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In F-theory GUTs, threshold corrections from Kaluza–Klein (KK) massive modes arising from gauge 
and matter multiplets play an important role in the determination of the weak mixing angle and the 
strong gauge coupling of the effective low energy model. In this Letter we further explore the induced 
modifications on the gauge couplings running and the GUT scale. In particular, we focus on the KK-
contributions from matter curves and analyze the conditions on the chiral and Higgs matter spectrum 
which imply a GUT scale consistent with the minimal unification scenario. As an application, we present 
an explicit computation of these thresholds for matter fields residing on specific non-trivial Riemann 
surfaces.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

The spectrum of the minimal supersymmetric extension of the 
Standard Model (SM) being consistent with a gauge couplings uni-
fication at a scale MGUT ∼ 2 × 1016 GeV, suggests that the gauge
group factors emanate from a higher unified gauge symmetry. In 
the simplest case, the SM gauge symmetry is embedded in the 
SU(5) Grand Unified Theory (GUT) while the SM matter content 
is assembled into SU(5) multiplets. In addition, although string 
theory appears to be the appropriate candidate for incorporat-
ing gravity into the unification scenario, one must still confront 
the mismatch between MGUT and the natural gravitational scale 
M Pl ∼ 1.2 × 1019 GeV. Thus, a plausible implementation of uni-
fication, requires a string theory formulation in which the gauge 
theory decouples from gravity at the desired scale.

Recently, there have been considerable efforts to develop a vi-
able effective field theory model from F-theory [1].1 This picture 
consists of a 7-brane wrapping a compact Kähler surface S of two 
complex dimensions while the gauge theory of a particular model 
is associated with the geometric singularity of the internal space 
[5–9]. In this set up it is possible to decouple gauge dynamics 
from gravity by restricting to compact surfaces S that are of del 
Pezzo type. The exact determination of the GUT scale however, 
may depend on the spectrum and other details of the chosen gauge 
symmetry and on the particular model. Here, we will assume the 
minimal unified SU(5) GUT.

* Corresponding author.
E-mail address: leonta@uoi.gr (G.K. Leontaris).

1 For comprehensive reviews see [2–4].
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A reliable computation of the GUT scale should also take into 
consideration the various threshold corrections. In F-theory SU(5), 
there exist several sources of threshold effects [10–15]. There are 
thresholds related to the flux mechanism inducing splitting of 
the gauge couplings at the GUT scale [10,11], thresholds from 
heavy KK-massive modes [10,14] and corrections due to the ap-
pearance of probe D3-branes [15]. Finally, threshold effects are 
generated at scales μ < MGUT when additional light degrees of 
freedom in particular superpartners are integrated out. The effects 
of the latter have been extensively studied in the context of su-
persymmetric and String Grand Unified Theories.2 In reasonable 
circumstances (for example when no-extra degrees of freedom re-
main below MGUT) the last two categories can be made consistent 
with two loop corrections and a unification scale of the order of 
MGUT ∼ 2 × 1016 GeV.

Thresholds induced by the flux mechanism have been exten-
sively analyzed recently [10,11,13]. It has been shown that the 
U (1)Y -flux induced splitting is compatible with the GUT embed-
ding of the minimal supersymmetric Standard Model, provided 
that no extra matter other than color triplets is present in the 
spectrum. Thresholds originating from KK-massive modes have 
been discussed in [10] and were found to be related to the Ray– 
Singer analytic torsion [17]. This observation was originally made 
for the case of manifolds with G2 holonomy where thresholds 
were computed and estimates for the GUT scale were given [18]. 
For F-theory however, the situation is more complicated. Indeed, 
in M-theory one assumes that massless SU(5) multiplets are gen-
erated at singularities of the internal space which are believed to

2 For an incomplete list see [16].
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be conical [18]. Since conical singularities induce no new length, it
is expected that no new massive particles are introduced. On the
contrary, in F-theory, KK-massive modes exist for both the gauge
and the matter fields. In the present context of the SU(5) theory,
these come along with massless gauge fields propagating in the
bulk, while the chiral matter as well as the Higgs representations
reside on two-dimensional Riemann surfaces (matter curves). Both
kinds of KK-modes contribute to the gauge coupling running and
can in principle modify the unification scale. It is straightforward
to estimate the modification induced by the vector supermultiplet,
nevertheless the contributions of the matter fields may be model
dependent. Here, we aim to revisit this second source of threshold
corrections. We will discuss models where chiral matter and Higgs
fields occupy complete SU(5) multiplets and we will show that un-
der reasonable assumptions, no further modifications are induced
from the corresponding matter KK-massive modes.

2. KK-modes and the GUT scale

In F-theory, threshold corrections associated to KK-massive
modes arise from gauge fields as well as from matter fields in
the intersections. KK-massive modes from the chiral and the Higgs
sectors add up to a common shift of the gauge coupling con-
stants at MGUT. This happens when the charges qi associated to
the matter curves Σqi are genuinely embedded into the function
T (qi) which defines the torsion. Thus, in this respect F-theory
looks pretty much the same as M-theory [18]. We will first give
a brief account of the gauge thresholds computations adopting
the techniques of [18] developed for G2-manifolds, while we will
follow [10] for the case of F-theory. Next, we will compute the
KK-thresholds from the chiral matter and the Higgs curves.

2.1. The gauge multiplet

The decomposition of the SU(5) gauge multiplet under the SM
symmetry is

24 → R0 + R−5/6 + R5/6

with

R0 = (8,1)0 + (1,3)0 + (1,1)0, R−5/6 = (3,2)−5/6,

R5/6 = (3̄,2)5/6. (1)

Massless fields in the bulk are given by the Euler characteris-
tic X , thus, the condition X (S, L5/6) = 0 avoids the massless ex-
otics R±5/6. Massive modes in representations (1) induce threshold
effects to the running of the gauge couplings. At the one-loop level
we write

16π2

g2
a (μ)

= 16π2ka

g2
s

+ ba log
Λ2

μ2
+ S (g)

a , a = 3,2, Y . (2)

Here, Λ is the gauge theory cutoff scale, ka = (1,1,5/3) are the
normalization coefficients for the usual embedding of the Standard
Model into SU(5), gs is the value of the gauge coupling at the high
scale and S (g)

a stand for the gauge fields thresholds. The one-loop
β-function coefficients ba for the massless spectrum (in the nota-
tion of [18]) are

ba = 2 StrM=0 Q 2
a

(
1

12
− χ2

)
(3)

where χ is the helicity operator and Q a stands for the three gen-
erators of the Standard Model gauge group SU(3) × SU(2) × U (1)Y .
In computing the supertrace Str we count bosonic contributions
with weight +1 and fermionic with −1. Similarly, the one-loop
threshold corrections from the KK-massive modes in Ri are

S(g)
a = 2

∑
i

TrRi Q 2
a StrM �=0

(
1

12
− χ2

)
log

Λ2

M2
. (4)

The KK-modes squared masses in the threshold formula corre-
spond to the massive spectrum of the Laplacian �k,Ri acting on
each k-form of the representation Ri . We recall [7] that the spec-
trum consists of zero, one and two form multiplets. Each eigenvec-
tor of the zero-form Laplacian �0,Ri contributes a vector multiplet
with helicities 1,−1, 1

2 ,− 1
2 , while the one-form Laplacian �1,Ri

gives a chiral multiplet with helicities 0,0, 1
2 ,− 1

2 . Finally, �2,Ri is
associated to anti-chiral multiplets. The sum of all the contribu-
tions to the gauge fields thresholds is

S (g)
a = 2

∑
i

TrRi

(
Q 2

a

)
Ki (5)

with [10]

Ki = 3

2
log det′ �0,Ri

Λ2
− 1

2
log det′ �1,Ri

Λ2
− 1

2
log det′ �2,Ri

Λ2
(6)

where the prime on det′ means that zero modes are omitted. Us-
ing the well-known properties characterizing the massive spectra
of the Laplacians �k,Ri , it has been shown [10] that expression (6)
is the Ray–Singer analytic torsion Ti [17]; more precisely,

2Ti = Ki = 2 log det′ �0,Ri

Λ2
− log det′ �1,Ri

Λ2
. (7)

Note that for the trivial representation R0 there exist zero-modes
and the torsion differs from K0 by a scaling dependent part ∝
2 log(V 1/2

S Λ2) where V S is the volume of the compact surface S .
Details on the scaling dependence can be found in [10]. Using (4)
we compute the traces and since K5/6 = K−5/6 we get

(
S (g)

Y , S (g)
2 , S (g)

3

)

=
(

50

3
K5/6,6K5/6 + 4K0,4K5/6 + 6K0

)
. (8)

Using the torsion Ti and the β-functions b(g)
a = (0,−6,−9), we

deduce that

S (g)
a = 4

3
b(g)

a (T5/6 − T0) + 20ka T5/6. (9)

Absorbing the term proportional to ka into a redefinition of gs we
may now write the one loop equation (2) for the running of the
gauge couplings [14] as

16π2

g2
a (μ)

=
(

16π2

g2
s

+ 20T5/6

)
ka

+ b(g)
a log

exp[4/3(T5/6 − T0)]
μ2 V 1/2

S

. (10)

The form (10) suggests that we can define MGUT as [14]

M2
GUT = exp[4/3(T5/6 − T0)]

V 1/2
S

(11)

and a gauge coupling gU at the GUT scale shifted by

16π2

g2
= 16π2

g2
+ 20T5/6. (12)
U s
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Associating the world volume factor V −1/4
S with the characteristic

F-theory compactification scale MC , we can write

MGUT = e2/3(T5/6−T0)MC . (13)

Thus, as far as the gauge fields thresholds are concerned, MGUT is
given in terms of MC through an elegant relation involving only
the torsion.

2.2. The chiral matter

We will now discuss contributions arising from chiral mat-
ter, the Higgs fields and the possible exotic representations. In
F-theory constructions, these fields arise in the intersections of the
GUT-brane with other 7-branes as well as from the decomposi-
tion of the adjoint representation in the bulk. We have already
imposed the conditions which avoid the exotic bulk zero modes
R−5/6 = (3,2)−5/6 and R5/6 = (3̄,2)5/6, so we are only left with
light matter fields at the intersections. In the SU(5) case, these cor-
respond to the standard 10, 10 and 5, 5̄ non-trivial representations
and contribute to the RG running a term of the form bx

a log Λ′2/μ2

where bx
a are the β-function coefficients for the matter fields, and

Λ′ a cutoff scale which may differ from the gauge cutoff Λ.
We should mention that the U (1)Y -flux introduced in order to

break SU(5) might eventually lead to incomplete SU(5) represen-
tations, spoiling thus the gauge coupling unification. However, it
is still possible to work out realistic cases [19,20,14] where the
matter fields add up to complete SU(5) multiplets, so that the
bx

a-functions contribute in proportion to the coefficients ka . Then,
as in the case of the gauge contributions discussed earlier, we
can absorb the logarithmic Λ′-dependence into a redefinition of
the gauge coupling. Nevertheless, the color triplet pair descending
from the 5H + 5̄H Higgs quintuplets must receive a mass at a rela-
tively high scale M X � MGUT so to avoid rapid proton decay. Taking
all into account, we write (10) in the form

16π2

g2
a (μ)

= ka
16π2

g2
GUT

+ (
b(g)

a + ba
)

log
M2

GUT

μ2
+ bT

a log
M2

GUT

M2
X

(14)

where we have split bx
a = ba + bT

a with ba denoting the MSSM β-
functions and bT

a the color triplet part.
In the context of F-theory constructions, in addition to the light

degrees of freedom on matter curves, one also has to include con-
tributions from Kaluza–Klein massive modes. This is in contrast
to the case of G2 manifolds, where no new contributions are in-
troduced to the gauge coupling running apart from the massless
states [18]. Threshold contributions arise from the massive states
along the Σ5̄ and Σ10 matter curves. To compute them we write
down the decompositions of the corresponding representations

10 → (3,2) 1
6

+ (3̄,1)− 2
3

+ (1,1)1, 5̄ → (3̄,1) 1
3

+ (1,2)− 1
2
.

For each of the above matter curves we consider the Laplacian
acting on the representations with eigenvalues corresponding to
chiral and anti-chiral fields. Thus, for the massive modes of Σ10
we have

KΣ10 = −1

2
log det′ �0,Y

Λ′2 − 1

2
log det′ �1,Y

Λ′2

and similarly for the Σ5̄ . Denoting by Sa=3,2,Y the thresholds to
the three gauge factors of the SM, for a representation r we then
have

Sr
a =

∑
2 Tr

(
Q 2

a,r

)
Ki .
i

Table 1
Threshold corrections S 5̄

a , S10
a to the three gauge couplings from Kaluza–Klein mas-

sive modes along the matter curves.

Thresholds SU(3) SU(2) U (1)

S 5̄
a K1/3 K−1/2 K−1/2 + 2/3K1/3

S10
a 2K1/6 + K−2/3 3K1/6 1/3K1/6 + 2K1 + 8/3K−2/3

Computing the traces we readily find the KK-thresholds shown in
Table 1.

We will now attempt to recast the corrections as a sum of two
different pieces, one being proportional to ka . The KK-thresholds
induced by the 5̄ can be written as follows:

S 5̄
a = −2

3
β 5̄

a (K−1/2 − K1/3) + ka · (K−1/2) (15)

where we have introduced the “β”-coefficients

β 5̄
3,2,1 =

{
3

2
,0,1

}

and, as usually, ka = (1,1,5/3). For the Σ10 we can write the
thresholds related to U (1)Y in the form

S10
1 = 1

3
K1/6 + 8

3
K−2/3 + 2K1

= 8

3
(K−2/3 − K1/6) − 2(K1/6 − K1) + 15

3
K1/6. (16)

In the two parentheses, the U (1)Y charge differences obey the
relation qi − q j = − 5

6 . This suggests that a non-trivial line bun-
dle structure could be sought with the ‘periodicity’ property
Kqi − Kq j = f (qi − q j) so that

K1/6 − K1 = K−2/3 − K1/6.

Adopting this assumption, in straight analogy with (15) we finally
get

S10
a = 2

3
β10

a (K−2/3 − K1/6) + ka · (3K1/6)

with β10
a = β 5̄

a . Recalling the Ray–Singer torsion Ti we may write
threshold terms for both matter curves as follows

S 5̄
a = −4

3
β 5̄

a (T−1/2 − T1/3) + ka(2 · T−1/2), (17)

S10
a = +4

3
β10

a (T−2/3 − T1/6) + ka(6 · T1/6). (18)

The hypercharge assignments in both Σ10 and Σ5̄ satisfy the same
condition qi − q j = − 5

6 . Given that and employing the torsion in-
variance, one could assume the existence of bundle structures for
Σ10 and Σ5̄ matter curves characterized by the same topological
properties so that we may envisage a specific embedding of the
hypercharge generator implying

T−1/2 − T1/3 = T−2/3 − T1/6 = 0. (19)

In this limit, threshold contributions which are not proportional to
ka cancel in both Σ10 and Σ5̄ curves.

In general, matter curves accommodating different representa-
tions of the gauge group do not necessarily bear the same bundle
structure. In particular, in the case of SU(5) it often happens that
the Σ5̄ curve is of higher genus than the Σ10 for example. One
of course could not exclude the possibility that the condition (19)
can be separately satisfied for surfaces of different genera. How-
ever, we mention that in the recent literature one can find several
examples where Σ10 and Σ5̄ curves are of the same genus and the
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required property holds true. To further support our argument, we
will briefly present a model discussed in Ref. [8]. Bearing in mind
that in order to decouple gauge dynamics from gravity and allow
for the possibility MGUT � M Planck , we choose the surface S to be
one of the del Pezzo type dPn with n = 1,2, . . . ,8. We choose dP8
which is generated by the hyperplane divisor H from P

2 and the
exceptional divisors E1,...,8 with intersection numbers

H · H = 1, H · Ei = 0, Ei · E j = −δi j . (20)

We also note that the canonical divisor for dP8 is

K S = −c1(dP8) = −3H +
8∑

i=1

Ei . (21)

Then, denoting with C and g the class and the genus of a matter
curve respectively, we have C · (C + K S) = 2g − 2. In the particular
example of Section 17 in Ref. [8] the 10M chiral matter of the three
generations resides on one Σ10, with C = 2H − E1 − E5 and the
three 5̄M on a single Σ1

5 curve with C = H . Higgs fields 5H and

5̄H̄ are localized on different Σ
2,3
5 matter curves with classes C =

H − E1 − E3 and H − E2 − E4 respectively. Checking the relevant
intersections, one readily finds that all the above matter curves are
of the same genus g = 0 and therefore the criterion is fulfilled.

Returning to the threshold contributions (17), (18), once the
parts proportional to β 5̄

a , β10
a cancel out we observe that the re-

maining contributions from KK-thresholds are just those propor-
tional to the coefficients ka and consequently, they only induce a
shift of the gauge coupling value at MGUT. We finally get

16π2

g2
a (μ)

=
(

16π2

g2
s

+ 20T5/6 + 6T1/6 + 2T1/3

)
ka

+ (
b(g)

a + ba
)

log
M2

GUT

μ2
+ bT

a log
M2

GUT

M2
X

. (22)

Thus, matter thresholds leave the GUT scale MGUT intact, their only
net effect amounts to a further shift of the common gauge cou-
pling. The value of the latter at the GUT scale is defined by

16π2

g2
GUT

= 16π2

g2
s

+ 20T5/6 + 6T1/6 + 2T1/3. (23)

In the case where KK-modes from the gauge multiplet are associ-
ated to a bundle with different properties, we denote T5/6 → T ′

5/6
while the above analysis still holds.

We observe that (22) are just the one-loop renormalization
group equations for the minimal SU(5) GUT, with extra color
triplets becoming massive at a scale M X � MGUT. We further note
that in F -theory constructions, a U (1)Y flux mechanism is em-
ployed to break the SU(5) symmetry, inducing a splitting of the
gauge couplings at the GUT scale. This gauge coupling splitting is
still consistent with a unification scale MGUT ∼ 2 × 1016 GeV pro-
vided that the triplets receive a mass at a scale determined by
consistency conditions [11,13].

2.2.1. Example: the case of non-trivial line bundle
We now present an example of non-trivial Σ10,Σ5̄ matter

curves and a genus g = 1 Riemann surface. We will use the tor-
sion results of [17] to compute the KK-matter contributions. The
masses of the KK-modes are the eigenvalues of the Laplacian on
a complex d = 1 Riemann surface. Thresholds are given as func-
tions of the torsion which is expressed in terms of the eigenvalues
through the associated zeta function for the Laplacian �k

�k,R(V ) = (
∂̄ + ∂̄†)2 = ∂̄ ∂̄† + ∂̄†∂̄ . (24)
If we collectively denote ψn
k as the k-form eigenfunction, then

�k,R(V )ψ
n
k = λk

nψ
n
k (25)

where λk
n is the corresponding eigenvalue which in four dimen-

sions corresponds to a mass squared. The associated zeta function
is given by

ζ�k (s) =
∑

n

1

λs
n

= 1

Γ (s)

∞∫
0

ts−1 Tr
(
e−�kt)t (26)

so that

ln(Det�k) = −dζ�k (s)

ds

∣∣∣∣
s=0

.

The torsion is written as

T =
∑

k

(−1)k+1k
dζ�k (s)

ds

∣∣∣∣
s=0

. (27)

For our application, we have already assumed a Riemann surface
of genus g = 1 and a character given by χ = exp{2π i(mu + nv)}
with the identification χ ↔ u − τ v . The eigenvalues are

λn = 4π2

Imτ

∣∣u + m − τ (v + n)
∣∣2

. (28)

The eigenfunctions are

ψn = exp

{
2π i

Imτ
Im

[
z
(
u + m − τ̄ (v + n)

)]}
.

Given the eigenvalues (28), the torsion can be computed [17]
using (27) and (26). In the following, we present the basic steps of
its derivation, adapting the notation [17] into our formalism. Let us
assume that τ = τ1 + iτ2 and let us define S1 = Tr(e−�kt) which
amounts to the calculation of the following double sum:

S1 =
∞∑

m,n=−∞
exp

[
−4π2t

τ 2
2

(
(u + m)2 + τ 2(v + n)2

− 2τ1(u + m)(v + n)
)]

. (29)

Applying the Poisson summation formula we get

S1 = τ2

4πt

∞∑
m,n=−∞

exp

[
− 1

4t

(
m2τ 2 + n2 + 2τ1mn

)

+ 2π i(mu + nv)

]
. (30)

Putting a = (m2τ 2 +n2 + 2τ1mn) and substituting into (26), we get

ζ(s) = τ2

4π

1

Γ (s)

∞∑
m,n=−∞

∞∫
0

dt ts−2e− a
4t exp

[
2π i(mu + nv)

]
.

(31)

For s > 1 the integration gives

ζ(s) = τ2

4π

Γ (1 − s)

Γ (s)

∞∑
m,n=−∞

(
4

a

)1−s

exp
(
2π i(mu + nv)

)
. (32)

We readily now find that

ζ ′(0) = τ2

π

∞∑ exp[2π i(mu + nv)]
(m2τ 2 + n2 + 2τ1mn)

. (33)

m,n=−∞
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According to Kronecker’s second limit theorem, the singular term
m = 0, n = 0 has to be omitted [21]. This way we get

ζ ′(0) = τ2

π

∑
n �=0

exp[2π inv]
n2

+ τ2

π

∑
m �=0

e2iπmu
∞∑

n=−∞

e2iπnv

m2τ 2 + n2 + 2τ1mn
. (34)

The first sum is [22]

∑
n �=0

exp[2π inv]
n2

= 2
∞∑

n=1

cos 2π vn

n2

= 3(2π v)2 − 6π(2π v) + 2π2

6

= 2π2
(

v2 − v + 1

6

)

where 0 < v < 1. The n sum in the second term of (34) can be
evaluated by means of the Poisson formula

∞∑
n=−∞

f (−n) =
∞∑

n=−∞

∞∫
−∞

e2π inx f (x)dx. (35)

The denominator can be written as

m2τ 2 + x2 + 2τ1mx = (mτ1 + x)2 + m2τ 2
2 (36)

so that

I =
∞∫

−∞
dx

e2iπ(n+v)x

(mτ1 + x)2 + m2τ 2
2

=
∞∫

−∞
dx

e−2iπ(n+v)mτ1 e2iπ(n+v)x

x2 + m2τ 2
2

= π
e−2iπ(n+v)mτ1 e−2π |v+n||mτ2|

|mτ2| . (37)

Restricting to the upper plane so that τ2 = Imτ > 0, we finally get

ζ ′(0) = 2πτ2

(
v2 − v + 1

6

)

+
∞∑

n=−∞

∑
m �=0

1

|m|e−2|m||v+n|πτ2−2iπ(n+v)mτ1+2iπmu.

The sum over m gives

∑
m �=0

1

|m|e−2aπ |m|+2iπbm

= − ln
(
1 − e−2π(a+bi)) − ln

(
1 − e−2π(a−bi)) (38)

or

ζ ′(0) = 2πτ2

(
v2 − v + 1

6

)

−
∞∑

n=−∞
ln

∣∣1 − e−2|v+n|πτ2+2iπ(n+v)τ1−2iπu
∣∣2

.

Take now the exponent

2iπ
[|v + n|iτ2 + (n + v)τ1 − u

]
. (39)
Looking at the contributions for n = 0, n > 1 and n < −1 we can
write everything in a compact form as follows:

ζ ′(0) = 2πτ2

(
v2 − v + 1

6

)
−

∞∑
n=−∞

ln
∣∣1 − e2iπ(|n|τ−εn(u−τ v))

∣∣2

where we have introduced the sign convention εn = sign(n + 1
2 ).

Now consider the function

g(w, τ ) =
∞∏

n=−∞

(
1 − exp

[
2iπ

(|n|τ − εn w
)])

. (40)

Separating out the zero mode we may write

g(w, τ ) = (
1 − exp[−2iπ w])

∞∏
n=1

(
1 − exp

[
2iπ(nτ − w)

])

×
∞∏

n=1

(
1 − exp

[
2iπ(nτ + w)

])
. (41)

Using the nome q = eiπτ we get

g(w, τ ) = 2i sinπ we−iπ w
∞∏

n=1

(
1 − 2q2n cos 2π wu + q4n). (42)

The elliptic function ϑ1 is defined as

ϑ1(w, τ )

= 2q
1
4 sinπ w

∞∏
n=1

(
1 − 2q2n cos 2π w + q4n)(1 − q2n). (43)

Using the Dedekind eta function η(τ ) = q
1

12
∏∞

n=1(1 − q2n) we de-
duce that

ϑ1(w, τ ) = −ieiπ(w+ τ
6 )η(τ )g(w, τ ). (44)

This way,

∞∑
n=−∞

ln
∣∣1 − e2iπ(|n|τ−εn(u−τ v))

∣∣2

= ln

∣∣∣∣ϑ1(u − τ v, τ )

η(τ )

∣∣∣∣
2

+ ln
(
e−iπ(u−τ (v− 1

6 ))eiπ(u−τ ∗(v− 1
6 ))

)

= 2 ln

∣∣∣∣ϑ1(u − τ v, τ )

η(τ )

∣∣∣∣ − 2πτ2

(
v − 1

6

)
. (45)

Finally, collecting all the terms we get

ζ ′(0) = 2πτ2

(
v2 − v + 1

6

)
− 2 ln

∣∣∣∣ϑ1(u − τ v, τ )

η(τ )

∣∣∣∣
+ 2πτ2

(
v − 1

6

)

= −2 ln

∣∣∣∣eiπτ v2 ϑ1(u − τ v, τ )

η(τ )

∣∣∣∣ (46)

Therefore, the analytic torsion is

Tz = ln

∣∣∣∣eπ iv2τ ϑ1(z, τ )

η(τ )

∣∣∣∣, z = u − τ v. (47)

In order to use this result, we need to make a proper identifica-
tion of the hypercharge qi . Let us first recall the following identity
for ϑ1(z, τ ):

ϑ1(z + τ , τ ) = −e−π iτ e−2π izϑ1(z, τ ). (48)
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For z = u − τ v this becomes

ϑ1(u − τ v + τ , τ ) = −eπ i(2v−1)e−2π iuϑ1(u − τ v). (49)

In terms of the variables u, v , the transformation is essentially
equivalent to the shift v → v − 1, i.e. the left part can be rewritten
as ϑ1(u − τ (v − 1), τ ). Consequently, for two different points v ,
v − 1 the torsion reads

Tv ≡ Tz=u−τ v = ln

∣∣∣∣eπ iτ v2
ϑ1(u − τ v, τ )

η(τ )

∣∣∣∣, (50)

Tv−1 ≡ Tz=u−τ (v−1) = ln

∣∣∣∣eπ iτ (v−1)2
ϑ1(u − τ (v − 1), τ )

η(τ )

∣∣∣∣. (51)

Using the identity (49) the numerator in the logarithmic quantity
(51) becomes

eπ iτ (v−1)2
ϑ1

(
u − τ (v − 1), τ

)
= −e−2π iueπ iτ v2

ϑ1(u − τ v, τ ). (52)

Now, substituting into the torsion formula and taking into account
that u is real, we obtain

Tz=u−τ (v−1) = ln
∣∣−e−2π iueπ iτ v2

ϑ1(u − τ v, τ )
∣∣

= Tz=u−τ v . (53)

Considering now two successive hypercharge values qi,q j such
that |qi − q j | = 5

6 and using the association

vi = qi

|qi − q j| , (54)

we get the identification Tu−τ vi ↔ Tqi . With this embedding we
can easily see that the differences T−2/3 − T1/6 and T−1/2 − T1/3
vanish and the result (22) is readily obtained.

This example, although not fully realistic (since we have re-
stricted our investigation to the flat torus) is sufficient to support
the aforementioned ideas. In proposing the above identification we
relied on the assumption that a U (1) symmetry is naturally as-
sociated with the one cycle of the torus, while the hypercharge
identification seems to be in accordance with the notion of U (1)

fluxes piercing the matter curves. Indeed, we know that when the
U (1) fluxes are turned on they affect the multiplicity of the vari-
ous massless representations along the matter curves. For example,
assuming the Σ5̄ matter curve, the number of 5’s and/or 5̄’s is de-
termined by the fluxes of U (1)i ’s corresponding to some Cartan
generators of the commutant gauge group inside E8 (here being
SU(5)⊥). Furthermore, U (1)Y ∈ SU(5)GUT determines in a similar
manner the splitting of the Standard Model representations ob-
tained from the decomposition of 10 and 5̄’s. Indeed, in the pres-
ence of U (1)Y ∈ SU(5)GUT flux, we can express for example the
splitting of the massless spectrum for n units of hyperflux for 5 →
(3,1)1/3 + (1,2)−1/2 as #(3,1)1/3 − #(1,2)−1/2 = (vd − vl)n = n.
Notice that Eq. (28) and the hypercharge association assumed in
(54) imply also the same v-dependence of the corresponding mas-
sive modes.

2.2.2. On matter curves with higher genera
So far we have presented simple examples where threshold cor-

rections from KK-states associated to genus one matter curves do
not alter the unification scale. For g = 1 the properties of the de-
terminants are well understood and (at least in the case of flat
torus) we can corroborate our assumption for the U (1)Y embed-
ding with an explicit computation. However, in F-theory, we deal
quite often with examples involving matter curves of higher gen-
era (g � 2). In this case a natural extension of the ∂̄-torsion can
be possibly related to the Selberg’s zeta function [23]. Then one
has to seek for specific realistic cases where the required proper-
ties are satisfied. Here, we will only give a brief account on the
possibility of implementing our analysis for g > 1, leaving a more
detailed consideration for future work.

We first note that the compact Riemannian manifold (for g > 1)
can be written as H/Γ , that is, it can be identified as the quotient
of the upper half plane H by the group of isometries Γ of H with
elements

γ =
(

a b
c d

)
∈ Γ :→

(
a b
c d

)
z = az + b

cz + d

with the condition |a + d| > 2.3 An element γ ∈ Γ is called prim-
itive if it is not a power of some other element in Γ . An element
γ ′ is said to be conjugate to another γ if there exists an element
γ1 in Γ such that

γ ′ = γ1γ γ −1
1 .

We denote {γ } the set of elements which are conjugate to γ . This
way, Γ is the union of disjoint conjugacy classes. If γ0 is the prim-
itive element of {γ }, then any other element in the same class can
be written as γ = γ n

0 for some integer power n. We mention that
for a compact manifold the element γ ∈ Γ can also be written as

γ ∈ Γ : z′ − z0

z′ − z1
= e2ργ

z − z0

z − z1

for two real fixed points z0,1 and ργ > 0. For given finite unitary
representation χ(γ ), the Selberg zeta function is defined [17] as

Z(s,χ) =
∏
{γ }

∞∏
n=0

det
(
1 − χ(γ )e−ργ (s+n)

)
(55)

with Re(s) > 1. Hence, any properties of the torsion could be in-
vestigated with respect to its relation to the Selberg zeta function
given by the general formula (55). For example, for two non-trivial
unitary representations χ(γ ) and χ ′(γ ′) of Γ and for a com-
pact Riemann surface of g > 1, according to a theorem by Ray
and Singer [17] the difference ln(T0(χ)) − ln(T0(χ

′)) is propor-
tional to ln(Z(χ)) − ln(Z(χ ′)). Several studies [24] have revealed
interesting properties of Selberg’s function. It is envisaged that one
can find examples where the required quantities exhibit period-
icity properties and an appropriate hypercharge embedding could
also be feasible. We plan to return to these issues in a future pub-
lication.

3. Conclusions

In unified theories emerging in the context of F-theory com-
pactification, threshold corrections from Kaluza–Klein massive
modes play a decisive role in gauge coupling unification and the
determination of the GUT scale. In this work, we have revisited
this issue in the context of a specific minimal unification scenario,
the F-theory SU(5) GUT. Although the problem of KK-thresholds is
in general quite complicated, in the model under consideration
it gets remarkably simplified using the fact that these thresh-
olds can be expressed in terms of a topologically invariant quan-
tity, the Ray–Singer analytic torsion. Previous considerations have
shown that the KK-modes from the gauge multiplets can be ab-
sorbed into a redefinition of the effective GUT mass scale and the

3 This is a space with hyperbolic geometry with metric ds2 = y−2(dx2 +dy2) and
constant negative curvature R = −1.
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string gauge coupling. However, for KK-mode contributions emerg-
ing from the matter curves the situation is less clear. We have
pursued this issue one step further, and analyzed the conditions
to be imposed on the matter spectrum and the nature of bun-
dle structure where matter resides, in order to ensure that the
emerging F-theory GUT comply with low energy phenomenolog-
ical expectations. We have given examples where matter resides
on genus one matter curves with chiral matter forming complete
SU(5) multiplets consistent with the minimal unification scenario,
so that the low energy values for the weak mixing angle and the
strong gauge coupling can be reproduced. A short discussion on
the prospects of models with higher genus matter curves is also
included.

References

[1] C. Vafa, Nucl. Phys. B 469 (1996) 403.
[2] F. Denef, arXiv:0803.1194.
[3] T. Weigand, Class. Quant. Grav. 27 (2010) 214004.
[4] J.J. Heckman, arXiv:1001.0577.
[5] M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov, C. Vafa,

Nucl. Phys. B 481 (1996) 215.
[6] R. Donagi, M. Wijnholt, arXiv:0802.2969 [hep-th].
[7] C. Beasley, J.J. Heckman, C. Vafa, JHEP 0901 (2009) 058.
[8] C. Beasley, J.J. Heckman, C. Vafa, JHEP 0901 (2009) 059.
[9] R. Blumenhagen, T.W. Grimm, B. Jurke, T. Weigand, Nucl. Phys. B 829 (2010)
325.

[10] R. Donagi, M. Wijnholt, arXiv:0808.2223 [hep-th].
[11] R. Blumenhagen, Phys. Rev. Lett. 102 (2009) 071601.
[12] J.P. Conlon, E. Palti, Phys. Rev. D 80 (2009) 106004, arXiv:0907.1362 [hep-th].
[13] G.K. Leontaris, N.D. Tracas, Eur. Phys. J. C 67 (2010) 489.
[14] G.K. Leontaris, N.D. Tracas, G. Tsamis, arXiv:1102.5244 [hep-ph].
[15] J.J. Heckman, C. Vafa, B. Wecht, arXiv:1103.3287 [hep-th].
[16] P. Langacker, N. Polonsky, Phys. Rev. D 47 (1993) 4028;

G.K. Leontaris, N.D. Tracas, Phys. Lett. B 342 (1995) 163;
J. Bagger, K.T. Matchev, D. Pierce, Phys. Lett. B 348 (1995) 443;
K.R. Dienes, Phys. Rept. 287 (1997) 447;
D. Ghilencea, G.G. Ross, Phys. Lett. B 442 (1998) 165;
I. Antoniadis, C. Bachas, E. Dudas, Nucl. Phys. B 560 (1999) 93.

[17] D.B. Ray, I.M. Singer, Annals Math. 98 (1973) 154.
[18] T. Friedmann, E. Witten, Adv. Theor. Math. Phys. 7 (2003) 577.
[19] G.K. Leontaris, G.G. Ross, JHEP 1102 (2011) 108.
[20] E. Dudas, E. Palti, JHEP 1009 (2010) 013.
[21] C.L. Siegel, Advanced Analytic Number Theory, Tata Institute of Fundamental

Research, Bombay, 1980.
[22] Eldon R. Hansen, A Table of Series and Products, Prentice Hall, Englewood Cliffs,

NJ, 1975.
[23] A. Selberg, J. Ind. Math. Soc. 20 (1956) 47.
[24] H.P. McKean, Comm. Pure Appl. Math. 25 (1972) 225;

E. D’Hoker, D.H. Phong, Commun. Math. Phys. 104 (1986) 537;
A. Voros, Commun. Math. Phys. 110 (1987) 439;
F. Steiner, Phys. Lett. B 188 (1987) 447;
E. Elizalde, Commun. Math. Phys. 198 (1998) 83.


	On the GUT scale of F-theory SU(5)
	1 Introduction
	2 KK-modes and the GUT scale
	2.1 The gauge multiplet
	2.2 The chiral matter
	2.2.1 Example: the case of non-trivial line bundle
	2.2.2 On matter curves with higher genera


	3 Conclusions
	References


