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Abstract 

There are many situations in logic, theoretical computer science, and category theory where 
two binary operations - one thought of as a (tensor) “product”, the other a “sum” - play 
a key role. In distributive and *-autonomous categories these operations can be regarded as, 
respectively, the AND/OR of traditional logic and the TIMES/PAR of (multiplicative) linear logic. 
In the latter logic, however, the distributivity of product over sum is conspicuously absent: this 
paper studies a “linearization” of that distibutivity which is present in both case. Furthermore, 
we show that this weak distributivity is precisely what is needed to model Gentzen’s cut rule (in 
the absence of other structural rules) and can be strengthened in two natural ways to generate 
full distributivity and *-autonomous categories. 

0. Introduction 

There are many situations in logic, theoretical computer science, and category theory 

where two binary operations, “tensor products” (though one may be a “sum”), play 
a key role. The multiplicative fragment of linear logic is a particularly interesting 
example as it is a Gentzen style sequent calculus in which the structural rules of 
contraction, thinning, and (sometimes) exchange are dropped. The fact that these rules 
are omitted considerably simplifies the derivation of the cut elimination theorem. 

* Corresponding author. 
’ This author was partially supported by the Sydney Category Seminar, the Australian Research Council, and 
NSERC, Canada. 
‘This author was partially supported by the Sydney Category Seminar, Le Fonds FCAR, QuCbec, and 
NSERC. Canada. 

0022-4049/971$17.00 Copyright @ 1997 Elsevier Science B.V. All rights reserved 
SSDI 0022.4049(95)00160-3 



134 J.R.B. Cockett. R.A. G. Seely I Journal of‘ Pure and Applied Algebra 114 (1997) 133-l 73 

Furthermore, the proof theory of this fragment is interesting and known [ 131 to corre- 
spond to *-autonomous categories as introduced by Barr in [2]. 

In the study of categories with two tensor products one usually assumes a distribu- 
tivity condition, particularly in the case when one of these is either the product or 
sum. The multiplicative fragment of linear logic (viz. *-autonomous categories) is a 
significant exception to this situation; here the two tensors “times” (8) and “par” (?B 
which we denote by $ - note that this conflicts with the notation introduced by Girard) 
do not distribute one over the other. 

However, *-autonomous categories are known to satisfy a weak notion of distribu- 
tivity, in effect a “linearization” of the usual distributivity. This weak distributivity is 
given by maps of the form: 

which amount to the requirement that one tensor is strong with respect to the other. 
To see what this means, we recall that a functor F is strong (with respect to a tensor 
product 8) if there is a natural transformation X@F( Y) --+ F(X@ Y) satisfying certain 
coherence conditions. If we take F to be the functor F(Y) = Y 6~ C, then this gives 
the weak distributive law X 18 (Y @? C) + (X @ Y) $ C. 

These maps, interpreted as entailments, are also valid in what might be considered 
the minimal logic of two such tensors, namely the classical Gentzen sequent calculus 
with the left and right introduction rules for conjunction and disjunction and with cut as 
the only structure rule. This Gentzen style proof theory has a categorical presentation 
already in the literature, viz. the polycategories of Lambek and Szabo [14]. It should 
therefore be possible to link *-autonomous categories and polycategories. However, 
this begs a wider question of precisely what properties a category must satisfy to be 
linked in this manner to the logical superstructure provided by a polycategory. 

It turns out that these weak distributivity maps, when present coherently, are precisely 
the necessary structure required to construct a polycategory superstructure, and whence 
a Gentzen style calculus, over a category with two tensors. The weak distributivity 
maps allow the expression of the Gentzen cut rule in terms of ordinary (categorical) 
composition. 

We call categories with two tensors linked by coherent weak distribution weakly 

distributive categories. They can be built up to be the proof theory of the full multi- 
plicative fragment of classical linear logic ’ by coherently adding maps 

’ The system FILL (full intuitionistic linear logic) of de Paiva [7] amounts to having just the second of 
these (families of) maps. From the autonomous category viewpoint, these are the more natural maps, as 
they correspond to evaluations. The symmetry of the *-autonomous viewpoint then suggests the first (family 
of) maps. 
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or to the proof theory of the A,V fragment of intuitionistic propositional logic by 
coherently adding contraction, thinning, and exchange. The former corresponds to *- 
autonomous categories and the latter to distributive categories. 

In fact, weakly distributive categories lie at the base of a rich logical hierarchy, 
unifying several hitherto separate developments in the logics of theoretical computer 
science. In this paper we shall see some of these connections, in particular relating 
weakly distributive categories to *-autonomous categories, to distributive categories, 
and to braided monoidal categories. Furthermore, the duality involved in the defini- 
tion of weakly distributive categories means that the opposite of a weakly distributive 
category is weakly distributive - so for example codistributive categories are weakly 
distributive. One has frequently been struck by the strangeness of the distributivity in 
such codistributive categories as the category of commutative rings, or the category of 
distributive lattices, and so on: they may now be seen as weakly distributive in the 
standard manner. Other famous examples of non-distributivity can be accommodated 
in this framework - the category of pointed sets is weakly distributive in the obvious 
way, with product and sum as the two tensors. 

One point must be made about the connection with linear logic. A novel feature of 
our presentation is that we have considered the two tensor structure separately from 
the structure given by linear negation (-)I. We show how to obtain the logic of 
*-autonomous categories from that of weakly distributive categories, giving, in effect, 
another presentation of *-autonomous categories. It sometimes happens that it is easier 
to verify *-autonomy this way; for example, verifying that a lattice with appropriate 
structure is *-autonomous becomes almost trivial if one checks the weak distributivity 
first (see [3]). 

It is clear that weakly distributive categories constitute a very weak fragment of linear 
logic - one motivation behind studying them is indeed driven by this very weakness. 
The usual proof theoretic studies of classical linear logic introduce negation at a very 
early stage, making it difficult to see the interaction between the two multiplicative 
tensors TIMES and PAR. Weakly distributive categories isolate this interaction allowing 
a finer modularity of the construction of the proof theories. 

We have been very brief about coherence questions here; these matters are more 
fully handled in a sequel [4], which contains as well an answer to the question of the 
conservativity of the extension to *-autonomous categories. In that paper, coherence is 
completely settled not only for weakly distributive categories but also for *-autonomous 
categories. 

A note to end on: this paper is the “journal version” of [6]: it answers some of the 
problem we had to leave open at that time and provides more details where necessary. 
However, as time passes, one’s view of things often alters, and so we now see a 
few matters differently. In particular, we are less convinced of the naturality of the 
original notion of weakly distributive category, and lean more to two extremes: viz. 
the symmetric case and the planar case. In the former, each tensor is symmetric and so 
we only need one of the weak distributivities (the others being derived via symmetry), 
and in the planar case, the tensors are not assumed symmetric, but only the non- 
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permuting weak distributivities (those where the order of the variables is not changed) 
are assumed. This latter case is, we now agree, a better syntax for non-commutativity. 
Along with this goes the view that one ought to have two negations in the non- 
commutative case when passing to *-autonomy. The original notion is now relegated 
to the status of marginalia, at least until some compelling reason is found to reinstate 
it. The original notation, however, is useful as it allows a discussion of the two notions 
simultaneously - as we shall see below. 

It turns out that there is rather more history to these notions than we had originally 
realized. The notion of weakly distributive category (in one flavour or another, often 
with variations) has been considered by a number of people, albeit usually only in the 
posetal case - the coherence conditions do not appear to have been considered before. 
A particularly good survey of the development of these notions appears in [ 111, and 
we refer the reader to Lambek’s article for the details. 

Note added in proof 

An error in Proposition 3.1, where we claimed that distributive categories are weakly 
distributive, was found in proof. The result is totally incorrect: a distributive category 
is a Cartesian weakly distributive category if and only if it is a preorder. 

In particular, any distributive category which satisfies Eq. (13) for the choice of 
weak distributions described in the paper is immediately a preorder. This because in 
that diagram if A = D = 1 and B = C = 0 then, up to equivalence, we obtain for the 
two sides of the diagram the coproduct embeddings of 1 into 1 + 1. This suffices to 
cause collapse. The argument can be modified to show that in any distributive category 
which is simultaneously weakly distributive (no matter how the weak distributions are 
defined) Boolean negation must have a fixed point. This also suffices to cause collapse. 

Essentially, the reason why distributive categories are not weakly distributive is 
because the former cannot be a satisfactory semantics for any “reasonable” AND/OR 
logic. It is easy to verify that Eq. (13) is necessary if the semantics is to satisfy 
categorical cut elimination for the modest sequent calculus in the paper. (See Fig. 1 
for example.) In particular, distributive categories cannot provide a sound semantics 
for any AND/OR logic, such as standard intuitionist or classical logic, which includes 
this sequent calculus as a fragment. 

It is interesting to note, however, that by carefully choosing the weak distributions 
one can construct a Cartesian weakly distributive category from an elementary dis- 
tributive category by simply passing to the Kleisli category of the “exception monad” 
E(X) = X+ 1. So, for example, although Sets is not weakly distributive itself, Pointed 
Sets is. 

The error means, of course, that all discussion in the paper of non-posetal distribu- 
tive categories as examples of weakly distributive categories must be discounted. This 
affects the Introduction, where in the seventh paragraph especially (“In fact, weakly 
distributive categories lie at the base of . ..“) must be read to exclude distributive cate- 
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gories, and Section 3, where Proposition 3.1 must be restated as indicated above, and 
the surrounding text must take this restatement into account. In particular, 
Theorem 3.3, although still correct, ought to be stengthened to state that a carte- 
sian weakly 
object. 

A version 
be found on 

distributive category is a preorder if and only if it has a strict initial 

of this paper which contains a rewritten Introduction and Section 3 may 
the WWW at this URL: < http://www.math.mcgill.ca/rags >. 

1. Polycategories 

We shall begin with a review of Szabo’s notion of a polycategory: 

Definition 1.1. A polycategory C consists of a set Oh(C) of objects and a set Mq(C) 
of morphisms, (also called arrows, polymorphisms, etc.) just like a category, except 
that the source and target of a morphism are finite sequences of objects 

source: Mq(C) - Oh(C)* 

target: Mq(C) - Oh(C)* 

(where X* = the free monoid generated by X). 
There are identity morphisms iA: A + A between singleton sequences (only) and a 

notion of composition given by the cut rule: 

r,,A,r2 4 r, A, f, Az,A,A3 

I-,,A,,&f% Az,rj,Aj 

where the length of r, is i and the length of AZ is j. When the subscripts are clear 
from the context they shall be dropped. We shall place the following restriction on 
the cut rule: we allow cuts only if either r, or 42 = 4, and either r2 or 43 = 4. 

We have the following equations 2 : 

(1) rlfr2Ar3 = A+d+L.4fi 
7 > 

rl - ““Jf r2,A, r, 

@) r,,A,r2 L r3 = r19A,h f fiA 2A 
J ,013 i.4 

rl,A,r2 - r3 

2 Below “dir” represents the trivial concatenation of a sequence and an empty sequence - as forced by the 
restriction on the cut rule. 
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f 
A,,A,h 4 A~,B,&~I + r2>A,r3 

(3) @,,B,& 5 Q3 A,,r,,Az 9 r2,As,B,A4,r3 

@,,A,,r,,A2,@2 h i”‘+m (’ “’ 'i r2,A3,Q3,A4,r3 

(Pl,B,Q2 3 Q3Al,A,A2 5 A3,B,Aq 

cP,,A,,A,A~,@~ h-A3,@3,A4 rl f, r2,u3 

@,,A,,r,,Az,@z (h 'Orn g, '+loJ f f r2,4j,cD3,44,r- 

hw2,m3 4: @4 rl 5 k4r3 

(4) @,) r,) @2, B, @3 h,o,f r2,@,,r3 Al 3 Az,B,A3 

@*,r,,@2,4,,@3 (h lo' f) r+k+'om P A21r&@&A3jr- 

@,,A,G2,B,Q3 5 @dA, 5 Az,B,A3 
= @,,A, @2, Al, @3 - h Ji’+iom g A~,Q~,A~ r, L r2,_4,r3 

(h i-It/O, 9) 10, f 
@1,~1,@2,~1,@3 f A21r2,@4,A3lr3 

Al,A,A2 Jf+ A3 r, -5 r2,A,r3,B,r4 

(5) @,,B,(P2 J+ @3 A,,rl,A2 Y r2,A3,r3,B,r4 

@IJA,,~,,@~/A~ 
h mo,+k+i (9 ‘0, f) 

k r2,A3,r3,Q3,r4 

Q,,B,Q~ -1: @3 r, L r2,A,r3,B,r4 

= A,,A,Az 3 A3@,,rl,@2 h r2,A,r3,Q3,r4 

@,lA,,r,,@2lAz 
g 101 (h mOl+l+i f) r,, A3, r3, Q3, r4 

Remark 1.2 (Other varieties of polycategories), The original definition of polycate- 
gory in [14], which we used in the preliminary version of this paper [6], differs from 
the definition above in that we have here placed a restriction on the cut rule. This 
amounts to imposing “planarity” on the proof theory of polycategories. This matter is 
discussed at some length by Lambek [ 111: he gives three variant systems in which the 
cut rule has varying degrees of restriction. 

In the weakest system, BLl, cut is restricted to instances where either ri = rz = 4 
or 42 = A3 = 4. This corresponds to having no weak distributivities. A stronger 
system, BL2, allows cuts where either r, = A3 = 4 or r2 = 42 = 4. This is the 
system we have adopted and is also the system of Abrusci in [l]. It is the basis of 
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planar noncommutative linear logic. To motivate these restrictions, in the case when 
the tensors coincide (e.g. in compact closed categories) the cut is a composition of 
arrows of the form 

~I,AI,Tz - rl,Az,A,A3,r2, &,~l,A,r2>A3 - Az,r3rA3. 

This makes sense if and only if ri, A2 = A2,r1 and r,, A3 = A3,r2. In the non- 
symmetric theory, this can happen if and only if one of 42 or ri is empty and also 
one of r2 and 43 is empty. We leave it to the reader to draw the “wiring diagrams” 
that make this clear. 

On the other hand, if an unrestricted cut is allowed in our setup, which amounts 
to having two “permuting” weak distributivities, 6: and Sf, a certain amount of 
symmetry (or exchange) will be introduced. Thus, with unrestricted cut we are not 
dealing with a strictly non-commutative logic. On the other hand, nor would we be 
dealing with a commutative logic: if the weak distribution rules are inverted, the 
permuting ones give a braiding on the tensors. We shall return to this point later. 
We shall refer to models of the system with unrestricted cut as “non-planar polycat- 
egories”. 

We are now of the opinion that the two natural systems in this context are the pla- 
nar system as given above, and the symmetric system which in addition contains the 
exchange rule: 

for permutations C, z. We shall call models of the latter system “symmetric polycat- 
egories”. They are, of course, also non-planar. 

Next, we define a polycategory with two tensors: this amounts to having two binary 
operations @, $ on objects, extended to morphisms according to the following inference 
rules: 

(a) 
r,,A,B,r2 L r, 

(@R) 
r, $ r2,4r3 Al 3 &,&A3 

f@” ’ 

r,,A au2 - r, T,,Al * A2,r2,A@B,A3,r3 

provided (in (@R)) that rs = A2 = q5 or ri = rs = q4 or Al = A2 = 4. In (@CL), i = 
length of ri ; in (@R), i = length of r2, j = length of AZ. 

(@L) 
r,,A,r2 L r, AI,&& -5 43 

OBR) 
rl $ r2,4B,r3 

Al,rl,A @B,A2,r2 F f I@1 g r3,A3’ r, 2 r2,A BB,r3 

provided (in (EsL)) that r2 = Al = 4 or Al = A3 = C$ or r2 = r3 = 4. In (@L), i = 
length of ri, and j = length of Al ; in ($R), i = length of r,. 
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(Note that we have indexed the labels as we did with cut; when clear from the 
context, we shall drop these subscripts.) 

There are many further equivalences of derivations as in Definition 1.1. These can 
be considerably simplified if we give the following equivalent formulation of the tensor 
rules: 

Definition 1.3. A two-tensor-polycategory is a polycategory with two binary operations 
I%,$ on objects, with morphisms 

mAB :A,B+A@B 

and the rules of inference (@L) and (@R) above. These rules are to represent bijections 
stable under cut, so the following equations must hold: 
?? m@ = i. 

?? g o f @ = (g o f )@ for g : Al, C, 42 -+ A3 and f : r, ---) r,, Cl-s, and where ri 
contains the sequence A, B. 

0 f@og=(fog)@ f or g : A, --f AZ, C, A3 and f : ri,C,r, ---f r3, and where one of 
r,, r’ contains the sequence A, B. 

?? f = f@f om. for f : r,,A,B,r2 --f r,. 

0 (f@f)” = (f@/)“‘. for f : r,,A,B,r2,C,D,r3 ---) r,. 

0 w@ = i. 

a go f@ = (go f)@. for g: Al,C,A2 --f A3 and f : ri + r,,C,rs, and where one of 
r2, r3 contains the sequence A, B. 

?? f @ o g = (f o g)@. for g : Al -+ A2, C, A3 and f : r,, C, r2 -+ rs, and where r3 
contains the sequence A, B. 

?? f = w0 f@I for f : r, + r2,A,B,r3. 

0 (.f‘@j)“’ = (f@l)@’ for f: r, -r2,A,B,r3,C,D,fi. 

0 (f@)“j = (f@)“’ for f: r,,A,B,r2 -+ r3,c,D,r4. 

We shall leave it as an exercise to show that this is equivalent to the other pre- 
sentation. However, we must stress that cut elimination does not hold for the second 
presentation of two-tensor-polycategories; the amount of cut built into the rules (@R) 
and (@L) is necessary to prove cut elimination. 

It is straightforward to define the category of polycategories (just keep in mind that 
we interpret sequents r -+ A as maps @r + @A, and Iimctors should preserve 
the tensors). So a fimctor F : C + D is a map Oh(C) + Oh(D) and a map Mq(C) 
+ Mq(D) so that this and the induced map Oh(C)* -+ Oh(D)* commute with SOUYC~ 
and with target. A fimctor between two-tensor-polycategories must preserve the two 
tensors. 
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A natural transformation LX : F ---f G assigns a D morphism LQ : F(A) -+ G(A) to 
each singleton sequence A from C, satisfying the usual naturality condition. 

We shall denote the 2-category of polycategories by PolyCat, and the 2-category of 
two-tensor-polycategories by PolyCat,,. We then note that the latter is a conservative 
extension of the former: 

Proposition 1.4. There is a 2-adjunction F -1 U 

F 
PolyCat gx? PolyCat,, 

u 

whose unit C -+ UF(C) is full and faithful for each polycategory C. 

Proof. Given a polycategory C, F(C) is the free two-tensor-polycategory generated 
by C. That is, close the set Oh(C) under the tensors @,@ to obtain the objects of 
F(C), and take the sequents of C as non-logical axioms, closing under the inference 
rules and quotienting by the equivalence to obtain the morphisms of F(C). For a 
two-tensor-polycategory, U just forgets the two tensor structure. 

For a two-tensor-polycategory D, the counit FU(D) -+ D collapses the new tensor 
structure onto the old. For a polycategory C, the unit C + UF(C) is the usual 
inclusion into the free structure. To see that this map is full, we use the cut elimination 
theorem for two-tensor-polycategories. F(C) has only the sequents of C as its non- 
logical axioms, so by cut elimination any derivation in F(C) is equivalent to one with 
cuts restricted to sequents from C. If r + A is a tensor-free sequent of F(C) (i.e. is 
in the image of the unit) then any derivation of r + A is equivalent to a derivation 
in C. This because with the cuts restricted to the tensor-free part of F(C), none of the 
left or right introduction rules could be used in the derivation (they introduce tensors 
that could never be eliminated). 

To verify that the unit is faithful is a bit more involved - the proof we prefer uses 
proof nets and the techniques developed in [4]. We sketch the details here: we do not 
wish to enter a long digression on proof nets, so we refer the reader to that paper 
for more details. For polycategories (without tensors) the notion of (two-sided) proof 
net is particularly simple: in the free case, we have just identity wires - not a rich 
structure, admittedly. For arbitrary polycategories, we add the possibility of starting 
with “non-logical axioms” corresponding to primitive morphisms of the polycategory. 
Such a non-logical axiom, corresponding to a morphism A,, . . . , A,, -+ B,, . . . , B,, takes 
the from of a component 

A, ... A, 

$3 
.f 

B, B, 
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To pass to the two-tensor-polycategory context, we just add the usual (two-sided) 
links for @, $: 

(04 

A@B 

A B 

We have the following rewrites in the two-tensor case. (We use 0 to represent either 

8 or c3.) 

Back to the proof of faithfulness : the basic idea is to consider a chain of “rewrites” 
in the two-tensor-polycategory UF(C) which display the equality of two morphisms 
from C; since the morphisms (rather their representing nets) originate in C, the first 
rewrite which is not tensor free must involve an “expansion” (technically, a backwards 
reduction) step introducing a tensor (or cotensor). 

We then consider the next step in the chain: if it is a rewrite from C then we can in 
fact switch the order of these rewrites, pushing the two-tensor-rewrite (the expansion) 
later in the chain. For example, if a rewrite in C replaces an identity on A with another 
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link, say 

(where the box represents some suitable subgraph). Then we would replace a subse- 
quence of rewrites of this form: 

with one of this form: 

If the next step were not a C rewrite, but instead a tensor rewrite, we would 
just proceed by induction to delay all the tensor steps. In this way we can push 
all the C steps to the beginning of the chain and all the tensor steps to the end 
of the chain - since these latter steps eventually end up with a net from C, they 
must cancel out (i.e. the chain may be terminated before the two-tensor rewrites 
begin) to give a chain without tensors. Hence the two morphisms must be equal 
in C. 0 
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Remark. While we have not considered the question of the units T, _L for the tensors 
@, B these can be added (see [ 131) and the above proof can be extended for this case. 
We shall feel free to consider PolyCat,, with these units when this makes matters 
technically simpler. The full treatment of the units is quite technical and forms the 
main subject of [4]. 

2. Weakly distributive categories 

2.1. Definitions 

A weakly distributive category C is a category with two tensors and two weak 
distribution natural transformations. The two tensors will be denoted by @ and @ and 
we shall call @ the tensor and @ the cotensor. Each tensor comes equipped with 
a unit object, an associativity natural isomorphism, and a left and right unit natural 
isomorphism: 

(8, T, a~,, u”& u:) 

The two weak distribution transformations shall be denoted by 

St::A@(B$C) + (A@B)$C 

s; :(B@C)@A --+ B@(C@A). 

If the tensors are symmetric, the following “permuting” weak distributivities are in- 
duced: 

&A@(B@C) -+B@(A@C) 

s;:(B@C)@A --+ (B@A)@C. 

We shall call C a non-planar weakly distributive category if it has these permuting 
weak distributivities as well. A special case is when the two tensors are symmetric; 
see the next section for the definition of a symmetric weakly distributive category. 
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This data must satisfy certain coherence conditions which we shall discuss shortly. 
Before doing so we remark that there are some symmetries which arise from this data: 
[op’] reverse the arrows and swap both the @ and $ and T and I; this gives the 
following assignment of the generating maps: 

[a’] simultaneously reverse the tensor @ and the cotensor CD; this assigns 

8; c+ 6: aa +b a;’ a@ H a;’ 

a; H dR UR L @HI.&++~ 

In the non-planar case, the 0’ symmetry can be decomposed into its obvious compo- 
nents, as follows. Note then that the following are true only in case the “permuting” 
weak distributivities are valid: 
[@‘I reverse the tensor 8; this assigns 

[@I’] reverse the cotensor @; this assigns 

The notion of a weakly distributive category is preserved by these symmetries (the 
latter two only for non-planar weakly distributive categories) and we shall use this fact 
to give an economical statement of the required commuting 
follows 3 : 

conditions, which are as 

2.1. I. Tensors 
The two tensor products must satisfy the usual conditions of a tensor product. Ex- 

plicitly, the data (8, T,u~,u~,z&), where a~,, ug, and z& are natural isomorphisms, 

3 We shall give the equations for non-planar weakly distributive categories - of course, the equations in- 
volving the permuting weak distributivities are only intended for the non-planar case. We only number the 
planar equations. 
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must satisfy: 

A@B 

and the well-known pentagon diagram 

((AOB) OC)OD 

This gives the following equations4: 

(1) 

(2) 

Similarly, the data (c& T,a@, Us, @) R z.8 must satisfy the diagrams obtained by applying 
the symmetry op’ to these. This, of course, makes @ a tensor product and gives the 
following equations: 

(3) 

(4) 

4 We use two notations for composition: f; g and g o f both denote “first f then g”. 
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2.1.2. Unit and distribution 
The following commutativity linking the unit and distribution must hold: 

Furthermore all the forms of this diagram under the symmetries must hold. This gives 
the following set of identities: 

L U@ = s;;z& @i (5) 

24: = $;i@uR, (6) 

a& @i = Si;uL, (7) 

i@ui = i$;u~ (8) 

u; =6f$ia3u& 
R u8=$;u~@i 

uR,@i=@;u~ 

iC3ua- R, e 
L _ (jL.uL 

For example, the diagram obtained by reversing arrows (after writing isomorphisms in 
the “positive” direction) is 

bR 
(IOA)@BR-, IO(AOB) 

2.1.3. Associativity and distribution 
All the remaining diagrams actually result from the interaction of these maps. How- 

ever, they also arise as an interaction between other maps and to emphasize these 
interactions we shall have a representative diagram from each interaction chosen so as 
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to provide a complete axiomatization. Here therefore is the representative diagram for 
this interaction: 

Notice that this diagram brings outside tensors on one side into an argument of the 
cotensor. The symmetries now generate the following set of equations: 

Again, for example: 

which is an interaction of coassociativity and distribution and brings an outside tensor 
onto an inside cotensor. 
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2.1.4. Distribution and distribution 

The symmetries then generate the following equations: 

(13) 

(14) 

Notice that the symmetries @’ and $’ generate the same equation this time. When the 
symmetry op’ is applied the diagram becomes 

which is the case when tensors on either side are moved into different arguments of 
the cotensor. 

2.1.5. Coassociativity and distribution 
The last basic diagram applies only to the non-planar case, and concerns a further 

interaction of coassociativity and distributivity: 
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which brings an outside tensor onto the middle cotensor. 
The symmetries then generate the following equations: 

Notice that the original diagram is already “symmetric” in @ so that this symmetry 
generates nothing new. 

When the symmetry which reverses arrows is applied the diagram becomes 

which brings the tensors on each side onto an argument of the cotensor. 

2.2. Weakly distributive categories and polycategories 

In this section we show that weakly distributive categories and two-tensor-polycat- 
egories are essentially the same thing. With Proposition 1.4 this justifies our claiming 
that weakly distributive categories constitute the essential content of polycategories. 
We shall denote by WkDistCat the category of weakly distributive categories with 
functors which preserve the tensor, cotensor, units, and weak distributivities. We shall 
assume that the two-tensor-polycategories have units, to correspond to the units in the 
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weakly distributive categories. In this section, any of the versions of polycategories 
and of weakly distributive categories may be used, as long as one “moves in parallel” 
- i.e. both non-planar, both planar, or both symmetric. 

Theorem 2.1. There is an equivalence of 2-categories 

W 
PolyCat,, ~IIZ WkDistCat. 

P 

Proof. Given a weakly distributive category W, P(W) is the polycategory with the 
same set of objects as W, and with morphisms given by: r + A is a morphism if and 
only if @I r -+ @ A 1s a morphism of W. (We observe the usual convention that an 
empty tensor is the unit of the tensor.) To check that the cut rule, and the left and right 
introduction rules, are valid, we use the weak distributivities; for example, we shall 
illustrate the following instance of cut. (To see how all the distributivities work, we 
use an unrestricted instance of cut, which needs the permuting distributivities as well 

as the planar ones.) Given maps (in W) Cl @A@& 3 C, and D1 z 02 @A@D3, we 

can construct Ci @ D1 @ CZ 
9 101 f 

A 02 @ C3 @ 03 as follows (ignoring some instances 
of associativity for simplicity): 

C,@D,@C2 3 Cl@(&@A$D3)@G 

* (D2@(C1 @(A@&)))@C2 

2 D2cB((C1 @(A@&))@C2) 

2 D2@(((C1 @A)@D3)@C2) 
i@Sf 

- D2@((C1 @A@C2)@&) 

= D2@C3@D3 

(Other ways of introducing the distributivities to move the C’s next to A are equivalent, 
by the coherence conditions on the interaction of distributivity with itself and with 
associativity.) 

Similarly, as an example of (@L), consider maps Ci @$ A f, C3 and B @ 02 4 D3; 
construct fi $ ag as (again, ignoring associativity): 

CI c%(A@B)@D2 2 ((Cl @A)@B)@D2 

m (C3@B)@D2 

T C3 @(B@D2) 

3 C3@D3 

(The other cases are similar - note that (@L) and (KM) are trivial.) 
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c2 @ ((& 8 A 8 B) $03) . . . ..I...- C, $ ((El @ A 8 B) $ D3) 

Fig. 1. (h o f) o LJ = (h o y) o f 

We must then check that all the equivalences of two-tensor-polycategories follow 
from the coherence diagrams of weakly distributive categories. This is a frightful ex- 
ercise; we shall just illustrate one case. (But note that the extra structure due to the 
two tensors is easy since (@IL) and (@R) are identities. So we really only need check 
the five equivalences of Definition 1.1.) 

Consider the following instance of the fourth equivalence scheme: we have maps 
h 

El @A@B -+ E4, Cl f Cz@A, andD1 3 B@&. To show (h 101 f) 200 g = 
(h 2 00 g) 1 o 1 f amounts to showing (the outer part of) Fig. 1 commutes. (Again, 
we omit the associativities.) The inner diagrams all commute because of naturality, 
except for the hexagon marked (13), which is an instance of the equation with that 
number above. The other equivalences are shown in a like manner. Thus P(W) is a 
two-tensor-polycategory. 

Next, given a two-tensor-polycategory P, the weakly distributive category W(P) 
is just the category part of P, viz. those morphisms whose source and target are 
singletons. The distributivities are given by the cut rule and the axioms (@ZZ) and 
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(@L). For instance, 82 is given as m 100 w: 

A,B+A@B B@C+B,C 

A,B@C +A@B,C 

Likewise, in the non-planar case, 6 is given as (note how the unrestricted cut 
induces an “exchange” - this is where the non-planar version picks up its degree of 

symmetry): 

A.C+A@C B$C-+B,C 
A,B@C --+B,A@C 

and the coherence conditions follow from the equivalences for polycategories. 
It is clear from the constructions above that ET(W) is isomorphic to W; indeed 

they are the same category. And essentially for the same reason, P is isomorphic to 
IV’(P). (The reason referred to is the bijection 

T+A 

@3r+w 

which means that the category part of a two-tensor-polycategory 
mation of the polycategory.) 0 

3. Distributive categories 

carries all the infor- 

How are weakly distributive categories related to distributive categories? It turns out 
that they are very close indeed - if the tensors are the Cartesian product and coproduct 
(nicely), then the two notions coincide. This reinforces the view that weak distributivity 
is the natural notion for general tensors. 

A weakly distributive category is symmetric (resp. @-symmetric, @-symmetric) in 
case the tensors are symmetric (resp. the tensor is symmetric with s@, the cotensor 
with se) and 

AO(BOC) 7 AO(COB) 7 (c@B)OA -(BBC 
d 

s pi 
B 

-I. 
4. 

I 

6,” 

I 

6,” 

I 

47 
& 

I 
(AOB)OCr C@(AOB) 7 C@(BOA) so -(BOA 

@ 

@A 

OC 

commuting in all squares (resp. those squares which exist). (This just says that the 
permuting distributivities are canonically induced by the planar ones and symmetry.) 

A weakly distributive category is bicartesiun (resp. @cartesian or @-Cartesian) if 
the category is symmetric (resp. @-symmetric, @-symmetric) with the tensor a product 
(with T the final object) and the cotensor a coproduct (with I the initial object). 
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A source of motivation for the study of weak distributivity is the fact that distributive 
categories are (bicartesian) examples. This means that the category of Sets (or any 
topos) is a bicartesian weakly distributive category. 

We now verify that distributive categories are a source of examples. A distributive 
category [5, 151 has finite products and coproducts such that the comparison map from 
the coproduct 

is an isomorphism. We shall denote the inverse of (i x boli x bl) by 6. 

Proposition 3.1. Distributive categories are bicartesian weakly distributive categories. 

Proof. Let 

Then, as + and x are symmetric the other weak distributions can be obtained from 
this. Due to the symmetry of product and coproduct it suffices to prove that the four 
basic diagrams hold together with their op’ duals. This gives eight diagrams to check. 
However, examining these diagrams, bearing in mind the use of the symmetric maps 
in defining the weak distributions, shows that there are only actually six distinct things 
to prove. These are that the different ways of expressing the following arrows are 
equal: 

Tx(A+B)+A+B 

(I+A)xB+AxB 

(AxB)x(C+D)-+Ax(BxC)+D 

(AxB)x(C+D)+AxC+BxD 

A x ((C+D)+E) --+A x C+(D+E) 

(A+B)x(C+D)+A+(BxC)+D 

For the first of these consider: 

Tx(A+B) J” * A+B 

TxA+TxB 
i+i3 

* TxA+B 
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As 6 = (i x bs(i x bi)-’ to obtain commutativity it suffices to show 

TxAbaT~x+TxxB(ixbox(x++B)PI.A+B 
=TxAP”d+A+B 

TxBb“TxA+TxB GxWxh), T x (A + B) P’A+B 

=TxBP“B%A+B 

which are clear. 
For the op’ dual of this we have 

(_L+A)xB) ’ . _LxB+AxB 
PO+i 

?? l_+A xB 

bi’ x i 

I I 

b;’ 

AxB AxB 

which commutes as br x i; 6; po + i = bl; po + i = b,. 
The next two equations are consequences of the fact that the following diagram 

commutes: 

(AxB)x(C+D) ax 
* Ax(Bx(C+D)) 

ix6 

r 
d Ax(BxC+BxD) 

t I 

6 

(AxB)xC+(AxB)xD 
%+a@ 

. Ax(BxC)+Ax(BxD) 

which can be checked using the inverse of 6 and checking the values on the components 
of the coproduct in the lower left corner. To obtain the weak distribution maps (and 
in particular the diagrams which we require) it suffices to project the components of 
the coproducts. This easily gives the desired commutativities. 

The remaining equations are checked in the same manner. That is we use full dis- 
tribution applied in two different ways, check that the diagram commute for the com- 
ponents of the coproducts using the inverses of these distributions, and finally project 
to obtain the weak distributions. 0 

It is of some interest to wonder what conditions must be added to a bicarte- 
sian weakly distributive category to force it to be distributive. Demanding that it is 
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bicartesian is not sufficient: this can be seen in several ways. For instcance, there 
are well-known examples of categories with products and coproducts that are weakly 
distributive but not distributive - one simple example is the category of pointed 
sets. (Notice, in view of the result below, that the initial object in this category 
is not strict.) There are two interesting general classes of examples worth 
mentioning. 

First, an Abelian category is a bicartesian weakly distributive category as it is a 
symmetric monoidal category on the biproduct. In fact, any braided monoidal category 
is a non planar weakly distributive category by letting the non permuting weak dis- 
tributions be the associativity of the tensor and the permuting weak distributions be 
given by the braiding. Thus, certainly any symmetric monoidal category is a symmet- 
ric weakly distributive category. However, while an Abelian category is a symmetric 
weakly distributive category it is certainly not distributive. 

Second, the dual of a distributive category (a codistributive category) is clearly bi- 
Cartesian weakly distributive as the latter is a self-dual notion. However, a codistributive 
category is not distributive. Indeed, a codistributive category which is simultaneously 
a distributive category must be a preorder (as the final object is costrict). 

In order to obtain a distributive category there must, therefore, be some relationship 
required between the distribution, projection, and embedding maps. Our first attempt 
to pin this down is as follows: 

Lemma 3.2. A bicartesian weakly distributive category is distributive if and only if 
the following diagrams commute: 

ixb, 
AxB- Ax(B+C) 

(AxB)+C 
. . 

B b 
. B+(A x C) 

” 

Proof. It is easy to check that a distributive category satisfies the two diagrams. For 
the converse, we must construct the inverse 6 of (i x boli x bl). 

We set 

6 =Ax(B+C)- dxi (AxA)x(B+C)=Ax(Ax(B+C)) 

%Ax(B+AxC) AAxBsAxC. 

To show that this is the inverse of (i x boli x bl) we precompose with i x bo (by 
symmetry the same thing will happen on precomposing with i x bl) and show the 
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result is be: 

AxB 
zxb, 

- Ax(B+C) 

Axi;a, 

t 
Ax(AxB) 

Ix(zx b,) 

Axi;a, 

v 
. Ax(Ax(B+C)) 

PI ix b, 

,\\___. 

I x 6,” 

AxB Ax(AxB+C) 

where the triangle and parallelogram are the two conditions added. 17 

An initial object is strict in case every map to it is an isomorphism. Notice that, 
as an Abelian category has a zero, it cannot have a strict initial object without being 
trivial. The initial object of a distributive category, however, is necessarily strict (see 
[5]). This is a difference we now exploit: 

Theorem 3.3. A bicartesian weakly distributive category is a distributive category if 
and only if it has a strict initial object. 

Proof. It suffices to show that the two diagrams above commute in the presence of a 
strict initial object. To see this consider the two naturality diagrams 

Ax(B+I) rx(i+.L) - Ax(B+C) 

6,” 

AxB+-L 
i+l 

Ax(B+I) * Ax(B+C) 

I 

ix(r+l) 

6,” 6,” 

V 
B+(A xl) 

r+(ixl) * B+(AxC) 

The first immediately yields the first condition of the lemma. The second due to strict- 
ness has the bottom left object isomorphic to B and the horizontal map is then the 



158 J.R.B. Cockett. R.A. G. Seelyl Journal of Pure and Applied Algebra 114 (1997) 133-I 73 

coproduct embedding. It suffices to prove that the vertical map is essentially a projec- 
tion. For this consider 

Ax(B+_L) !Xi 
,Tx(B+I) 

I I 
6,” I I 6; 

B+Axl 
i+(!xi) 

e B+Txl 

The lower horizontal map is an isomorphism due to the strictness of the initial object. 
However, the map across the square is clearly equivalent to a projection. 0 

Note added in proof 

As mentioned earlier, Proposition 3.1 should now read: 

Proposition 3.1. An elementary distributive category is a Cartesian weakly distribu- 
tive category if and only if it is a preorder. 

Thus, Cartesian weakly distributive categories and distributive categories are almost 
orthogonal notions! 

Proof. The following diagram always commutes in a symmetric weakly distributive 
category: 

A G3(B@9(CcT3D)) ((Dc3C)c3JBB)cBA 

i @ 8: 
I 

St 63 i 

A$((B@C)@D)2=L(D@(B@C))@A (i@c@W 
I 

-(D@(C@B))@A 

Substituting A = D = 1 and B = C = 0, where 0 is the initial object of a distributive 
category and 1 is a final object, makes the top horizontal map the identity on (1 + 0) x 
(0+ 1). Similarly the bottom maps give, up to equivalence, the Boolean negation map. 
However, under this substitution, condition (13) yields the same diagram with, up to 
the same equivalence, the identity map across the bottom. This implies that, in any 
distributive category which is also weakly distributive, Boolean negation has a fixed 
point. This happens only when the distributive category is a preorder (see [5]). 0 

The subsequent discussion must take into account this observation. In particular, 
Theorem 3.3 can now be strengthened to say: 
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Theorem 3.3. A Cartesian weakly distributive category is posetal if and only if the 
initial object is strict. 

Given these results it all the more surprising to discover that “pointed sets” - and 
more generally the Kleisli category of a distributive category with respect to the ex- 
ception monad - do give examples of Cartesian weakly distributive categories. Here the 
weak distribution is given by annihilating the offending “lifted product component”, in 
the following sense. A x B = A + A @ B + B is the product in this Kleisli category, 
where _ @ _ is the lifted (or amalgamated) product. The final object is also the initial 
object: so that this category has a zero. To define the weak distribution we use the fact 
that the lifted product is distributive so that there are a series of natural equivalences: 

Ax(B+C)-A+A@(B+C)+B+C-A+A@B+A@C+B+C. 

Using the fact that we have a zero we may now annihilate the A @ C component to 
obtain an object naturally equivalent to (A x B) f C. This defines the weak distribution 
~3;. Then it is routine to verify the following. 

Proposition 3.4. For any distributive category the Kleisli category for the exception 
monad is a Cartesian weakly distributive category. 

Thus, we may faithfully include a distributive category (via the Kleisli left adjoint) 
into a Cartesian weakly distributive category, and the lifted product is connected both 
monoidally and comonoidally to the product in the Kleisli category. 

4. Adding negation 

Definition 4.1. We define a weakly distributive category with negation to be a weakly 
distributive category with object functions I(-) and (-)l, together with the following 
parametrized families of maps (“contradiction” and “tertium non datur”): 

which satisfy the following coherence conditions: 
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As before, this induces a further set of equations: 

iC34;6~;yR@i;ULB=u~ 

ZR @ i; Si; i @ yL; ut = 4 

i @ ZR; 6;; f 63 i; z& = ut 

# @ i; Sq; i @ yR; 24: = z& 

(15) 

(16) 

(17) 

(18) 

We illustrate the third of these, as it does not result from a symmetry: 

Notice that we have not required that (-)I and I(-) be contravariant functors, but 
merely that they be defined on objects. Nor have we required that there be a natural 
isomorphism between A, l(A’), and (lA)l. Of course, (-)I and *(-) do extend to 
contravariant functors and these natural isomorphisms exist but these are consequence 
of the axioms as we shall see. Note also that the symmetries in the definition of a 
planar weakly distributive categories can be extended with the assumption that both 
the symmetries op’ and 0’ also swap the functor (-)I with I(-). 

Lemma 4.2. In a weakly distributive category with negation we have the following 
adjunctions: 

A@- iAl@- lA@- -iA@- 

-@Bi-GjLB -@BLi-@B 

corresponding to the following bijections: 

A@B+C lA@B+C 

B+Al@C B-ABC 

Proof. We shall treat just the adjunction - @ B -I - @ IB, the symmetries can be 
used to derive the rest. Given a map A @B -+ C, we derive the corresponding map 
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asA-A@T-A@((B@~B)-(A@B)@LB-C@~B.Conversely,givenA 
-C~i~,wehaveA~B-(C~I~)~~-CC((iB~B)-C~i-C. 

In particular, the unit VIA: A -+ (A @ B) @ IB is given by 

,,,A:A ‘:-’ --+A@T- ‘@’ A@(B@ LB) di 

and the counit &A: (A @ IB) @ B --+ A is given ( 

(A@aB)@ +I 

as the symmetries might suggest) by 

To check the triangle identities, we must verify that the (outer part of the) diagram 
in Fig. 2 commutes. The marked regions commute by the corresponding coherence 
conditions; the others are by naturality. There is a similar diagram for the other triangle 
identity which we leave as an exercise for the reader. 0 

A $ IB _ ,,,,,,, !..gi.! .._......... A$(IB~T)...Z.~.Z.~..rR..A~(1~8(B~iB)) 2 

??? ?

‘... i $ TJ4 

;\- .~~..~...~.~....~~~~~....... 

i. 
(A$(17)) jz@bj 

(13) 

Fig. 2. Triangle identity. 
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We may now use the adjunctions to define the effect of (-)’ on maps: 

and similarly for I(-): 

A-+B 
T@A--,B 

T-B$lA 
‘B@T--tAl 

IB + ‘A 

It is then a matter of verifying that this is functorial, by explicitly giving the “for- 
mulas” for B’ -+ Al, and for IB + ‘A, in terms of A -+ B, and verifying that the 
appropriate diagrams commute when this is done for iA and for f; g. 

For example, then given A f, B, we get 

(To get this from the definition of the adjunction, we use the fact that the map 

is equal to z. This follows from Eq. (5) and naturality.) 
The case f = i gives an instance of coherence condition (17), so that is no problem. 

The other case is a bit more complicated: to verify that l(-) preserves composition, 

one must show that l(f; g) = ‘g; "f for A f, B 3 C. This translates to showing that 
the following diagram commutes: 
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The right-hand square (involving g) commutes by naturality, and the left square (in- 
volving f) reduces to the diagram: 

I i&f 

A@lA -B@lA 
_fOi 

To see this commutes we construct the decomposition of the diagram shown in Fig. 3. 
Furthermore, notice that (-)l is full and faithful as there is a bijection Hom(A, B) N 
Hom(B’,A’). 

In the symmetric case, it is appropriate to identify the two negation operators: 

Definition 4.3. A symmetric weakly distributive category with negation is a symmetric 
weakly distributive category with an object function (-)I, together with the following 
parametrized families of maps. 

A@)AL L, 

7: T -+A@A’ 

These induce the following families (by composing with symmetry maps): 

AL@A&l 

TT:.A+A 

which together satisfy the following coherence conditions: 

i@~;6~;yR@i;z4$=z4~ 

i C3 7+; hi; yL CB i; z& = u”@ 

We leave to the reader the exercise of showing that the other equations generated 
by the standard symmetries are consequences of the above. For the record, they are 
the following: 
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Fig. 3. I( -) preserves composition. 
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The corresponding lemma is immediate: 

Lemma 4.4. In a symmetric weakly distributive category with negation we have the 
following adjunctions: 

A@- -iAl@- Al@- iA@- 
-@Bi-@BL -@Bl -I -@B 

corresponding to the following bijections: 

A@B-+C Al@B-+C 

B-Alec B-ABC 

A@B+C A@BBI +C 

A+C@B’ A-C$B 

Of course, the point of all this is the following. 

Theorem 4.5. The notions of symmetric weakly distributive categories with negation 
and *-autonomous categories coincide. 

Proof. One direction is more or less automatic from the lemma, in view of Barr’s 
characterization of *-autonomous categories in [2]. That is to say, symmetric weakly 
distributive categories with negation are *-autonomous. Of course, to make the trans- 
lation to Barr’s framework, we must make the following (standard) definition: A -O 
B=Al@B. 

The involutive nature 
iso A = ALL is induced 

A-B 
T@A-B 

T+B@A’ 
T@AAIL -+B 

ALi -B 

of (-)l follows from the lemma straightforwardly: viz. the 
by the adjunctions: 

Then we can conclude that A + B = (A @ B’-)l also. 
In either case, it is now easy to verify the essential bijection: 

A-(B-oC’) 
A-+BL@CL 
ARC-BBI 
C@A--+B 1 

C-+(B-A’) 

Next the other half of the proof: here we give just a brief sketch. It is a straightfor- 
ward verification to check that *-autonomous categories are weakly distributive, though 
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the diagrams can be pretty horrid. We shall just indicate how the weak distribution 8; 
is obtained, leaving the rest to the faith of the reader. 

Defining A @B = A’ -o B, we need %:A @ (BL -o C) --f (A @ B)l -c C. While it 
is possible to give a formula for this morphism, it is perhaps more instructive to give 
its derivation: 

First note that under the functor (-) I, the internal horn bijection becomes 

CL + (LI@B)~ 
B@CCI-+AL 

From this it is easy to derive maps A 12 (A @B)’ -+ BL -+ (Bl -O C) -O C. Then 
we can use the bijection 

AEJXXYYC 
A@Y+X+C 

to derive the map A @ (Bl -o C) --t (A &3 B)l * C as needed. El 

Remark 4.6 (Planar non-commutatiuity). The above suggests that (non-symmetric) 
weakly distributive categories with negation provide a natural notion of non-symmetric 
*-autonomous categories, and hence of non-commutative linear logic (rather, the mul- 
tiplicative fragment thereof). The planar version we have outlined at the beginning 
of this section has become widely accepted - an account of this syntax (in a pose- 
tal context) appears in [l]. Note that in this context, there are (natural) isomorphisms 
(lA)I N A, l(AL) N A. Furthermore, there are two internal horns: A + B = AL@B 2~ 
(FI@‘B)~ andB*A=B$LA-L(BL@A). 

In [6] we also presented a hybrid definition, with just one negation operator with 
non-symmetric tensors. Our original presentation arose in an attempt to describe com- 
mutative linear logic: it displayed some of the features of the planar non-commutative 
form as well as the commutative form. At this time we feel it is premature to pro- 
nounce definitively on the “best” degree of non commutativity in linear logic, and so 
we offer only these comments: First, our main observation is that the core of the multi- 
plicative fragment of linear logic may be found in the two tensors, connected by weak 
distributivity. (We do not believe that the central role played by the weak distributiv- 
ities, pet-mutative or not, had been sufficiently observed before. 5, Second, to include 
negation and internal horn, one need only add negation in the most simple minded 
manner (the internal horn structure follows naturally). For example, Barr has pointed 
out that in some contexts the simplest way to show that a category is *-autonomous is 
to show that it is weakly distributive with negation [3]. Third, the various versions of 
this fragment may be classified by the degree of the weak distributivity assumed and 
the nature of the negation added. 0 

5 An exception is recent work of de Paiva and Hyland, which has among other things pointed out some of 
the aspects of the distributivities we have in mind here. 
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5. Some examples 

To conclude, we shall briefly consider some examples of weakly distributive cate- 
gories, beginning with preorders and working up to more substantial examples. 

5.1. Posetal weakly distributive categories 

The beauty of the posetal weakly distributive categories is that one need not check 
the coherence conditions as all diagrams commute! Thus, it suffices to have the weak 
distributions present. Notice first that, when such a category is bicartesian, the initial 
object is necessarily strict, giving: 

Lemma 5.1. All bicartesian weakly distributive categories which are preorders are 
equivalent to distributive lattices. 

Thus, the interesting posetal examples occur when one or both tensors are non- 
Cartesian. There are plenty of examples of these. Here are two sources: 
?? (Droste) Let L be a lattice ordered monoid (that is a set having a commutative, 

associative, and idempotent operation x A y, and an associative operation x . y with 
unit 1 such that z . (x A y) = (z . x) A (z . y) and (x A y) . z = (x . z) A (y . z)) in 
which every element is less than 1 (so this is the unit of A too) then L is a posetal 
weakly distributive category. This because 

and similarly for the other weak distributions. 
An example of such an L is the negative numbers. In general one may take the 
negative portion of any lattice ordered group (free groups can be lattice ordered so 
that the multiplication need not be commutative). 

?? A shift monoid is a commutative monoid (MO,+) with a designated invertible 
element a. This allows one to define a second “shifted” multiplication x. y = n+ y-a 
with unit a for which we have the following identity: 

x.(y+z)=(x.y)+z 

which clearly is a weak distribution. In this manner a shift monoid becomes a discrete 
weakly distributive category. Furthermore, it is not hard to show that every discrete 
symmetric weakly distributive category must be a shift monoid. 
This example is also of interest as it suggests that when one inverts the weak dis- 
tributions (which produces braidings on the tensors), the tensors, which need not be 
equivalent, are related by a @ invertible object. This is, in fact, what happens in 
general, as we shall sketch below. 
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It is also of interest to specialize our presentation of *-autonomous categories to the 
case of preorders. Again, only the existence of the maps themselves must be ensured, 
which gives: 

Proposition 5.2. A preorder is a *-autonomous category if and only $ it has two 
symmetric tensors @ and $ and an object map (-)I such that 

(i) x@~((Y@z) 5 (x@y)@z, 
(ii) x C% xl 5 I, 

(iii) T < x @xl. 

Suppose that M is a shift monoid equipped with a map (-)I such that x + xl = a 
(“tertium non datur”) then we have 

X.X I I =x+x - a=a-a=0 

which is “contradiction”. So M is a discrete *-autonomous category. Note that moreover 
A4 is a group, with -x = x1 - a; in fact shift groups (shift monoids with A4 a group) 
are the same as discrete *-autonomous categories in this way: T = a, xl = a - x, 
and conversely, a discrete *-autonomous category is a group (with respect to @, with 
inverse given by -x = xl @I), and so a shift group (with T as designated invertible 
element). (A curiosity about this example: the initial shift group (also the initial shift 
monoid) is Z, the integers, under addition with T = 1. This structure also arises when 
checking the validity of proof nets [8].) 

We can construct similar examples with ordered shift monoids, (for example, Z 
as above with the standard order), to get examples of *-autonomous posets. Note 
that a *-autonomous ordered shift monoid must be a group, since x . xl 5 0 and 
a < x + xl imply that x + xl = a, and so we are in the context above. Note also 
that by a suitable choice of a we can arrange for the poset to satisfy the mix rule, 
x @ y 5 x CB y, or its opposite, the co-mix rule x @ y > x CB y, or to be compact x @ y 
=x@y. 

5.2. Shifted tensors 

We shall briefly consider the categorical generalization of shift monoids. Given a 
tensor category (X, ~3, T,a@, z&,u~) a tensor inverse for the object _L is given by an 
object with two isomorphisms (I-‘,&,sR) where 

sL.:l@L-‘-+T SR : I-’ @I-T 

such that 
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It is worth remarking that the tensor inverse of an object -L is determined to equivalence 
and is of course the analogue of an inverse in a monoid. If a tensor category is the 
proof theory of a monoid, a tensor category, in which every element has a tensor 
inverse, is the proof theory of a group. 

Given such a tensor inverse of I we may create a new tensor 

x@Y=x@(I-‘@Y) 

with unit -L and natural transformations: 

This we call this new tensor the J--shifted tensor. 
The pentagon for @ commutes from the coherence theorem for the tensor @. It is 

less immediate that the diagram for the unit commutes and involves a simple diagram 
chase using the coherence diagram for tensor inverses. 

It is now immediate that there are weak distributions (of the planar variety) for the 
tensor over the shifted tensor given by 



170 J.R.B. Cockett, R.A.G. SeelyiJournal of Pure and Applied Algebra 114 (1997) 133-173 

Using the coherence of the tensor @ it is immediate that all the diagrams of weak 
distributivity, which do not involve the cotensor unit, will commute. Those which 
involve the cotensor unit are also easily checked. We therefore have: 

Proposition 5.3. Any monoidal category with an object I with a tensor inverse has 
a I-shifted tensor @ which together with the tensor forms a weakly distributive 
category in which the weak distributions are natural isomorphisms. 

We can obtain the non-planar weak distributions if the monoidal category is sym- 
metric or, more interestingly, when the original category was braided (some care has 
to be taken over the sense of the twistings). This suggests a further variant on group 
theory: braided tensor categories in which every object has a tensor inverse! 

Starting at the weakly distributive end, we might reasonably be curious about the 
effect of demanding that the weak distributions be isomorphisms. In the planar case 
we note that T @ T is the natural candidate for the tensor inverse of -L as 

and symmetrically for sR. It is a substantial diagram chase to establish that when the 
weak distributions are isomorphisms this defines a tensor inverse for 1. It then follows 
more easily that the $ is a shifted tensor (to natural equivalence). 

Proposition 5.4. Any weakly distributive category whose weak distributions are natu- 
ral isomorphisms has a tensor inverse for I whose shaft tensor is naturally equivalent 
to the cotensor. 

Finally, if we had the non-planar distributions and they were isomorphisms as well 
then there would be a twist map: 

A@B 
&V 

&A~I(T$T)BBL. B@A 

where we have omitted the required units and associative maps. This natural isomor- 
phism introduces a braiding on the cotensor (the proof involves ferocious diagram 
chasing and is beyond the scope of this article) and, by shifting, therefore a braiding 
on the tensor. Thus, the non-planar weakly distributive categories with all the weak 
distributions isomorphisms give rise to braided monoidal categories with an object with 
a tensor inverse. When the unit T and counit I are isomorphic the non-planar weakly 
distributive category “degenerates” into a braided monoidal category with the “mix” 
rule giving a natural isomorphism of the tensors. 

To show that a category is *-autonomous may be made more simple via our char- 
acterization in situations whenever the weakly distributive nature of the setting is 
known. We now discuss two examples of this: the span construction and modules of a 
bialgebra. 
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5.3. Span categories 

Let X be any finitely complete category, then it is well-known that Span(X) has 
a symmetric tensor corresponding to the product. A little less well-known is the fact 
that the span category is *-autonomous, more precisely compact closed. To show this 
we identify the tensor and cotensor with the product and regard the distributions as 
the natural maps given by associativity and symmetry. This is immediately a weakly 
distributive category, albeit a rather trivial example. To make it *-autonomous it re- 
mains only to identify the involution and complementation maps. We shall let the 
involution be the obvious span reversal: note that this is the identity on objects. The 
complementation maps are given by 

and its span reversal. To show *-autonomy it suffices to check the complementation 
diagrams. Note that the following square is always a pullback: 

A A ,AxA 

A AX1 

AtA 
1xA 

t 
- AxAxA 

This allows the following interpretation of the complementation diagram (in which the 
distributions and unit maps have been suppressed): 

AxA AxA 

A AxAxA A 

This is transparently the identity map in the span category; hence the span category is 
*-autonomous. 

Before passing on it is worth considering whether the span category has products. 
Because of the involution any product will be, at the same time, a coproduct and the 
coprojections will be the span reversals of the projections. 

Furthermore, as the product of the original category when lifted to the span category 
has a right adjoint it must distribute over any coproducts the span category has. Thus, if 
the span biproduct arises from the original category’s coproduct, the original category 
must have been distributive. 

Lindner [12] observed a converse to this that the coproduct of extensive distributive 
categories gives rise to a biproduct in the span category. 
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5.4. Modules of bialgebras 

It is generally known that the modules of a Hopf algebras of a *-autonomous category 
form a *-autonomous category. Perhaps this is one of the reason why the Hopf algebra’s 
poorer cousin the bialgebra receives scant attention. However, one might reasonably 
stop to ask whether the category of bialgebra modules of a *-autonomous category 
enjoys any special properties. We can now provide an answer: it forms a weakly 
distributive category. 

In fact, we may start with any symmetric (or braided) weakly distributive category, 
form the modules of a bialgebra thereof, and the resulting category will be weakly 
distributive. It is easily checked that the tensors of the bialgebra module category are 
the underlying tensors as are the weak distributivities. 

Even if one is not convinced of the value of bialgebra modules, this observation 
does now provide an alternative way to establish the *-autonomy of Hopf modules. 
What remains is, of course, only to provide the complementation diagrams, which is 
straightforward. 
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