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Abstract

In this paper we use fractal geometry to investigate boundary aspects of the first homology group for finite
coverings of the modular surface. We obtain a complete description of algebraically invisible parts of this homology
group. More precisely, we first show that for any modular subgroup the geodesic forward dynamic on the
associated surface admits a canonical symbolic representation by a finitely irreducible shift space. We then use
this representation to derive a complete multifractal description of the higher-dimensional level sets arising from
the Manin–Marcolli limiting modular symbols.
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1. Introduction

Let C2(G) refer to the space of cusp forms of weight 2 for some arbitrary modular subgroup G. That
is, G is a finite index subgroup of the modular group Γ := PSL2(Z). It is well known that there is a dual
pairing between C2(G) and the first homology group H1(MG,R) of the associated compactified cusped
Riemann surface MG of genus g. That is, we have

〈·, ·〉 : H1(MG,R)× C2(G) → C, where 〈γ, f 〉 :=

∫
γ

f (z) dz.
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Each element of H1(MG,R) can be represented by integrating the 1-form f dz along some smooth path
between two points ξ, η in H ∪ P1(Q), and this determines the modular symbol {ξ, η}G ∈ H1(MG,R).
A possible way to extend these symbols to the non-cuspidal boundary of hyperbolic space, and therefore
to give a non-trivial homological meaning to algebraically invisible parts of H1(MG,R), has been
suggested by Manin and Marcolli [18]. They introduced the concept ‘limiting modular symbol’, which
is given for x ∈ R by (whenever the limit exists)

`G(x) := lim
t→∞

1
t
{i, x + i exp(−t)}G ∈ H1(MG,R).

Note that the limit in the definition of `G exists if and only if it exists for each 1-form f dz with
f ∈ C2(G), and hence it is sufficient to compute it for a fixed complex basis f̂1, . . . , f̂g of C2(G).

The aim of this paper is to use fractal geometry in order to investigate the level sets which arise
naturally from these limiting modular symbols. That is, for α ∈ R2g we consider

Fα :=
{

x ∈ R :
(
〈`G(x), f1〉, . . . , 〈`G(x), f2g〉

)
= α

}
,

where f2k−1 := Re( f̂k) and f2k := Im( f̂k), for k = 1, . . . , g.
A first analysis of this type of level sets was given in [18,20] for modular subgroups which satisfy the

there so called ‘Red-condition’ (see [18]). There it was shown that for these groups 1
t {i, x + i exp(−t)}G

converges weakly to zero with respect to the Lebesgue measure on the unit interval. Subsequently, this
result was improved in [20] by showing that `G(x) is equal to zero Lebesgue—almost everywhere.
Besides, these papers obtained “non-vanishing ” of limiting modular symbols only for the end points of
closed geodesics, that is for quadratic surds. In these trivial cases the limiting modular symbol turns out
to be given by integrating along the closed geodesic and then normalising by the hyperbolic length of
that geodesic.

The aim of this paper is to extend these results to arbitrary modular subgroups and to obtain that
the limiting modular symbol is not equal to zero for a large class of perfect sets of positive Hausdorff
dimension. For this we will give a detailed construction of a shift space ΣG , referred to as the modular
shift space, which is canonically associated with G. We then show that ΣG is finitely irreducible (see
Proposition 3.1 for the definition), which in particular implies that every modular subgroup satisfies
the Red-condition, and hence shows that the results of [18,20] do in fact hold for arbitrary modular
subgroups.

Our main results are summarised in the following theorem, where β̂G : R2g
→ R refers to the

proper concave (negative) Legendre transform of the proper convex function βG : R2g
→ R, given by

β̂G(α) := inft∈R2g(βG(t)− (α|t)).

Main Theorem. For an arbitrary modular subgroup G we have that the modular shift space ΣG is
finitely irreducible.

Moreover, for g ≥ 1 there exists a strictly convex and differentiable function βG : R2g
→ R such that

for each α ∈ ∇βG(R2g) ⊂ R2g,

dimH (Fα) = β̂G(α). (1.1)

In here, we have that βG(0) = 1, and that βG has a unique minimum at 0. Also, we in particular have

`G(Fα) = {hα} ,
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where hα ∈ H1(MG,R) is uniquely determined by (〈hα, f1〉, . . . , 〈hα, f2g〉) = α. Furthermore, the
description of the spectrum in (1.1) is complete in the sense that

∇βG
(
R2g

)
=

{
α ∈ R2g

: F(α) 6= ∅

}
.

The paper is organised as follows. In Section 2 we recall some basic facts on modular symbols. This
includes a brief histogram on exact dual pairings. In Section 3 we first give a reminder on a beautiful
construction which allows to visualise real numbers from a modular surface perspective. Subsequently,
we show how this can be generalised to arbitrary modular subgroups. Here, the main result will be to use
ergodicity of the geodesic flow to obtain that the so obtained generalised modular shift spaces are always
necessarily finitely irreducible. In Section 4 we introduce a limiting modular symbol naturally arising
from these generalised modular shift spaces, and show how these relate to the underlying branched
geometry of numbers. In Section 5 we will collect facts from the thermodynamic formalism which turn
out to be crucial in the proof of our main theorem, which will then be given in Section 6.

Remark. 1. It is well known that the modular subgroup quotient H/G can be viewed as a complex
algebraic curve permitting an arithmetic structure. Similar to the familiar picture in which H/Γ
represents the moduli space of elliptic curves, H/G represents the moduli spaceM(G) of elliptic curves
E(G) equipped with some finite additional structure determined by G \ Γ . Hence, by adding the cusp
points we obtain a pre-compactification of M(G), given by including all possible ways in which E(G)
degenerates to C \ {0}. Moreover, if we further include all degenerations of E(G) to non-commutative
tori, we derive the compactified moduli spaceM0(G) whose boundary is given by the non-commutative
space P1(R)/G. Since the level sets Fα are clearly G-invariant, transferring the results in this paper to
the language of elliptic curve degenerations yields that the modular multifractal spectrum corresponds
to a continuous family of elements of the boundary of M0(G) consisting of the ‘bad quotients’ Fα/G.
(For the relation of non-commutative geometry and modular subgroups, and for some of the literature
on this, we refer to the recent survey article [4] and to [21]).

2. Let us also mention that the concept ‘limiting modular symbol’ could easily be extended to more
general concepts of ‘modular symbols at infinity’. For instance, one could consider `G,φ,ψ given by

`G,φ,ψ (x) := Lim
t→∞

φ(x, t){i, x + iψ(x, t)}G,

for functions φ,ψ : R × R+
→ R+ such that φ(x, t) and ψ(x, t) tend to zero for t tending to

infinity. Here, Lim represents either lim, lim sup, or lim inf. However, in this paper we concentrate
on the Manin–Marcolli limiting modular symbols for which φ(x, t) := 1/t , ψ(x, t) := exp(−t) and
Lim := lim.

2. Preliminaries for modular symbols

For a modular subgroup G consider the space Ck(G) of cusp forms f : H → C of weight k ∈ Z,
given by

• f is holomorphic on H as well as in each cusp of G;
• f = (g′)k/2 · ( f ◦ g) for all g ∈ G;
• f vanishes at each cusp of G.
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Throughout this paper, let MG refer to the (possibly branched) covering surface (H ∪ P1(Q))/G of
MΓ of genus g, assumed to be compactified by having added the cusps.

Recall that a p-chain is a formal sum cp =
∑

i ki Ni , where the Ni are p-dimensional smooth oriented
submanifolds of MG , and the coefficients ki are elements of some Abelian group K. The p-homology
group Hp(MG,K) of MG is then given via cycles and boundaries by Hp(MG,K) := {cp : ∂cp =

∅}/{∂cp+1}. Obviously, we have that Hp(MG,K) = 0, for each p > 2. In particular, H1(MG,Z) is
obtained geometrically by taking all loops in MG as generators and then factoring out the relation that
two loops are homologous, that is they only differ by some boundary. By triangulating MG such that the
directed edges of the triangulation represent the generators of the Abelian group H1(MG,Z) (modulo
the relations given by zero-homologous edge cycles), each element of H1(MG,Z) can be written as a
Z-linear combination of the directed edges. Hence, H1(MG,Z) is a finitely generated Abelian group
which is always equal to either Z2g or to a free product of Z2g with some torsion subgroups of the form
Z2 and/or Z3. Given that H1(MG,Z) is known, one can then apply the universal coefficient theorem to
determine H1(MG,K). Indeed, we have that H1(MG,K) = H1(MG,Z)⊗ZK, and hence H1(MG,K)
is a free K-module of dimension 2g, provided that K is a field. In particular, this shows that the space
H1(MG,R) is a real vector space of dimension 2g.

In order to see how H1(MG,R) fits in with C2(G), note that by de Rham theory we have that
the 1-cohomology group H1(MG,R) is isomorphic to the de Rham cohomology H1

dR(MG,R) :=

{closed 1-forms}/{exact 1-forms}, and hence defines a dual pairing (see e.g. the survey article [7])

〈·, ·〉 : H1(MG,R)× H1
dR (MG,R) → R, given by 〈γ, ω〉 :=

∫
γ

ω.

By Hodge decomposition, there exists an isometry between H1
dR(MG,R) and the space H1

∆(MG) of
harmonic 1-forms. By considering real and imaginary parts of the pull-backs of these harmonic forms to
H ∪ P1(Q), we finally obtain an isomorphic representation of H1

∆(MG) by the holomorphic cusp forms
C2(G). It follows that C2(G) is a g-dimensional C-vector space (and hence a 2g-dimensional R-vector
space) (cf. also [28])). Hence, summarising the above, there is an exact dual pairing of homology and
cusp forms, which is given by the R-bi-linear map

〈·, ·〉 : H1(MG,R)× C2(G) → C, 〈γ, f 〉 :=

∫
γ

f (z) dz.

Also, let us recall for later use that by de Rham theory we have for a fixed basis (γk)
2g
k=1, consisting of

cycles in H1(MG,R), that the set{(〈
γk, f̂1

〉
, . . . ,

〈
γk, f̂g

〉)
: k = 1, . . . , 2g

}
is a basis for Cg over R (cf. [5, p. 10]). For the 2g×2g real period matrix ΠG := (

〈
γk, f j

〉
)k, j , this means

that

ΠG ∈ GL2g (R) . (2.1)

Note that the above dual pairing shows that an element of H1(MG,R) can be viewed as a path in MG , or
alternatively as a path in H∪ P1(Q). Therefore, by viewing it as a path in H∪ P1(Q) and noting that only
the end points ξ, η ∈ H ∪ P1(Q) of the path matter, this allows to represent an elements of H1(MG,R)
by the so called modular symbol {ξ, η}G ∈ H1(MG,R). In particular, for each g ∈ G, any smooth path
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from ξ ∈ H ∪ P1(Q) to g(ξ) projects to a closed path in MG , and hence corresponds to a homology
class in H1(MG,Z). Clearly, this class is represented by the modular symbol {ξ, g(ξ)}G , obtained by
integrating 1-forms f dz, for f ∈ C2(G), along any smooth path from ξ to g(ξ). One easily verifies
that {ξ, g(ξ)}G does not depend on ξ , and that the assignment g 7→ {ξ, g(ξ)}G gives rise to a surjection
of G onto H1(MG,Z) (the kernel of this group homomorphism is generated by the commutators of
G). For the calculus with modular symbols, the following immediate identities are useful. For each
ξ, η, ζ ∈ H ∪ P1(Q) and g ∈ G, we have

{ξ, ξ}G = 0, {ξ, η}G = −{η, ξ}G, {ξ, η}G + {η, ζ }G = {ξ, ζ }G,

{ξ, η}G = {g(ξ), g(η)}G, and {ξ, g(ξ)}G = {η, g(η)}G .

So far, we only considered paths between points in H ∪ P1(Q) which lie in a single G-orbit of some
element of H ∪ P1(Q). In general, that is for arbitrary modular subgroups G, it is not clear how to
define modular symbols between elements of P1(Q) which are not in a single G-orbit. However, for
congruence subgroups Γ0(N ), defined by

Γ0(N ) :=

{(
a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 mod N
}

for N ∈ N,

it is well known that this can be resolved, and this is the essence of the following theorem.

Theorem (Manin–Drinfeld [17,6]). For each ξ, η ∈ P1(Q), we have

{ξ, η}Γ0(N ) ∈ H1
(
MΓ0(N ),Q

)
.

Finally, let us recall a few useful facts about modular subgroups and in particular also congruence
subgroups Γ0(N ).

For instance, for the index κN := [Γ : Γ0(N )] of Γ0(N ) in Γ , we have [26]

κN = N
∏
p|N

(
1 +

1
p

)
.

Also, for the number Nk of Γ0(N )-inequivalent elliptic fixed points of order k ∈ N and the number N∞

of Γ0(N )-inequivalent parabolic fixed points, we have [28]

N2 =

0 if 4|N∏
p|N

(1 + [(−1) : p]) otherwise, N3 =

0 if 9|N∏
p|N

(1 + [(−3) : p]) otherwise,

and

N∞ =

∑
d|N ,d>0

φ (g.c.d. (d, N/d)) ,

where φ is the Euler function and [:] refers to the Legendre symbol of quadratic residues.
For arbitrary modular subgroups G, the following formula for the genus g of MG is an immediate

consequence of the Riemann–Hurwitz formula. With Rk the number of G-inequivalent elliptic fixed
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points of order k ∈ N, R∞ the number of G-inequivalent parabolic fixed points, and κ the index of G in
Γ , we have [28]

g = 1 +
κ

12
−

R2

4
−

R3

3
−

R∞

2
.

3. Modular shift spaces

One of the main ideas of this paper is to investigate limiting modular symbols by using a shift space
which generalises the shift space for the continued fraction expansion of elements of [−1, 1] (see e.g. [1,
2,9,27,13]). In this section we give the construction of this shift space canonically associated with the
geodesic dynamic on the Riemann surface arising from a modular subgroup. Note that this construction
extends the usual coding procedure for the modular surface to arbitrary modular subgroups. For ease of
notation, we put I := [−1, 1] ∩ I, I−1 := [−1, 0] ∩ I and I+1 := [0, 1] ∩ I, where I denotes the set of
irrational numbers.

We begin with recalling from [27] the notion of ‘type-change’ for an oriented geodesic in the upper
half-plane H. For this note that H can be tiled by the so called Farey tessellation, that is the tessellation
by Γ -translates of the ideal triangle with cusp-vertices at 0, 1 and {i∞}. Consequently, each oriented
geodesic l with irrational end points is covered by infinitely many tiles of this tessellation. By travelling
on l in positive direction, each of these tiles gets intersected such that there is always a single vertex of
the three cusp-vertices seen either on the left or on the right of the intersection of l with the tile (the other
two vertices are seen on the opposite side). In case the single vertex is seen on the left, we say that the
visit is of type L , otherwise it is called of type R. If in here two successive visits are of different type,
then one says that l changes type at the point where it intersects the edge at which the two involved tiles
intersect.

Now, let us consider the set L̃Γ of oriented geodesics l in H with initial point l− and end point l+,
given by

L̃Γ := {l = (l−, l+) : 0 < |l−| ≤ 1 ≤ |l+|, l− · l+ < 0, and l−, l+ ∈ I}.

Each element l of L̃Γ can then be coded by its successive ‘type-changes’, that is

l is coded by
{
. . . . . . Ln−2 Rn−1 yl Ln1 Rn2 . . . . . . if l+ ≥ 1
. . . . . . Rn−2 Ln−1 yl Rn1 Ln2 . . . . . . if l+ ≤ −1,

where yl refers to the point at which l intersects the imaginary axis. This type of coding is closely related
to the continued fraction expansion of elements y ∈ I+1, given for y1, y2, . . . ∈ N by

y = [y1, y2, . . .] :=
1

y1 +
1

y2+···

.

Namely, we have that

l− = −[n−1, n−2, . . .] and l+ = [n1, n2, . . .]
−1 if l+ ≥ 1

l− = [n−1, n−2, . . .] and l+ = −[n1, n2, . . .]
−1 if l+ ≤ −1.

Next, consider the subset C̃Γ of the unit tangent space U T (H) consisting of all those unit tangent
vectors which are based at the imaginary axis and which give rise to geodesics l ∈ L̃Γ . We then
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have that the Poincaré section S̃Γ associated with L̃Γ is given by the canonical projection of C̃Γ onto
U T (MΓ ). More precisely, let l ∈ L̃Γ be given such that l is coded by . . . Ln−2 Rn−1 yl Ln1 Rn2 . . . . With
T : z 7→ z + 1 referring to the parabolic generator of Γ , we have that T −n1(l) is a geodesic which
starts in [−(n1 + 1),−n1] and ends in I+1, and hence T −n1(l) is not an element of L̃Γ . However, if we
additionally apply the elliptic generator S : z 7→ −1/z of Γ , then we obtain that the resulting geodesic
l ′ := ST −n1(l) is an element of L̃Γ , and one immediately verifies that

l ′− = [n1, n−1, . . .] and l ′+ = −[n2, n3, . . .]
−1.

Hence, in this situation we have

ST −n1 : l = (−[n−1, n−2, . . .], [n1, n2, . . .]) 7→ l ′ = ([n1, n−1, . . .],−[n2, n3, . . .]).

The dynamical idea behind this coding step is as follows. Let vl ∈ C̃Γ be given, and let v′

l be the vector
in Γ (C̃Γ ) obtained by sliding vl in positive direction along l until the next type-change takes place. The
significance of ST −n1 is that ST −n1(v′

l) is an element of C̃Γ such that its projection onto U T (MΓ ) is
precisely the first return to S̃Γ when starting from the projection of yl onto MΓ in the direction of vl .

Clearly, we can proceed in a similar way if the geodesic l turns out to be coded by
. . . Rn−2 Ln−1 yl Rn1 Ln2 . . . . In this case ST n1 gives rise to the assignment

l = ([n−1, n−2, . . .],−[n1, n2, . . .]
−1) 7→ l ′ = (−[n1, n−1, . . .], [n2, n3, . . .]

−1).

This procedure is summarised by the Poincaré-map P̃Γ : L̃Γ → L̃Γ , given by

P̃Γ (l) :=

{
ST −n1(l) if l = (−[n−1, n−2, . . .], [n1, n2, . . .]

−1)

ST n1(l) if l = ([n−1, n−2, . . .],−[n1, n2, . . .]
−1).

Here it is important to remark that the restriction PΓ of the action of P̃Γ to the second coordinate can
also be described by the ‘twisted Gauss-map’

GΓ : I → I, x 7→ SPΓ S(x).

The reason why GΓ is called twisted Gauss-map originates from its link to the usual Gauss-map
G : I+1 → I+1, x 7→ 1/x − b1/xc (where b1/xc denotes the integer part of 1/x). Namely, one
immediately verifies

GΓ (:=SPΓ S) : x 7→ −sign(x)G(|x |).

Note that GΓ can alternatively be derived directly if instead of L̃Γ one starts with the following set of
oriented H-geodesics

LΓ := {l = (l−, l+) : 0 < |l+| ≤ 1 ≤ |l−|, l− · l+ < 0, and l−, l+ ∈ I}.

These geodesics can then also be coded by the type-change mechanism as explained above. Here, the
relevant section CΓ ⊂ U T (H) is the set of unit tangent vectors based at the imaginary axis, giving
rise to the geodesics in LΓ . The Poincaré section arising from this will be denoted by SΓ . One then
immediately verifies that GΓ coincides with the map obtained by restricting the Poincaré map arising
from this alternative approach to the second coordinate.
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Also, note that for k ∈ Z×

:= Z \ {0} the k-th inverse branch P−1
Γ ,k of PΓ has the property

P−1
Γ ,k :

{
(−∞,−1] ∩ I → {y−1

∈ [1,∞) : y = [k, y2, . . .]} if k ∈ N
[1,∞) ∩ I → {−y−1

∈ (−∞,−1] : y = [|k|, y2, . . .]} if k 6∈ N.

In particular, this shows that P−1
Γ ,k can be expressed in terms of the generators of Γ by P−1

Γ ,k = T k S. On
the other hand, for the corresponding k-th inverse branch G−1

Γ ,k of the twisted Gauss-map we immediately
have

G−1
Γ ,k = SP−1

Γ ,k S = ST k SS = ST k
:

{
I+1 → I−k if k ∈ N
I−1 → I−k if k 6∈ N,

where Ik := {sign(k)[y1, y2, . . .] ∈ I : y1 = |k|} refers to the k-th basic interval.

We can now use standard ergodic theory to obtain our actual code space via the inverse branches
of GΓ as follows (cf. [3,25]). One immediately verifies that the set α := {Ik : k ∈ Z×

} is a partition
of I, such that the sequence of refinements (

∨n−1
i=0 G

−i
Γ (α))n∈N generates the Borel σ -algebra. Hence,

in terms of inverse branches of GΓ the twisted continued fraction coding of I is given as follows. For
n1, n2, . . . ∈ N, we have

[n1, n2, . . .] = lim
k→∞

ST −n1 ST n2 . . . ST (−1)knk
(
I(−1)k

)
−[n1, n2, . . .] = lim

k→∞
ST n1 ST −n2 . . . ST (−1)k+1nk

(
I(−1)k+1

)
.

Therefore, by defining the shift space

Σ∗ :=

{
(x1, x2, . . .) ∈

(
Z

×
)N

: xi xi+1 < 0, for all i ∈ N
}

equipped with the shift map σ∗ : (x1, x2, . . .) 7→ (x2, x3, . . .), one immediately verifies that

ρ : Σ∗ → I, (x1, x2, . . .) 7→ −sign(x1)[|x1|, |x2|, . . .]

is a bijection for which ρ ◦ σ∗ = GΓ ◦ ρ.

Our next goal is to generalise this modular coding procedure to arbitrary modular subgroups G. For
this, let EG refer to a fixed set of left-coset representatives of the quotient space G \ Γ . In this more
general setting the relevant set of oriented geodesics is given by LG :=

⋃
e∈EG

e(LΓ ). Note that there
is a 1-1-correspondence between LG and the Poincaré section SG for the geodesic flow on MG , where
SG is given by the canonical projection of CG :=

⋃
e∈EG

e(CΓ ) onto U T (MG). We then adopt the above
modular coding procedure in order to obtain a code space also in this more general situation. For this
we proceed as follows. Assume that ΣG :=

⋃
e∈EG

(e(I)× {e}) is equipped with the topology inherited
from R. The G-generalised twisted Gauss-map GG : ΣG → ΣG is then given by

GG(x, e) :=

(
eSPΓ Se−1(x), e

)
, for e ∈ EG, x ∈ e(I).
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Analogous to the situation before, we now have that for k ∈ Z×

and e ∈ EG the (k, e)-th inverse branch
G−1

G,(k,e) of GG is given by

G−1
G,(k,e) :

e(I+1)× {e} → e(I−1)× {e}, (x, e) 7→

(
eST ke−1(x), e

)
if k ∈ N

e(I−1)× {e} → e(I+1)× {e}, (x, e) 7→

(
eST ke−1(x), e

)
if k 6∈ N.

Hence, we can again use standard ergodic theory to obtain our actual code space via the inverse
branches of GG . This time the basic intervals are Ik,e := e(Ik) × {e}, for k ∈ Z×

and e ∈ EG .
Also, αG := {Ik,e : k ∈ Z×

, e ∈ EG} is a partition of ΣG such that the sequence of refinements
(
∨n−1

i=0 G
−i
G (α))n∈N generates the Borel σ -algebra of ΣG . Hence, in terms of inverse branches of GG the

G-generalised twisted continued fraction coding of ΣG is given as follows. Let (x, e) ∈ ΣG be given.
Then x ∈ e(I), and we have that there exist n1, n2, . . . ∈ N such that e−1(x) = ±[n1, n2, . . .]. By the
above modular coding, we then have

x =

 lim
k→∞

eST −n1 ST n2 . . . ST (−1)knk
(
I(−1)k

)
if e−1(x) ∈ I+1

lim
k→∞

eST n1 ST −n2 . . . ST (−1)k+1nk
(
I(−1)k

)
if e−1(x) ∈ I−1.

(3.1)

Clearly, the assignment (e(±[n1, n2, . . .]), e) 7→ ((∓n1,±n2, . . .), e) gives rise to a bijection between
ΣG and Σ̃G := Σ∗ × EG . Unfortunately, the space Σ̃G is not a proper shift space. Nevertheless, such a
proper shift space can be obtained by keeping track of the cosets GeST ±n1 ST ∓n2 . . . ST ±nk which are
visited during the approximation of x given in (3.1). That is, we successively mark down as a second
parameter the cosets in which those images of the directed imaginary axis lie on which the type-changes
occur. More precisely, we define the shift space ΣG by

ΣG := {((x1, e1), (x2, e2), . . .) ∈ (Z
×

× EG)
N

: (x1, x2, . . .) ∈ Σ∗, ek+1 = τxk (ek) for all k ∈ N},

where the map τxk : EG → EG is defined by, with ≡G referring to equivalence mod G,

τxk (ek) : ≡G ek ST xk .

One immediately verifies that the assignment

((x1, x2, . . .), e) 7→
(
(x1, e), (x2, τx1(e)), (x3, τx2(τx1(e))), . . .

)
defines an isomorphism between Σ̃G and ΣG , and hence ΣG is also isomorphic to ΣG . Of course, the
advantage in using ΣG to code the geodesic rays in MG which arise from SG is, that it becomes a proper
shift space when equipped with the shift map

σ : ΣG → ΣG, ((x1, e1), (x2, e2), . . .) 7→ ((x2, e2), (x3, e3), . . .),

as well as with the canonical metric d , given for ((xk, ek))k, ((x ′

k, e′

k))k ∈ ΣG by

d(((xk, ek))k, ((x ′

k, e′

k))k) :=

∞∑
i=1

2−i
(

1 − δ(xi ,ei ),(x ′
i ,e

′
i )

)
.

Note that the system (ΣG, σ ) relates to ordinary continued fraction expansions as follows. For
((xk, ek))k ∈ ΣG one immediately verifies by way of finite induction, using the matrix representation of
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the elements in Γ ,

ek+1 = τxk (ek)≡G ek ST xk = τxk−1(ek−1)ST xk

≡G ek−1ST xk−1 ST xk ≡G . . .

≡G e1ST x1 . . . ST xk = e1

(
−sign (x1) pk−1(x) (−1)k pk(x)

qk−1(x) (−1)k+1 sign (x1) qk(x)

)
.

Here, pn(x)/qn(x) refers to the n-th approximant of the ordinary continued fraction expansion of
x := [|x1|, |x2|, . . .], with the usual convention q0(x) := p−1(x) := 1 and q−1(x) := p0(x) := 0.

Remark 1. 1. At first sight it might appear that the step from Σ̃G and/or ΣG to ΣG is just technical and
that it achieves only little. However, this step will turn out to be crucial, since it will allow us to employ
certain standard results from thermodynamic formalism, a formalism which is well elaborated for shift
spaces of the type (ΣG, σ ).

2. We remark that (ΣG, σ ) can also be represented by the skew product (Σ̃G, σ̃ ), where σ̃ : Σ̃G → Σ̃G
is given by

σ̃ : ((x1, x2, . . .), e) 7→
(
(x2, x3, . . .), τx1(e)

)
.

Clearly, the assignment π̃((x1, e1), (x2, e2), . . .) := ((x1, x2, . . .), e1) gives rise to an isomorphism
π̃ : ΣG → Σ̃G , which is a dynamical conjugacy in the sense that σ̃ ◦ π̃ = π̃ ◦ σ .

Also, note that throughout we will often identify an element ((xk, ek))k ∈ ΣG with ((xk)k, e1) ∈ Σ̃G ,
as well as with (e1(−sign(x1)[|x1|, |x2|, . . .]), e1) ∈ ΣG .

3. Let us also mention that (ΣG, σ ) can be represented by a conformal graph directed Markov system
(for an extensive discussion of these systems, we refer to [22]). Namely, define V := {(e,±1) : e ∈ EG}

to be the finite set of vertices, E := Z×

× EG the countable infinite set of edges, and let the two functions
i, t : E → V be given by i((k, e)) := (e,−sign(k)) and t ((k, e)) := (τk(e), sign(k)). Furthermore,
let the edge incidence matrix A = (Au,v)u,v∈E be defined by Au,v = 1 if t (u) = i(v), and Au,v = 0
otherwise. We then have that (V, E, i, t, A) is a directed multigraph with associated incidence matrix A,
and one immediately verifies that the subshift ΛG := {(uk)k ∈ EN : Auk ,uk+1 = 1, for all k ∈ N} is
isomorphic to ΣG . In order to derive the conformal graph directed Markov system, define compact sets
I(e,+1) := e(I+1) and I(e,−1) := e(I−1), for all e ∈ EG . Also, for each (k, e) ∈ E define

φ(k,e) := eST k (τk (e))−1
: I(τk(e),sign(k)) → I(e,−sign(k)).

(Note that here the maps φ(k,e) are viewed as Möbius transformations). With these preparations, one now
immediately verifies that the system

ΦG :=
{
φu : It(u) → Ii(u) | u ∈ E

}
satisfies all the requirements of a conformal graph directed Markov system, apart from that a priori
the maps φu are not necessarily uniformly contracting. However, similar as for Schottky groups [22,
Example 5.1.5], this can be resolved by replacing the system ΦG by a sufficiently high iterate of itself.

The final aim of this section is to show that for each modular subgroup we have that the modular
shift space ΣG satisfies a certain transitivity condition called ‘finitely irreducible’ (for the definition,
see Proposition 3.1 below). Let us remark that the main results in [19] are based on the assumption
that the so called ‘Red-condition’ holds (see [19] for the definition). One immediately verifies that this
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Red-condition is in fact equivalent to finite irreducibility of the shift space ΣG . However, the approach
in [19] allows to verify this condition only for congruence subgroups. Indeed, the proof of [19,
Proposition 1.2.1] is based on the fact that for congruence subgroups Γ0(N ) there is an isomorphism
between the set of modular symbols and the set of M-symbols (that is P1(Z/NZ), the projective line
over the ring of integers mod N (see also [5])). This then allows to verify the Red-condition algebraically
in terms of elementary congruence calculations. In contrast to this, our approach is completely different.
To obtain the result for all modular subgroups G, we combine an elementary observation for the shift
space ΣG with the ergodicity of the geodesic flow on MG .

In the following, Σ n
G refers to the set of admissible words of length n in the alphabet Z×

× EG , and
Σ ∗

G :=
⋃

n∈NΣ n
G .

Proposition 3.1. For each modular subgroup G we have that the modular shift space (ΣG, σ ) is finitely
irreducible in the sense of [22]. That is, there exists a finite set W ⊂ Σ ∗

G such that for all a, b ∈ Z×

×EG
there exists w ∈ W such that awb ∈ Σ ∗

G .

Proof. Let (m, e′), (n, e′′) ∈ Z×

× EG be given. For simplicity, let us only consider the case in which
m < 0 and n > 0. Clearly, the remaining cases can be dealt with in an analogous way. Now, the aim is
to show that there exists a universal constant c = c(G) ∈ N and a finite set W ⊂ Σ ∗

G of words of length
at most c such that

(m, e′)w(n, e′′) ∈ Σ ∗

G, for some w ∈ W. (3.2)

For this, observe that if (m, e′)w(n, e′′) ∈ Σ ∗

G then (m, e′)w(s, e′′) ∈ Σ ∗

G , for all s ∈ N. This shows
that the assertion in (3.2) does not dependent on n. Similarly, observe that with ê := τm(e′) we have
(m, e′)(r, ê) ∈ Σ 2

G , for all r ∈ N. This shows that when starting from the second symbol (r, ê) the
assertion in (3.2) does not depend on the first entry m. Combining these two observations, it follows that
in order to obtain (3.2) it is sufficient to show that there exists a finite set W ′

⊂ Σ ∗

G of words of length at
most c − 1 with the property that in the situation above we have that there exists w′

∈ W ′ such that

(r, ê)w′(s, e′′) ∈ Σ ∗

G, for some r, s ∈ N. (3.3)

For this, note that by construction we have that (k, e) ∈ Z×

× EG represents the basic interval
I−k,e. Furthermore, in terms of cross sections we have that I−k,e represents a certain subset Ck,e of
the cross section e(CΓ ) ⊂ CG . That is, Ck,e is the set of those unit vectors v which are based at
e({z ∈ H : Re(z) = 0}) such that the oriented H-geodesic given by v terminates in e(I−k) and starts
in either e([1,∞)) (if k is positive) or e((−∞,−1]) (if k is negative). Define C−

e :=
⋃

k∈N Ck,e (resp.
C+

e :=
⋃

k∈N C−k,e), and let S±
e ⊂ SG be the projection of C±

e onto U T (MG). Expressing the assertion
in (3.3) in these terms, it follows that we have to show that there exists v ∈ S−

ê and v′
∈ S−

e′′ such that
v′

= φt (v) for some t > 0, where (φt )t∈R refers to the geodesic flow on U T (MG). In order to see this,
note that we clearly have that for each e ∈ EG there exists V−

e ⊂ C−
e such that for δ > 0 the flow-box

V −
e (δ) := {φt (v) ∈ U T (MG) : v ∈ V−

e , t ∈ (−δ, δ)} is a measurable set of positive Liouville measure.
Moreover, by choosing the δ sufficiently small as well as the V±

e such that the base points of their vectors
are well separated from the elliptic fixed points and are contained in some small compact interval, we
can assume without loss of generality that the V ±

e (δ) are pairwise disjoint and that the restriction of
the universal covering map to each of these boxes is a bijection. Now, recall that the geodesic flow on
U T (MG) is ergodic with respect to the Liouville measure [10,11], and that this ergodicity is equivalent
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to the statement that for all measurable U, V ⊂ U T (MG) of positive Liouville measure there exists
t = t (U, V ) > 0 such that φt (U ) ∩ V 6= ∅ (see e.g. [23, Theorem 7.2.11]). Using this and coming
back to the assertion in (3.3), we now have that there exists t0 = t0(V −

ê (δ), V −

e′′ (δ)) > 0 such that
φt0(V

−

ê (δ)) ∩ V −

e′′ (δ) 6= ∅. Hence, there exists v ∈ S−

ê and ε ∈ (−2δ, 2δ) such that φt0+ε(v) ∈ S−

e′′ . By
putting v′

:= φt0+ε(v), the assertion in (3.3) follows. This finishes the proof. �

Remark 2. Let us remark that in the proof of Proposition 3.1 the constant c(G) is obtained as follows.
For each of the transitions between two different boxes from the set of flow-boxes {V ±

e (δ) : e ∈ EG}

determine the number of crossings of the Poincaré section SG during the transition. The constant c(G)
is then obtained by adding 1 to the maximum of these numbers (note that this maximum exists, since
there are only finitely many flow-boxes; also, here the adding of 1 takes the transition from (m, e) to
(r, ê) into account). Clearly, our approach only allows to deduce that c(G) is finite, but it does not permit
to determine the actual value of c(G) for a particular modular subgroup. However, in [19, Proposition
1.2.1] it was shown by arithmetic means that for congruence subgroups Γ0(N ) we in fact have that
c(Γ0(N )) = 3.

4. The limiting modular symbol for ΣG

We already introduced the limiting modular symbol `G in the introduction, which was there defined
on R. We now define a slightly different version of such a symbol, namely the limiting modular symbol˜̀G defined on ΣG .

Definition 4.1. The limiting modular symbol ˜̀G : ΣG → H1(MG,R) is defined for arbitrary
((xk, ek))k ∈ ΣG by (whenever the limit exists as an element of H1(MG,R))

˜̀G
(
((xk, ek))k

)
:= lim

t→∞

1
t
{i, e1(x + i exp(−t))}G .

Here, we have set x := −sign(x1)[|x1|, |x2|, . . .] ∈ I.

Note that `G(x) does not depend on the starting point i of the paths along which one integrates, nor
does it depend on the choice of the geodesic {x +i exp(−t) : t ∈ R} (in fact, any path having x as its only
accumulation point in P1(R) would do). Also, concerning the existence of the limit in the definition of˜̀G the following holds, which is of course similar to what has been remarked on `G in the introduction.
Namely, since 〈·, ·〉 is a perfect dual pairing, the existence of this limit is guaranteed if the limit

lim
t→∞

〈
1
t
{i, e1(x + i exp(−t))}G, f

〉
exists either for each f ∈ C2(G), or equivalently, for each member of a basis of C2(G).

The following proposition gives the main result of this section.

Proposition 4.2. For ((xk, ek))k ∈ ΣG we have

˜̀G
(
((xk, ek))k

)
= lim

n→∞

1
2 log qn(|x |)

n∑
k=1

{ek (i∞) , ek (0)}G .
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Fig. 1. Approximating path for a point (x, e1) ∈ ΣG .

Proof. Let ((xk, ek))k ∈ ΣG be given. Our first aim is to show that

˜̀G,q
(
((xk, ek))k

)
:= lim

n→∞

1
2 log qn(|x |)

n∑
k=1

{ek (i∞) , ek (0)}G

exists if and only if limn→∞ t−1
n {i, e1(x + i exp(−tn))}G exists, for some sequence (tn)n∈N tending to

infinity. More precisely, we will show that if one of these limits exists then both limits coincide, that is

˜̀G,q
(
((xk, ek))k

)
= lim

n→∞

1
tn

{i, e1(x + i exp(−tn))}G . (4.1)

For this we proceed similar to [19, Proof of Theorem 0.2.1] as follows. Let l(x) refer to
the oriented hyperbolic geodesic from i∞ to x , and define ξ1 = e1(i∞) and ξn :=

e1(−sign(x1)pn−2(|x |)/qn−2(|x |)), for n ≥ 2. Then consider the path ω := ω1ω2 . . . which runs in
succession through the oriented hyperbolic geodesics ωn which start at ξn and end in ξn+1 (cf. Fig. 1).
Clearly, when viewing ω as a path in H ∪ P1(Q) it is a connected oriented path which approximates
e1(x) in its forward direction. Next, define yn := ωn ∩ e1(l(x)) for n ∈ N, and observe that the oriented
geodesic path from yn to yn+1 is homologous to the geodesic path which runs from yn via ξn+1 to yn+1.
It follows

{yn, yn+1}G = {yn, ξn+1}G + {ξn+1, yn+1}G , for all n ∈ N.

Before we continue with this argument, first observe that we have for all n ∈ N,

{ξn, ξn+1}G = {en(i∞), en(0)}G and en(0) = en+1(i∞).

Indeed, this can be seen as follows. Define g1 := id., and for n ∈ N let

gn+1 := ST x1 . . . ST xn =

(
−sign (x1) pn−1(|x |) (−1)n pn(|x |)

qn−1(|x |) (−1)n+1 sign (x1) qn(|x |)

)
.

We then have that e1gn(i∞) = ξn and e1gn(0) = ξn+1. Also, since en ≡G e1gn , there exists g̃n ∈ G
such that g̃nen = e1gn . Using these facts as well as the G-invariance of the modular symbol, we obtain

{en(i∞), en(0)}G = {g̃nen(i∞), g̃nen(0)}G = {e1gn(i∞), e1gn(0)}G

= {ξn, ξn+1}G .
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Using this observation, we proceed with the above argument as follows. For each n ∈ N, we have

{i, yn+1}G = {i, y2}G + {y2, yn+1}G = {i, y2}G +

n∑
k=2

{yk, yk+1}G

= {i, y2}G +

n∑
k=2

(
{yk, ξk+1}G + {ξk+1, yk+1}G

)
= {i, y2}G − {ξ2, y2}G − {yn+1, ξn+2}G +

n+1∑
k=2

{ξk, ξk+1}G

= {i, ξ1}G − {yn+1, ξn+2}G +

n+1∑
k=1

{ξk, ξk+1}G

= {i, ξ1}G − {yn+1, ξn+2}G +

n+1∑
k=1

{ek(i∞), ek(0)}G .

Now, let tn be defined implicitly by e1(x + i exp(−tn)) := yn . Using elementary hyperbolic geometry
in the context of for instance Ford circles (or alternatively, see e.g. [14, paragraph 3]), one immediately
verifies that for all n ∈ N sufficiently large we have exp(tn) � (qn(|x |))2.

This allows to finish the proof of (4.1) as follows.

˜̀G,q
(
((xk, ek))k

)
= lim

n→∞

1
2 log qn(|x |)

n∑
k=1

{ek (i∞) , ek (0)}G

= lim
n→∞

1
tn

(
{i, yn}G + {yn, ξn+1}G − {i, ξ1}G

)
= lim

n→∞

1
tn

{i, yn}G = lim
n→∞

1
tn

{i, e1(x + i exp(−tn))}G .

In order to finish the proof of the proposition, it remains to show that the limit limn→∞ t−1
n {i, e1(x +

i exp(−tn))}G is independent of the particular chosen sequence (tn). That is, our final aim is to show
that the existence of ˜̀G,q(((xk, ek))k) implies that ˜̀G,q(((xk, ek))k) = ˜̀G(((xk, ek))k). In order to prove
this, we argue similar as in [14, paragraph 3] as follows. Suppose that ˜̀G,q(((xk, ek))k) exists, and define
nt := sup{n ∈ N : 2 log qn(|x |) ≤ t} and αh := 〈˜̀G,q(((xk, ek))k), h〉, for arbitrary t > 0 and h ∈ C2(G).
We then have

lim sup
t→∞

∣∣∣∣∣∣∣∣∣
〈
{i, e1(x + i exp(−t))}G , h

〉
t

−

〈 nt∑
k=1

{ek(i∞), ek(0)}G , h
〉

2 log qnt (|x |)

∣∣∣∣∣∣∣∣∣
= lim sup

t→∞

∣∣∣∣∣∣∣∣∣
2 log qnt (|x |)

〈
{i, e1(x + i exp(−t))}G , h

〉
2t log qnt (|x |)

−

t
〈 nt∑

k=1
{ek(i∞), ek(0)}G , h

〉
2t log qnt (|x |)

∣∣∣∣∣∣∣∣∣
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≤ lim sup
t→∞

∣∣∣∣∣∣∣∣∣

〈
{i, e1(x + i exp(−t))}G −

nt∑
k=1

{ek(i∞), ek(0)}G , h
〉

t

∣∣∣∣∣∣∣∣∣
+ lim sup

t→∞

∣∣∣∣2 log qnt (|x |)− t
t

∣∣∣∣
∣∣∣∣∣∣∣∣∣

〈 nt∑
k=1

{ek(i∞), ek(0)}G , h
〉

2 log qnt (|x |)

∣∣∣∣∣∣∣∣∣
≤ lim sup

t→∞

const.
t

+ lim sup
n→∞

|αh|
log |xn+1|

log qn(|x |)
= 0 + lim sup

n→∞

|αh|
log |xn+1|

log qn(|x |)
.

This shows that if αh = 0 holds for all h ∈ C2(G), then ˜̀G(((xk, ek))k) exists and has to be equal to˜̀G,q(((xk, ek))k). Hence, in this case the proof is finished. Therefore, we can now assume without loss
of generality that there exists h ∈ C2(G) such that αh > 0. By the above, in order to finish the proof of
the proposition it is sufficient to show that lim supn→∞

log |xn+1|
log qn(|x |)

= 0. For this, observe

αh = lim
n→∞

〈
n+1∑
k=1

{ek(i∞), ek(0)}G , h

〉
2 log qn+1(|x |)

= lim
n→∞

〈 n∑
k=1

{ek(i∞), ek(0)}G + {en+1(i∞), en+1(0)}G , h
〉

2 log qn(|x |)+ 2 log |xn+1|

= lim
n→∞

〈 n∑
k=1

{ek(i∞), ek(0)}G , h
〉1 +

〈{en+1(i∞),en+1(0)}G ,h〉〈
n∑

k=1
{ek(i∞),ek(0)}G ,h

〉


2 log qn(|x |)
(

1 +
log |xn+1|
log qn(|x |)

)

= αh lim
n→∞

1 +
〈{en+1(i∞),en+1(0)}G ,h〉〈

n∑
k=1

{ek(i∞),ek(0)}G ,h

〉

1 +
log |xn+1|
log qn(|x |)

.

Now, suppose by way of contradiction that lim supn→∞

log |xn+1|
log qn(|x |)

> 0. Then there exists a subsequence

(nk) such that limk→∞

log |xnk+1|

log qnk (|x |)
> 0, and consequently we have limk→∞ |xnk+1| = ∞. Combining this

with our assumption αh > 0, it follows

1 = lim
k→∞

log qnk (|x |)〈 nk∑
m=1

{em(i∞), em(0)}G , h
〉 〈{enk+1(i∞), enk+1(0)

}
G , h

〉
log |xnk+1|

=
1
αh

· 0.
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This is a contradiction, and hence it follows that lim supn→∞

log |xn+1|
log qn(|x |)

= 0. �

For our final result in this section, recall from the introduction that f1, . . . , f2g refers to a fixed R-
basis of C2(G) given by the real and imaginary part of some complex basis of C2(G). We then define for
e ∈ EG and α ∈ R2g,

F̃α(e) :=
{

x ∈ I : ((xk, ek))k ∈ ΣG, e1 = e

such that
(
〈˜̀G(((xk, ek))k), f1〉, . . . , 〈˜̀G(((xk, ek))k), f2g〉

)
= α

}
,

where we have set x := −sign(x1)[|x1|, |x2|, . . .].

Lemma 4.3. For each e, e′
∈ EG and α ∈ R2g, we have

dimH
(
F̃α(e)

)
= dimH

(
F̃α(e′)

)
.

Proof. Let e, e′
∈ EG be given. Since ΣG is finitely irreducible, it follows that there exists n ∈ N and

((x1, e1), . . . , (xn, en)) ∈ Σ ∗

G such that e1 = e and en = e′. This implies that there exists g ∈ G such
that eST x1 . . . ST xn = ge′. Then note that for g̃ := e−1ge′

= ST x1 . . . ST xn one immediately verifies
that g̃(I) ⊂ I. Using this observation, the G-invariance of the modular symbol, and the fact that the
limiting modular symbol does not depend on the starting point of the path along which one integrates,
we obtain for each y ∈ F̃α(e′) and α ∈ R2g,

lim
t→∞

1
t

{
i, e′(y + i exp(−t))

}
G = lim

t→∞

1
t

{
g(i), ge′(y + i exp(−t))

}
G

= lim
t→∞

1
t

{
i, ee−1ge′(y + i exp(−t))

}
G

= lim
t→∞

1
t

{i, eg̃(y + i exp(−t))}G

= lim
t→∞

1
t

{i, e(g̃(y)+ i exp(−t))}G .

This shows that g̃(F̃α(e′)) ⊂ F̃α(e). Since g̃ is conformal, and hence in particular bi-Lipschitz, and
since e, e′

∈ EG were arbitrary, the lemma follows. �

5. Modular potential and pressure function

In this section we collect results from the general thermodynamic formalism which will be required
in the proof of our Main Theorem.

Let I : ΣG → R refer to the canonical potential function associated with the Gauss-map G, given by

I : ((xk, ek))k 7→ log
∣∣G′ ([|x1| , |x2| , . . .])

∣∣ .
Also, we require the potential function J : ΣG → R2g given for ((xk, ek))k ∈ ΣG by

J
(
((xk, ek))k

)
:=
(
〈{e1 (i∞) , e1(0)}G, f1〉 , . . . ,

〈
{e1 (i∞) , e1(0)}G, f2g

〉)
,

where we will think of J as given by the vector J =: (J1, . . . , J2g).
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Finally, the modular pressure function P : R2g
× (1/2,∞) → R associated with J is then defined for

t = (t1, . . . , t2g) ∈ R2g and β ∈ (1/2,∞) by (here, [[ ]] refers to the cylinder set in ΣG)

P (t, β) := lim
n→∞

1
n

log
∑
ω∈Σn

G

exp sup
x∈[[ω]]

Sn ((t |J (x))− β I (x)) .

Note that (t |J ) − β I is acceptable in the sense of Mauldin/Urbański [22, Def. 2.1.4], and this implies
that P is well defined. Also, since J is Hölder continuous and bounded, one immediately verifies that
(t |J )− β I is summable for each β > 1/2 (for the definition of summability we refer to [22, p. 27]). In
particular, this also gives that P is continuous. An argument similar to [14, paragraph 6] (see also [12,13])
then gives that lim

β↘
1
2

P(t, β) = ∞ and limβ→∞ P(t, β) = −∞. Combining this with the continuity
of P , it follows that there exists a function

βG : R2g
→ (1/2,∞) (5.1)

such that for each t ∈ R2g we have P(t, βG(t)) = 0.
We require the following facts from the general thermodynamic formalism, which can be found for

instance in [22].

• For the potential function (t |J )− βG(t)I there exists a unique ergodic Gibbs measure µt,βG which is
positive on open subsets of ΣG . In particular, we hence have that there exists a constant Q > 1 such
that for each ω ∈ Σ n

G and x ∈ [[ω]] we have

Q−1
≤

µt,βG ([[ω]])

exp (Sn ((t |J (x))− βG(t)I (x))− n P(t, βG(t)))
≤ Q. (5.2)

For ease of notation, throughout we put µt := µt,βG .
• By setting

∂ti P (t, βG(t)) :=
∂P(t, β)
∂ti

∣∣∣∣
(t,βG(t))

and ∂β P (t, βG(t)) :=
∂P(t, β)
∂β

∣∣∣∣
(t,βG(t))

,

we have for all i ∈ {1, . . . , 2g},

∂ti P (t, βG(t)) =

∫
Ji dµt and ∂β P (t, βG(t)) = −

∫
I dµt . (5.3)

With αi (t) := ∂tiβG(t), the implicit function theorem then implies that

αi (t) = −
∂ti P (t, βG(t))
∂β P (t, βG(t))

=

∫
Ji dµt∫
I dµt

, for all i ∈ {1, . . . , 2g}. (5.4)

Let us deduce some further results crucial for the proof of our Main Theorem. Note that parts of the
proof of the following result are inspired by a similar argument given in [16].

Proposition 5.1. The Hessian (∇2βG)(t) is strictly positive definite for all t ∈ R2g. In particular, the
function βG : R2g

→ R is strictly convex and the gradient map ∇βG : R2g
→ ∇βG(R2g) is a

diffeomorphism with a well-defined inverse t : ∇βG(R2g) → R2g.

Proof. As before, let µt := µt,βG denote the unique Gibbs measure for the potential function
(t |J ) − βG(t)I . Also, for ease of exposition, let J0 := −I , as well as ∂0 := ∂β and ∂i := ∂ti , for
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i = 1, . . . , 2g. Since t 7→ P(t, βG(t)) defines a constant function, its partial derivative with respect to ti
vanishes for all i = 1, . . . , 2g. This implies

∂i P (t, βG(t)) = −∂0 P (t, βG (t)) ∂i βG (t) , for all i = 1, . . . , 2g.

By taking partial derivatives with respect to t j on both sides of this equality we obtain

∂i j P(t, βG(t))∂0i P(t, βG(t))∂ jβG(t) = −(∂0 j P(t, βG(t)))+ ∂00 P(t, βG(t)∂ jβG(t))∂iβG(t)
− ∂0 P (t, βG (t)) ∂i j βG (t) .

Hence, by defining

A :=
(
∂i j P (t, βG (t))

)
i, j=0,...,2g and C :=

(
ci j
)

i, j ,

where

ci j :=

{
α j (t) for i = 0, j = 1, . . . , 2g
δi j for i, j = 1, . . . , 2g,

we obtain

(−∂0 P (t, βG (t)))
(
∂i jβG (t)

)
i, j=1,...,2g =: B = CT AC.

Using (5.3), it is now sufficient to show that B is strictly positive definite, or equivalently, that A is
positive definite on the image Im(C) of C . Here,

Im(C) :=

{(
2g∑

i=1

λiαi , λ1, . . . , λ2g

)
:
(
λ1, . . . , λ2g

)
∈ R2g

}
.

For this it is sufficient to show that we have for all y = (y0, y1, . . . , y2g) ∈ Im(C) \ {0},

yT Ay > 0.

In order to prove this, note that by [22, Proposition 2.6.14] we have

∂i j P (t, βG (t)) =

∞∑
k=0

µt

(
(Ji − µt (Ji ))(J j ◦ σ k

− µt (J j ))
)

=

∞∑
k=0

µt

(
(J j − µt (J j ))(Ji ◦ σ k

− µt (Ji ))
)

=: σ 2
t
(
Ji , J j

)
.

Using this, it follows

yT Ay =

2g∑
i, j=0

yi y jσ
2
t
(
Ji , J j

)
=

2g∑
i, j=0

σ 2
t
(
yi Ji , y j J j

)
= σ 2

t

(
2g∑

i=0

yi Ji ,

2g∑
i=0

yi Ji

)

=: σ 2
t

(
2g∑

i=0

yi Ji

)
≥ 0.

Since αi = µt (Ji )/µt (I ), we have for y = (
∑
λiαi , λ1, . . . , λ2g) ∈ Im(C),

µt

(
2g∑

i=1

λi Ji −

2g∑
i=1

λiαi I

)
= 0.
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Let us assume by way of contradiction that σ 2
t (
∑2g

i=0 yi Ji ) vanishes. Note that σ 2
t (
∑2g

i=0 yi Ji ) = 0 if and
only if

∑2g
i=0 yi Ji is cohomologous to 0 within the class of bounded Hölder continuous functions. The

latter means that there exists a bounded Hölder continuous function u on ΣG such that (cf. [22, Lemma
4.8.8])

2g∑
i=0

yi Ji = u − u ◦ σ. (5.5)

Hence, it remains to show that (5.5) implies (λ1, . . . , λ2g) = 0. In order to see this, we distinguish the
following two cases. First, if

∑2g
i=1 λiαi 6= 0 then

∑2g
i=1 λi Ji −

∑2g
i=1 λiαi I is an unbounded function

(since I is unbounded). Since the right hand side of (5.5) is bounded, we then immediately have a
contradiction. Secondly, if

∑2g
i=1 λiαi = 0 then consider F :=

∑2g
i=1 λi Ji . We first investigate how F

behaves on elements ω := ((xk, ek))k ∈ ΣG which are periodic in the second coordinate, that is where
there exist p ∈ N such that emp+ j = e j for all m = 0, 1, . . . and j = 1, . . . , p. In this situation
we necessarily have that Sp−1 F(ω) = 0, since otherwise we would have limm→∞ |Smp−1 F(ω)| =

limm→∞ |mSp−1 F(ω)| = ∞ which contradicts (5.5). Therefore,

Sp−1 F(ω) =

2g∑
j=1

λ j

〈
p∑

k=1

{ek (i∞) , ek(0)}G , f j

〉
= 0. (5.6)

Now let {γ1, . . . , γ2g} be a basis of H1(MG,R) consisting of cycles. Each γi can be represented by
an oriented closed geodesic in MG . The forward directions of these geodesics correspond to elements
zi = [x1, x2, . . .] ∈ [0, 1] which are periodic in their continued fraction expansion, of period 2ri say (if
the period is odd, then replace the geodesic by twice the geodesic. Since EG is finite, it follows that there
exists mi ∈ N and ei,1 ∈ EG such that for the element ωi := ((−x1, ei,1), (x2, ei,2), (−x3, ei,3), . . .) ∈

ΣG we have ei,2mi ri k = ei,1, for all k ∈ N (note, in this step it is vital that the periods were chosen to be
even). Hence, ωi is of period 2miri and the set{

2mi ri∑
k=1

{
ei,k (i∞) , ei,k(0)

}
G : i = 1, . . . , 2g

}
contains a basis of H1(MG,R). The assertion now follows from combining (2.1) and (5.6). �

The following immediate corollary shows that βG and its Legendre transform β̂G , given by

β̂G(α) := inf
t∈R2g

{βG(t)− (t |α)} ,

are in fact a Legendre transform pair (cf. [24]).

Corollary 5.2. For the Legendre transform β̂G of βG , we have for each vector α ∈ ∇βG(R2g),

β̂G (α) = βG(t (α))− (t (α)|α) .

For the final proposition of this section we require the following lemma.

Lemma 5.3. For any measure µ ∈ M(ΣG, σ ) we have that the first marginal of µ̃ := µ ◦ π̃−1 is a shift
invariant measure on (Σ∗, σ∗). Furthermore, if µ̃ can be written as a product measure ν⊗P on Σ∗× EG
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such that ν(U ) > 0 for all non-empty open subsets U ⊂ Σ∗, then P is equal to the equidistribution on
EG , that is P({e}) = 1/κ , for all e ∈ EG .

Remark. Note that the first part of this lemma in particular shows that ν is a σ∗-invariant measure on Σ∗.
It is then an immediate consequence of the ergodic theorem and the symmetry of EG , that the limiting
symbol vanishes almost surely for product measures of this type. In fact, this special situation occurs for
the generalised Gauss-measure as discussed in [19], as well as for the Lyapunov spectrum arising from
continued fraction expansions with bounded entries as studied in [20].

Proof of Lemma 5.3. For the first part let A ⊂ Σ∗ be some given Borel set. We then have

µ̃ (A × EG) = µ̃
(
σ̃−1 (A × EG)

)
= µ̃

((
σ̂−1 A

)
× EG

)
.

For the second part of the lemma let pe := P({e}) for e ∈ EG , and define p := max{pe : e ∈ EG}. Also,
let e′ refer to some element of EG such that pe′ = p, and define for m ∈ N and e ∈ EG ,

Cm
e,e′ :=

{
x ∈

(
Z

×
)N

: τx1 · · · τxm (e) = e′

}
.

For n greater than the maximal word length of the elements in W , the σ̃ -invariance of µ̃ then gives

p = pe′ =
1
n

n∑
m=1

µ̃
(
σ̃−m (Σ∗ ×

{
e′
}))

=
1
n

n∑
m=1

µ̃

( ⋃
e∈EG

Cm
e,e′ × {e}

)

=
1
n

n∑
m=1

∑
e∈EG

µ̃
(

Cm
e,e′ × {e}

)
=

∑
e∈EG

1
n

n∑
m=1

ν
(

Cm
e,e′

)
· pe.

Now, note that
∑

e∈EG
ν(Cm

e,e′) = 1, and therefore
∑

e∈EG
1
n
∑n

m=1 ν(C
m
e,e′) = 1. Combining this with

the fact that by assumption we have 1
n
∑n

m=1 ν(C
m
e,e′) > 0, the calculation above implies that pe = p for

each e ∈ EG . �

Proposition 5.4. We have ∂ti P(0, βG(0)) = 0, for all i ∈ {1, . . . , 2g}.

Proof. Since µ0 is the unique ergodic Gibbs measure for the potential function −I , it follows from
Lemma 5.3 that the pull-back µ0 ◦ π̃−1 of µ0 to Σ̃G can be written as a product measure ν ⊗ P, where
P refers to the equidistribution on EG . Next note that with S referring to the elliptic generator of Γ of
order 2, we have that {eS : e ∈ EG} is a set of representatives of G \ Γ . Using this, it follows

∂ti P (0, βG (0)) =

∫ 〈
{e (i∞) , e (0)}G , fi

〉
dµ0

=
1
κ

∑
e∈EG

〈
{e (i∞) , e (0)}G , fi

〉
=

1
κ

∑
e∈EG

〈
{eS (i∞) , eS (0)}G , fi

〉
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=
1
κ

∑
e∈EG

〈
{e (0) , e (i∞)}G , fi

〉
= −

1
κ

∑
e∈EG

〈
{e (i∞) , e (0)}G , fi

〉
= −∂ti P (0, βG (0)) .

This implies that ∂ti P(0, βG(0)) = 0. �

Corollary 5.5. The function βG : R2g
→ R has a unique minimum at 0 ∈ R2g, and βG(0) = 1.

Proof. Combining (5.4) and Proposition 5.4, it follows that ∇βG(0) = 0. Also, by Proposition 5.1
we have that βG is strictly convex. Combining these two observations, it follows that βG has a
unique minimum at zero. Finally, note that P(0, 1) = 0 (see [14]), which immediately implies that
β(0) = 1. �

6. Proof of Main Theorem

The fact that ΣG is finitely irreducible has already been obtained in Proposition 3.1. For the remainder,
let α ∈ R2g, e ∈ EG , and consider the set

Fα(e) :=

{
x ∈ I : ((xk, ek))k ∈ ΣG, e1 = e, lim

n→∞

Sn J (((xk, ek))k)

Sn I (((xk, ek))k)
= α

}
,

where as before, we have set x := −sign(x1)[|x1|, |x2|, . . .]. One immediately verifies that (qn(|x |))2 �

exp(Sn I (((xk, ek))k)), and hence by Proposition 4.2 we have for each ((xk, ek))k ∈ ΣG and α ∈ R2g,(
〈˜̀G(((xk, ek))k), f1〉, . . . , 〈˜̀G(((xk, ek))k), f2g〉

)
= α ⇐⇒ lim

n→∞

Sn J (((xk, ek))k)

Sn I (((xk, ek))k)
= α.

This shows that Fα(e) = F̃α(e), for all e ∈ EG . Hence, by Lemma 4.3, it is now sufficient to compute
dimH (Fα(e)) for some fixed e ∈ EG . For this, let B(y, r) refer to the interval of length 2r centred at
y = [y1, y2, . . .] ∈ I+1, let By1,...,yn := {[x1, x2, . . .] : xi = yi , for 1 ≤ i ≤ n}, and define

nr (y) := min{n : By1,...,yn ⊂ B(y, r)}, mr (y) := max{n : By1,...,yn ⊃ B(y, r)}.

Note that we clearly have that |nr (y) − mr (y)| is uniformly bounded from above. Using this and the
Gibbs property of the pull-back µt (α) of µt (α) to ΣG (see (5.2)), we then have for each α ∈ ∇βG(R2g)

and for µt (α)–almost every (e(x), e) ∈ ΣG , where as before x = −sign(x1)[|x1|, |x2|, . . .] ∈ Fα(e) and
((xk, ek))k refers to the corresponding element in ΣG ,

lim
r→0

logµt (α)(B(e(x), r)× {e})
log r

= lim
r→0

(
t (α)|Snr (|x |) J

(
((xk, ek))k

))
− β(t (α))Snr (|x |) I (((xk, ek))k)

−Snr (|x |) I (((xk, ek))k)

= βG(t (α))− (t (α)|α) = β̂G(α),

where the last equality follows from Corollary 5.2. Note that by combining (5.4) and the ergodicity ofµt ,
we have that µt (α)(e(Fα(e))×{e})/µt (α)(e(I)×{e}) = 1. Therefore, we can apply the mass distribution
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principle (cf. [8]) which gives

dimH (Fα(e)) = β̂G(α).

The remaining assertions of the Main Theorem are obtained as follows. Since Fα can be written as
a countable union of conformal images of the sets Fα(e) for e ∈ E , we have that dimH (Fα) =

dimH (Fα(e)). This shows that dimH (Fα) = β̂G(α) for all α ∈ ∇βG(R2g), and hence gives the assertion
in (1.1). The facts βG(0) = 1 and that βG has a unique minimum at 0 ∈ R2g have already been obtained
in Corollary 5.5. Likewise, the analytic properties of βG stated in the Main Theorem can be deduced
from Proposition 5.1. Next, for the assertion that the dimension spectrum is complete we refer to [15,
Theorem 1.2] (note that the results in [15] are applicable, since βG is strictly convex, and since by
Remark 1, Section 3 we have that ΣG can be represented by a graph directed Markov system). Finally,
note that since the minimum of βG is contained in ∇βG(R2g), an immediate application of the results
in [15] gives that the dimension formula (1.1) continues to hold for all elements in the boundary of
∇βG(R2g).
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(Publications of the Mathematical Society of Japan, No. 11), Iwanami Shoten, Publishers, Tokyo, 1971.


	Homology at infinity; fractal geometry of limiting symbols for modular subgroups
	Introduction
	Preliminaries for modular symbols
	Modular shift spaces
	The limiting modular symbol for  SigmaG 
	Modular potential and pressure function
	Proof of Main Theorem
	References


