we explain the two steps of the algorithm.

Expectation—state inference

The Expectation is divided into Forward and Backward steps

(31). The Forward step recursively calculates the probability

of observing the data points fy0, . . .ytg and ending up in state
i. This probability is denoted ai

t. The Backward procedure

does the complementary calculation: bi
t is the probability of

observing the data fyt11, . . .yTg, having begun in state i.
Additional quantities are also calculated: gi

t is the probability

that the state is i at time t, given the entire data sequence

fy0, . . .yTg; jijt is the probability that the state is i at time t and
j at time t 1 1, given the entire data sequence. All these

probabilities are calculated from the current set of parame-

ters, as presented in detail in the Appendix. The a, b, g, and
j calculated here are the dependent variables used in the

Maximization step. Idealization is the specification of the

most likely state for each data point, i.e., the state index i that
maximizes gt:

xML

t ¼ argmax
i

ðgi

tÞ: (9)

Knowing the state, we also know the position, and from

that we can calculate the expected amplitude mk of each dwell.

Note that the sequence of most likely states fxML
0 ; . . . xML

T g
so obtained is not necessarily equal to the most likely

sequence of states XML (Eq. 3). Strictly speaking, to obtain

XML, we should run Viterbi (46,47) as the final Expectation

step, but our tests showed that for all practical purposes, the

two state sequences are identical. Our tests also showed that

replacing the Forward-Backward procedure with Viterbi

throughout the computation, i.e., using a segmental k-means

algorithm (30,49), results in significantly poorer perfor-

mance.

Maximization—parameter reestimation

We want to estimate several parameters: the state transition

probabilities stored in the A matrix (10) and the parameters

controlling the amplitude distribution, i.e., the measurement

noise sM, the mean mJ and the standard deviation sJ of the

step size distribution, and the mean amplitude of each dwell

mk. The transition probabilities aij are reestimated (updated)

with the standard formula aij ¼ +
t
j
ij
t =+t

gi
t, but adjusted to

satisfy the periodicity constraints of the model (10). Rees-

timation of sM, mJ, sJ, and mk is more complicated. For a

given dwell sequence, there are two independent sources of

variance in the data: the variability of the step size, and the

measurement noise. Thus, any parameter estimator should

not only minimize the total data variance, in a sum of squares

sense, but should also correctly partition this variance (SS)
between the intrinsic step size variability (SSJ) and the mea-

surement noise (SSM). If we were to consider a model with

zero step variability, then SSJ would be zero, and only SSM

would have to be minimized. Unfortunately, in the general

case, SSJ and SSM cannot be minimized independently, be-

cause they are both functions of mk, and because the am-

plitudes of consecutive dwells are correlated through the step

size distribution. Minimizing SS with respect to sM, mJ,

sJ, and mk simultaneously requires a nonlinear optimization
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with a large number of free parameters. As a compromise,

we made a linear approximation: we first estimate mk and mJ

given the previous sM and sJ, and then estimate sM and sJ,

given the new mk and mJ.

The expression of SSJ may take different forms for dif-

ferent models. In the general case, the following issues must

be considered:

i. The observed jump size may not be a simple measure of

the true step size. A given amplitude jump may reflect a

single motor step or multiple steps where the durations

were too short to be resolved. If one can observe suf-

ficiently long lasting dwells separated by different jump

sizes, then one can make a good estimate of how to fit

the data. But if the jump sizes are part of a continuum or

happen to be discrete multiples of each other, e.g., 4, 8,

and 12 nm, then a jump of 8 nm could represent a tran-

sition between any two states that differ in position by

8 nm, or two steps between states that differ in position

by 4 nm. Even with perfect data, a finite time resolution

will not permit separation of a large amplitude differ-

ence between two consecutive dwells as one large single

step, or as two smaller steps. Since the actual data is

contaminated by noise as well, discrimination of multi-

ple amplitudes is very dependent on the SNR and the

length of the data set.

ii. Another consequence of step variability is that two

dwells in the staircase data sequence that are separated

by an equal number of forward and backward motor

steps are not expected to have the same observed ampli-

tude, unless the step variance is zero. Hence, their am-

plitudes must be estimated separately.

All these difficulties are handled by our algorithm, but to

avoid confusion, we will illustrate the calculations only for

two simple cases that apply to many types of experimental

data. For irreversible models with uniform step size (i.e.,

unimodal step size distribution), SSJ takes the following form:

SS
J ¼ +

p

wp 3 ðmp11 � mp � m
JÞ2; (10)

where mp is the mean amplitude of the data when the motor

is located at position p along the substrate, and wp is a

weighting factor. Note that the sum above is over all the

positions—indexed by p—occupied by the motor during the

recording. However, not all these occupancies are observed,

as some will be missed events. Thus, the weighting factor wp

is proportional to the time that the motor was observed at

positions p and p1 1. If the motor was not observed at either

p or p 1 1 position, then wp ¼ 0. Minimizing the SSJ

above—simultaneously for allmp values and form
J—satisfies

all the necessary constraints, i.e., Gaussian distribution of the

step size (with mean mJ) and correlation between the mean

amplitudes of consecutive dwells. Estimates of the mp values

are obtained for all positions, either occupied (from the

actual data and from correlations), or unoccupied (from cor-

relations only). The subset of positions with observed oc-

cupancy gives the mean dwell amplitudes mk. Similarly, for

irreversible models with alternating small and large steps

(i.e., bimodal step size distribution), we minimize

SS
J ¼ +

p

wp 3 ðmp12 � mp � ðmJ1 1m
J2ÞÞ2: (11)

This formulation makes the calculation less sensitive to

mistakes in classifying a jump as corresponding to either a

small or a large step.

The minimization of SSJ with respect to mp values and mJ

(or mJ1 and mJ2) is done by imposing the conditions

@SSJ=@mp ¼ 0 and @SSJ=@mJ ¼ 0, and solving the resulting

matrix equation. Once mp and mJ are determined, the step

variance is calculated as (sJ)2 ¼ SSJ=+
p
wp. The measure-

ment error SSM can be calculated simply as SSM ¼
+

t
+

k
(yt � mk)

2, where the sum over all dwells (indexed

by k) is in fact reduced to only one term, as only one dwell

time interval includes the measurement yt. From this, the mea-

surement variance is obtained as (sM)2 ¼ SSM=N, where N is

the number of data points.

MATERIALS AND METHODS

Computer simulations

All simulations were done with QuB (41). The simulated data were sampled

like the experimental data at 0.5 s intervals. For those experiments designed

to test the idealization algorithm as a function of SNR and motor step var-

iability, the random number generator was initialized with the same seed,

resulting in identical dwell sequences.

Stage-stepping data

These control data were obtained by attaching a fluorescent probe to the

substrate and programming the microscope stage to move in a prescribed

pattern, thus characterizing the instrumental resolution. A single Cy3 mole-

cule was attached to a 20-mer dsDNA segment immobilized on a glass cover-

slip. The stage was translated by a 0.7 nm-resolution piezoelectric stage (8),

according to stochastic dwell time sequences created by simulation of the

model shown in Fig. 2 A that describes stalk-attached probes (Fig. 1 C1).
Specifically, the model had one kinetic state per reaction unit and irreversible

kinetics with forward rate constant kF ¼ 0.25 s�1. The SNR was varied by

changing the step size to 8, 13, and 30 nm. Despite the desired precision of

the stage, both visual inspection and the idealization program show some-

what higher variability in the actual jump amplitude, possibly a result of

limited digital-to-analog resolution of the driver. No significant baseline drift

is visible. The data sets were recorded with a sampling time of 0.5 s, and

were between 46 and 176 s long.

Myosin V data

Chick brain myosin V lever arm was exchanged with bifunctional Rhoda-

mine-labeled calmodulin (Br-CaM) (52). Biotinylated actin filaments were

immobilized on a glass surface coated with biotin-BSA and streptavidin.

Myosin V was added to the sample flow chamber after actin immobilization,

excesswaswashed off, and the surfacewas excited by objective-type TIR and

the emission was imaged with a charge-coupled device camera. Each

fluorescent spot had full width at half maximum of �280 nm. Each spot

contained 5,000–10,000 photons, so the two-dimensional Gaussian centroid
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could be fitted with 3 nm error in the peak position for typical spots,

and 1.5 nm for brighter spots. The spots displayed quantal bleaching

indicative of a single molecule. In the absence of ATP, the fluorescent

spots were immobile. The addition of 300 nM ATP led to discernable

steps, with the rate increasing with [ATP]. Only the steps of singly

labeled myosins were analyzed.

Kinesin data

Human ubiquitous kinesin was labeled in the head region with a single Cy3

dye as described previously (9). Sea urchin axonemes (a microtubule rich

structure) were immobilized onto the glass surface by flowing a suspension

through a chamber. The chamber was then rinsed and perfused with kinesin.

Positional stability measurements of labeled kinesin bound to axonemes in

the absence of ATP showed that the axonemes were well attached to the

glass and kinesins were strongly bound to the axonemes; 150 nM ATP

caused the kinesins to walk along the axonemes.

RESULTS

We tested the algorithm in three different ways. The most

comprehensive test was with simulated data, for which the

kinetic and noise models were known. We tested basic pro-

perties of the algorithm: precision and accuracy of param-

eters, sensitivity to noise, sensitivity to initial parameter

values, and convergence. We varied SNR ¼ mJ=sM by

changing the measurement noise sM. As a convenient mea-

sure of motor step variability, we used the coefficient of

variation CVJ ¼ 1003sJ=mJ, and varied it by changing the

standard deviation of the motor step size sJ. The next step

was to analyze control stage-stepping data, where there

was only instrumental noise, but the transition points were

known. Finally, we analyzed the behavior of myosin and

kinesin as a full test, although there are no a priori models

with which to compare the results. This last analysis con-

firmed the adequacy of the various assumptions made about

the kinetic and noise models of experimental data.

Computer simulated data sets

We generated staircase data with irreversible and reversible

models having uniform or alternating small and large steps.

We have tested kinetic models of increasing complexity, but

since similar results were obtained, we discuss here only the

simpler models shown in Fig. 2, having one state per reaction

unit. In all cases, we used a forward rate constant kF ¼
0.25 s�1, and a backward rate constant kB ¼ 0.0 s�1 for the

irreversible and kB ¼ 0.05 s�1 for the reversible models. The

SNR of the simulated data was varied between 1and 10.

Except for data with alternating steps, the jump amplitude

was mJ¼ 10 nm. For each SNR, CVJ was varied between 0%

and 20%, by changing sJ between 0 and 2 nm. Note that mJ is

not important in its absolute value, but only as relative to sJ

and sM. Idealization examples are presented in Fig. 3. Note

that data generated with larger models (i.e., with two or more

states per reaction unit) could be well idealized with a single

state model, since the differences in kinetic complexity have

only second order effects on idealization. The results ob-

tained from irreversible models having uniform steps were

further analyzed, since that is the default model used in the

literature, and the results are presented in Figs. 5 and 6.

Irreversible models with uniform steps

Data with uniform steps can be obtained with the fluorescent

probe attached either to the stalk, or to the motor head. We

focus here on the first case, but note that the only practical

difference between the two types of data is that the SNR in

the second case is twice as large. Thus, if idealization works

for the stalk-attached probe, it works even better for the head-

attached. Examples of idealization results are shown in

Fig. 3 A. The data were idealized with the model shown in

Fig. 2 A, without mistake for SNR $ 5, and only with a few

mistakes at SNR as low as 2 (e.g., Fig. 3 A, trace 7, c and d).
Note that since a model is fitted to an entire data set, a few

errors in detection have little effect upon the final parameters.

This level of performance can be achieved only when the

intrinsic step variance is zero (traces 1, 4, and 7). Increasing
the step variance (CVJ. 5–10%; traces 2, 3, 5, and 6) causes
two kinds of errors. First, small jumps are undetected in the

presence of wideband noise. This leads to an overestimation

of mJ, since the next detected jump is two or more steps high,

and the corresponding rate constants are smaller since tran-

sitions have been missed. Secondly, the visible jumps may

be misclassified as jumps of order 1 when they were actually

FIGURE 2 State models used to simulate and idealize data. (A) A kinetic

model with one state per reaction unit, and motor steps of uniform size. A

transition between consecutive states is observed as a jump in the staircase

data representing the position of the motor. (B) A single state model, where

the motor takes alternatively small and large steps. The discrete variability of

the step size is explicitly included in the state model. For both of these

models, the unitary step has additional variability of a continuous nature,

modeled as a Gaussian. Both these models are simplifications and implicitly

include an ATP-binding step.
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jumps of order 2 or higher, and vice versa. The question

of jump order occurs regardless of SNR, but it can be treated

by including all possible combinations in the reestimation

procedure. Examples of this error are marked in trace 3, a
and b, where the true jump orders are 3 and 1, but were

incorrectly estimated as 2 and 2, respectively.

Note that since we knew these data were obtained with

irreversible models, we imposed the constraint that all entries

in the A matrix corresponding to backward steps were zero.

This condition, when enforced at the start, propagates

throughout the iterations. Without this constraint, especially

at low SNR, noise artifacts are more likely to be misiden-

tified as backward steps. We want to reiterate the value of a

priori constraints: the more constraints, the more precise the

results. The penalty is that the accuracy may suffer because

the model is wrong. Modeling must be hierarchical and only

expand in complexity when the likelihood indicates signif-

icant improvement in the fit.

Reversible models with uniform steps

Idealization results for simulated data are presented in

Fig. 3 B, obtained using the model in Fig. 2 A. For the same

SNR, reversible data are more difficult to idealize than irre-

versible data as they lack the constraint of no backward

transitions. The result is that it is more likely to miss a tran-

sition (trace 3, a and b) or to mistake noise for a movement

of the motor (trace 3, c). Missing transitions has the primary

effect of underestimating rates, whereas mistaking noise

spikes for motor transitions results in overestimated rates and

possibly overestimated step variance. At SNR $ 5, revers-

ible data were idealized without mistakes (traces 1 and 2).

Irreversible models with alternating small and
large steps

Examples of idealization results for simulated data are

presented in Fig. 3 C, obtained using the model in Fig. 2 B.
The small steps are intrinsically more difficult to detect than

the large steps. However, the constraint that the steps do not

occur independently but must alternate allows reliable ide-

alization of both small and large steps. The example traces

shown in Fig. 3 C are idealized without mistake, even when

the small step has a corresponding SNR ¼ 2 (trace 4). Note
that a simpler jump detector, such as the t-test, which uses

only local data information (the means of two samples), may

not be so successful at resolving small jumps.

FIGURE 3 Idealization of computer simulated data. The red traces are the idealized dwell sequences. All data were simulated and processed with the state

models shown in Fig. 2, having one state per reaction unit. The data in A and C have irreversible kinetics (kF ¼ 0.25 s�1, kB ¼ 0.0 s�1), whereas the data in B

have reversible kinetics (kF ¼ 0.25 s�1, kB ¼ 0.05 s�1). The data in A and B have uniform steps, whereas the data in C have alternating steps. The SNR

(approximated as mJ/sM) was varied between 10 and by changing sM between 1 and 5 nm; the step variance was varied by changing sJ between 0.0 and 2.0

nm. (A) Irreversible kinetics with uniform steps, mJ ¼ 10.0 nm When the step variance is high (2.0), the jump order is occasionally mistaken, as marked in the

figure by a and b. Thus, the true jump orders of a and b are 3 and 1 but are incorrectly estimated as 2 and 2, respectively. (B) Reversible kinetics with uniform

steps,mJ¼ 10.0 and sJ¼ 0.0 nm. (C) Irreversible kinetics with alternating steps, sJ¼ 0.0 nm with different SNR and step sizes mJ1 andmJ2. The constraint that

the small and large steps must alternate allows a successful idealization even when the SNR of the small step is only 2 (trace 4).
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Idealization of experimental data

Stage-stepping control data

The stage-stepping data were idealized using the model in

Fig. 2 A, with results similar to the computer simulations, as

shown in Fig. 4 A. Although these data were generated with

zero step variance (sJ ¼ 0.0 nm), we measured a finite jump

variance illustrating the sensitivity of the method and the

limitations of the instrument. The data with mJ ¼ 30.0

(trace 1) and 13 nm (trace 2), with SNR� 10, were idealized

without error. In contrast, the idealization of 8 nm steps data

(traces 3–6), with SNR � 4, had a few mistakes because of

the lower SNR and the more prominent experimental arti-

facts. Note that true error rates can only be known with com-

puter simulated data, where the properties of the input data

are known to arbitrary precision.

Kinesin motor data

An example of kinesin data is shown in Fig. 4 B, trace 1.

Since the fluorophore was head-attached, we expected to see

uniform 16 nm steps. We idealized with the model in Fig. 2 A,
having irreversible kinetics with a single state per reaction

unit and uniform step size. The algorithm correctly detects

the same jump points that we hand-picked. However, the

relatively large estimated step variance (CVJ . 10%) made

estimating the order of jumps more problematic. All jumps

were estimated to be first order, except two that were predicted

to be double jumps (marked with asterisks in the figure), in

agreement with our hand-picked solution. The algorithm

predicted the step size distribution to be mJ ¼ 16.75 nm, and

sJ ¼ 1.86 nm.

Myosin motor data

Examples of myosin data are shown in Fig. 4 B, for alter-
nating steps (the dye attached near the motor midpoint,

traces 2 and 3) and for uniform steps (the dye attached near

the head region, trace 4). We idealized with irreversible,

single-state models, with alternating steps (Fig. 2 B), or with
uniform steps (Fig. 2 A). As myosin’s step size is bigger than

kinesin’s, the SNR in this case is better and the CVJ is

smaller. Hence, all these traces were idealized without dif-

ficulty. For these particular examples, we estimated ;39/35

nm alternating steps, and ;72 nm uniform steps, in good

agreement with the literature (8).

Effects of SNR and step variance—simulated data

The effects that the SNR and the step variance have on the

accuracy of estimates are quantified in Fig. 5 A. Clearly, for
zero step variance, the estimates of mJ, sJ, sM and kF are

FIGURE 4 Idealization of experimental data. The red traces are the idealized sequence. (A) Stage stepping control data. The SNRwas varied by changingmJ:

30.0 nm (SNR� 10; trace 1), 13.0 nm (SNR� 10; trace 2), and 8 nm (SNR� 3–4; traces 3–6). All traces were generated according to a model with sJ ¼ 0.0

nm, but we extracted a finite step variance. Using the model in Fig. 2 A, the following results were obtained for mJ, sJ, sM (in nm), and kF (in s�1): (30 nm)

28.51, 1.40, 3.10, 0.2557; (13 nm) 12.27, 1.28, 1.37, 0.2151; (8 nm, trace 1) 8.02, 0.57, 2.36, 0.2921; (8 nm, 2) 8.11, 0.52, 2.57, 0.2921; (8 nm, 3) 8.12, 0.77,

2.17, 0.2921; and (8 nm, 4) 8.12, 0.75, 1.58, 0.2921. (B) Kinesin (trace 1) and myosin (traces 2–4) data. The kinesin data (sampled at 0.333 s) have uniform

steps (head-attached fluorophore), whereas the myosin data (sampled at 0.5 s) have alternating (traces 2 and 3) or uniform steps (trace 4). The optimized values

for mJ, sJ, sM, and kF: (kinesin, trace 1) 16.74, 2.16, 3.46, 0.4634; (myosin, trace 2) 38.57/34.50, 2.98, 4.54, 0.2807; (myosin, trace 3) 39.76/35.96, 3.70, 4.60,
0.1419; and (myosin, trace 4) 71.88, 3.15, 7.32, 0.1895. All these experimental data were idealized practically as well as the simulated data, suggesting that the

assumptions hold (e.g., d-correlated Gaussian measurement noise).
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excellent, even at SNR ¼ 2 (Fig. 5 A, red lines). Estimates

are still accurate for CVJ ¼ 10% (Fig. 5 A, blue lines) and
SNR ¼ 2, with the exception of sJ. All parameters are

significantly less accurate when the step variance is increased

to 20% (Fig. 5 A, green lines), and the idealized dwell

sequence has more mistakes. These results were obtained

without accounting for all possible jump orders between

consecutive dwells, as discussed, but even so, the errors were

,2–3%. We advise that photon integration time should be

reduced, despite an increase in measurement noise, as long as

the SNR remains within the acceptable range. The increased

time resolution reduces the number of missed events, whereas

the global nature of the fit tends to remove the influence of

the excess photon noise.

Effect of missed events

Amplitude discrimination improves with SNR. We recom-

mend using an offline digital filter (e.g., the one in the QuB

program), rather than increasing the photon integration time,

since the software filter is reversible. The data should be

resampled at the Nyquist limit after filtering (nominally two

data points per cycle at the cutoff frequency) to satisfy the

Markov assumption. Our algorithm is not designed to deal

with higher order Markov processes, but extension is possible

(25,53). The net effect of filtering is to improve the SNR at the

expense of time resolution. The penalty is that there are more

higher order jumps (missed events). Although higher order

jumps are not a problem when the step variance CVJ¼ 0, they

pose a serious challenge when CVJ . 10%.

We tested the effects of missed events on the idealization

of staircase data with irreversible and uniform steps. Data

simulated as in Fig. 3 A, with SNR 5 and CVJ ¼ 0. . .20%,

were downsampled by factors of 2, 4, 8, and 16, which

progressively eliminated shorter dwells, and increased the

fraction of higher order jumps, noted fH. We intentionally left

the bandwidth constant to separate the effects of SNR—de-

termined by bandwidth—from the effects of missed events.

The dwells averaged 8 points in duration for the original

data, but only 0.5 points when downsampled by a factor of

16. The results are shown in Fig. 5 B. For zero jump vari-

ance, all parameters were estimated accurately, even when

the fraction of higher order jumps fH � 0.7. For 10% jump

variance, the estimates of mJ and kF are still good, but

estimates of sJ and sM are incorrect when fH is high. For

CVJ ¼ 20%, the estimates are not usable.

Statistical distribution of estimates

The estimates of mJ, sJ, and sM have a Gaussian distribution,

as illustrated in Fig. 6 A, for simulated irreversible staircase

data with uniform steps, in this case with SNR 5 and 10, and

CVJ ¼ 10%. The width of the distribution depends on SNR

and CVJ (results not shown for the latter). No outliers were

observed for any of the estimated parameters. As previously

discussed and shown in Fig. 5 A, the distributions of sJ and

sM are biased toward larger and smaller values, respectively,

as the SNR decreases. The estimated parameters are well

correlated with the true parameters used in simulation, as

shown in Fig. 6 B for mJ, sJ, and kF.

FIGURE 5 Effects of SNR, step variance, and missed events on idealization. Computer simulated data as in Fig. 3 A. Each estimate is the mean over 100 data

sets, idealized individually. The true parameter values are marked by dotted lines. The rate constant kF was calculated by dividing the data length by the number

of detected dwells. (A) The effect of SNR (varied by changing sM) and of step variance (varied by changing sJ). (B) The effect of missed events. Data with

SNR 5 were downsampled (without changing the analog bandwidth) by factors of 2, 4, 8, and 16, increasing the fraction of higher order jumps fH. For zero step

variance, all parameters were accurately estimated, even when fH � 0.7. These results suggest the limits are SNR $ 2 and CVJ # 10%.

Idealization of Motor Data 3145

Biophysical Journal 91(9) 3135–3150



Convergence of the algorithm

The algorithm is always started with an initial guess of the

parameters, and it is desirable that different initial guesses lead

to the same solution, i.e., there is a global optimum.We tested

the influence of the starting values, as shown in Fig. 7. In the

first experiment, all parameters were chosen from a random

hypercube in parameter space whose range was620% of the

true values. With SNR 5 and CVJ ¼ 10%, the program

converged to the correct answer in 5–10 iterations (Fig. 7 A).
The rate of convergence increased with SNR, and decreased

with CVJ. The algorithm did not converge at SNR 1. In

general, the algorithm converged monotonically.

In a second set of experiments,we determined the importance

of each parameter, separately. All parameters were assigned

their true values, except one parameter, which was assigned a

rangeof initial values.Thus, anyvalue ofm0 (meanamplitude of

the first dwell) within two sM of the first data point always

resulted in convergence to the same solution. Themeasurement

noise sM also had a wide range of convergence to the same

optimal solution. For example, for datawith SNR10 andCVJ¼
0. . .20%, any value of sM between 1 3 10�10 and 1 3 102

converged (true valuewas 0.1). The step size standard deviation

sJ showed good convergence as well. The jump amplitude mJ

was themost critical of all parameters. Its attractionbasin iswide

at highSNRbut narrows as theSNRdegrades, and especially as

the step variance rises. An example is shown in Fig. 7 B, for
SNR 5 and CVJ¼ 10%. Depending on the starting value ofmJ,

the idealization converged to correct or incorrect mJ, or did not

converge at all. For initial estimates ofmJwithin�20% from the

true value, the idealization converged to the correct solution. In

contrast, at SNR 2, the initial values had to be within �5%.

DISCUSSION

The algorithm presented here can rapidly extract the dwell

time sequence from processive molecular motor staircase

data, utilizing nearly all the information contained in the

data. The algorithm can be used to compare different kinetic

and stepping models, and to select the best model based on

the likelihood score. Although it is impossible to test the

algorithm under all combinations of data and model param-

eters, the program is freely available (41) so that investiga-

tors can test the models and the parameters that best suit their

data. For example, the time resolution can be increased by col-

lecting fewer photons per image, and the data set will be pro-

portionally longer, but will the length of the data compensate

FIGURE 6 Statistical distribution of idealization estimates. Irreversible kinetics with uniform steps with SNR 5 andCVJ¼ 0 (A1 and B1) or 10% (A2 and B2);
1000data setswere idealized individually. (A) The estimates ofmJ,sJ, andsMhaveGaussian distribution. (B) There is good correlation between the estimated and

the true values, for mJ and for kF, but poor correlation for s
J. Ideally, all estimates should fall on the diagonal line, as observed for zero step variability (B1).

FIGURE 7 Idealization algorithm converges to the true solution. Shown

for data simulated with the model in Fig. 2 A with irreversible kinetics, and

SNR5 andCVJ¼ 10%. (A)mJ,sJ,sM, and kF converged to the correct values,
evenwhen initialized over awide range. (B) The idealization is sensitive to the

initial value of mJ, and may converge to incorrect values. For an initial

estimate ofmJ within�20%of the true value, the idealization converged to the

correct parameters.
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for the increased measurement noise, for a particular model?

Our tests suggest that the algorithm is applicable, in its

generality, for most staircase data (see Fig. 4 for examples)

(5,6,8,9,33–36). Being nearly maximally efficient (31), no

other type of algorithm can make a significant improvement

in performance. Convergence will always improve as the

number of free parameters is reduced, and we remind the

reader that the hierarchical approach to modeling is the most

reliable: start with highly constrained, small models, and based

upon the results of those fits, slowly relax the constraints.

Comparison with other dwell sequence
extraction methods

There are two other published methods of staircase data

idealization: the hand picking of events and the t-test (e.g.,
Carter and Cross (39)). The hand picking is not reproducible

and not objective. Nevertheless, the hand picking is a

powerful tool in the hands of the trained experimenter, who

implicitly uses contextual and global information, as well as

the prior experience of having looked at many different data

sets. A simple, automated and reproducible method is the

t-test, which detects events by comparing the means of two

samples. Thus, a transition is detected if the averages of the

previous m points and of the next m points are significantly

different. However, the t-test is not objective either, because
choosing m and the level of significance (e.g., 0.9, 0.95, or

0.99) is subjective and inherently assumes a two-state model

of the step. The m points to be averaged may in fact contain

multiple transitions that are not allowed in the two-state

model. The appeal of the t-test—the apparent independence

from a model—is also a critical disadvantage: the t-test does
not permit more complex modeling studies. For example,

one cannot test a model with alternating small and large steps

versus a model with uniform but variable steps.

The maximum likelihood method presented here is model-

based, and therefore allows model testing. The underlying

model includes not only the step size distribution and the

wideband noise, but also the step sequence (e.g., alternating

small and large steps, or randomly small or large), and the

kinetics. Despite the use of an explicit kinetic model in

the idealization, the idealization depends primarily upon the

amplitude distribution, and less upon the kinetics, as shown

for single channel data (30). Once idealized, the data can be

rapidly modeled (seconds) with different kinetic schemes

(10). The resulting models can be recursively applied to the

idealization, although that tends to have little effect due to

the prevalence of the amplitude information. The kinetic

modeling using likelihood permits models to be compared

on an objective basis, although like any statistic, significance

is ultimately judged by the investigator. Another maximum

likelihood method is presented by Smith et al. (54), based on

modeling the changes in the variance within a sliding win-

dow. That method does not explicitly model the processive

nature of the molecular motor.

Idealization is limited mostly by step variability

From simulations (Fig. 3) and experimental data (Fig. 4), we

found that the SNR should be$2 (see Figs. 3–6), and ideally

$5, although those limits will change with the length of the

data set and the average dwell time. This performance is

comparable with that achieved by other algorithms (30,31,

44,45,53), which can estimate step size (but not kinetics)

from ion channel data even at SNR , 1. Note that idea-

lization of processive motor data is a more difficult task than

single channels, since the error in amplitude at any time is

correlated with the errors at all previous times—there is no

immediate baseline measurement available at each step.

Step variability (equivalent to ion channel ‘‘substates’’) is a

critical factor affecting idealization, especially at low SNR.

For example, a step variance CVJ ¼ 20% limits the useful

SNR to .5 (see Figs. 3–6). We emphasize that we are

referring here strictly to the small and continuous component

of the step variability, handled by the Kalman filter. Larger

and discrete variability, e.g., due to alternating small and large

steps, or to multiple binding sites on the substrate, is handled

explicitly by the Markov model. Furthermore, note that the

jump detection procedure works well even when the step

variance is large. What becomes problematic is the classifi-

cation of jumps, as first, second, or higher orders. As previ-

ously discussed, an observed large jump in amplitude could

be classified either as a large single step, or as a multiple of

small single steps. Given this inherent uncertainty, our

algorithm can still find a maximum likelihood state sequence.

Variance estimation is not always reliable

Co-estimation of step variance (sJ) and measurement noise

(sM) is difficult, and success is not guaranteed since they are

strongly correlated (see Figs. 5 and 6). Thus, sJ may be

underestimated while sM is overestimated, or vice versa. The

simplest solution may be to extract sM from control experi-

ments and constrain it when fitting the biological data. Note

that an independent estimation of the dwell amplitudes mk

and of the jump amplitude mJ, done by minimizing sepa-

rately the two error terms SSM and SSJ, proved to result in

even less accurate estimates and in more idealization mistakes.

The idealization algorithm has good convergence

If the SNR is within the acceptable range, the idealization

usually converges to the true solution (Fig. 7). The algorithm

may have stable solutions (likelihood maxima) not only for

the true value of the jump amplitude mJ, but also for its

submultiples: 1/2 mJ, 1/3 mJ, etc. This ambiguity can be

avoided by inspecting the estimated A matrix: the transition

probabilities for the correct mJ should have a monotonic

exponential decay, but for 1/2, 1/3, etc., they are interspersed

with zeroes due to lack of evidence in the data for these

transitions. For example, first, third, fifth. . . order jumps will
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be missing when the algorithm has converged to the 1/2 mJ

solution, a highly improbable event. When enough data are

available, the exponential profile of transition probabilities

might even be used as a visual indicator for convergence to

the correct solution.

APPENDIX: THE FORWARD-BACKWARD
PROCEDURE

We illustrate the concepts with an irreversible model having uniform motor

step size and one state per reaction unit, in which case the state index and the

position index are equal. Extension to more general models is conceptually

straightforward, but description of the formalism is tedious.

Forward step

The Forward step recursively calculates a jointly with the baseline quantities

bt and Vt, and it is itself implemented as an Expectation-Maximization

procedure. The Expectation step predicts the state occupancy probabilities

at11 from the previous at , conditional on the current estimate of bt11. Then,

theMaximization step obtains a posteriori estimates of bt11 andVt11, usingbt,

Vt, and the current at11 estimate. The estimates of bt11 and Vt11 are obtained

with a Kalman filter. The Forward step can be summarized as follows:

initializea0; b0;V0

for each t ¼ ½0 . . . T � 1� do
initialize bt11 ¼ bt

repeat

calculateat11jat; bt11

calculate bt11; Vt11jbt; Vt; at11

until convergence

end.

The baseline and acan be initialized as follows:

b0 ¼ y0 (a1)

V0 ¼ ðsMÞ2 (a2)

a
i

0 ¼ P
i

0 3 piðy0jb0Þ; (a3)

where Pi
0 is the starting probability for state i, and pi(ytjbt) is the conditional

Gaussian probability density of data point yt, given the state i, the state

amplitude mi, and the baseline bt, calculated as follows:

piðytjbtÞ ¼ Nðmi;s
MÞjyt�bt

(a4)

mi ¼ m0 1 i3m
J
: (a5)

The amplitude m0 of the first dwell and the measurement noise sM are

parameters of the idealization procedure, and can be initialized by manual

data selection. For each iteration, at11 is calculated conditional on bt11, as

follows:

a
j

t11 ¼ +
i

a
i

t 3 aij

� �
3pjðyt11jbt11Þ; (a6)

where aij is the conditional state transition probability, stored in the Amatrix

calculated as in (10). The standard Kalman filter formulae (e.g., (51))

compute bt11 and Vt11 conditional on at11, as follows:

b̃t11 ¼ bt (a7)

Ṽt11 ¼ Vt 1 ðsB

t11Þ2 (a8)

K ¼ Ṽt11= Ṽt11 1 ðsMÞ2� �
(a9)

bt11 ¼ b̃t11 1K3ðxt11 � b̃t11Þ (a10)

Vt11 ¼ Ṽt11 � K3Ṽt11; (a11)

where xt11 and sB
t11 are calculated as follows:

�aa
i

t11 ¼ a
i

t11=+
j

a
j

t11 (a12)

xt11 ¼ yt11 �+
i

�aa
i

t11 3mi (a13)

s
B2

t11 ¼ s
2

B 1s
2

J 3
1

2
+
i

+
j

ðdij 3 �aa
i

t 3 �aa
j

t11Þ; (a14)

where dij ¼ abs(j � i). In Eq. a14, if a jump of order k is detected between t

and t1 1, the reference baseline variance (sB)2 is augmented by k times the

jump variance (sJ)2. The iteration of Expectation-Maximization steps is

stopped when bt11 changes little from the previous iteration.

Backward step

The backward step calculates b recursively, as follows:

b
i

t ¼ +
j

½aij 3 pjðyt11jbt11Þ3b
j

t11� (a15)

b
i

T ¼ 1: (a16)

The auxiliary quantities g and j are calculated as follows:

g
i

t ¼
a

i

t 3b
i

t

+
j

a
j

t 3b
j

t

(a17)

j
ij

t ¼
a

i

t 3 aij 3 pjðyt11jbt11Þ3b
j

t11

+
k

+
l

a
k

t3akl3plðyt11jbt11Þ3b
l

t11

: (a18)

In all the above equations, we intentionally did not specify the range of

the state index, as it refers to the theoretically infinite state space, but the

computation is effectively done in a finite truncated state space (10).

Glossary of mathematical symbols

N, number of data points.

dt, sampling interval.

t, discrete time index, with values [0. . .T].

yt, position measurement at time t.

Y, sequence of noisy position measurements fy0, . . .yt, . . .yTg.
sM, standard deviation of the measurement noise.

NS, number of states per reaction unit.

NP, number of substrate positions occupied by the motor.

xt, Markov state at time t, with values [0. . .(NS 3 NP)].

X, sequence of states fx0, . . .xt, . . .xTg.
XML, most likely sequence of states.

Q, rate matrix, with elements qij.

A, transition probability matrix, with elements aij.
kF, forward rate constant.

kB, backward rate constant.
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J, random variable describing the observed jump amplitude.

mJ, mean of J.

sJ, standard deviation of J.

mk, average data amplitude for the kth dwell in the staircase sequence.

m0, average data amplitude for the first dwell.

m, sequence of dwell amplitudes fm0, . . . mk, . . . mKg.
mp, expected data amplitude when the motor is located at position p.

mi (or mx), expected data amplitude when the motor is in state i (or x).
bt, mean of the baseline offset at time t.

Vt, variance of the baseline offset at time t.

vt, Gaussian noise adding random changes to bt.
sB
t , standard deviation of vt.

L, likelihood.

M(u), topological model with parameters u.
SS, total sum of square errors.

SSJ, sum of square errors due to intrinsic step size variability.

SSM, sum of square errors due to measurement noise.

SNR, signal/noise ratio, defined as mJ/sM.

CVJ, coefficient of variation of the step size, defined as 100 3 sJ/mJ.

fH, fraction of higher order jumps.

Pi
0, probability that the motor starts in state i at time 0.

p(ytjxt), probability density function (pdf) of measurement yt given state

x, at time t.

pi(ytjbt), pdf of measurement yt, given state i and baseline bt, at time t.

p(xtjxt21) probability of state xt, given previous state xt21.

p(mkjmk21) pdf of the kth dwell’s mk, given the previous dwell’s mk21.

ai
t, probability of measuring data fy0, . . .ytg and ending in state i.

bi
t, probability of measuring data fyt11, . . .yTg, having begun in state i.

gi
t, probability that state is i at t, given data fy0, . . .yTg.

j
ij
t , probability that state is i at t and j at t 1 1, given data fy0, . . .yTg.
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