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Embedding fillings of contact 3-manifolds
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Abstract
In this survey article, we describe different ways of embedding fillings of contact 3-manifolds into

closed symplectic 4-manifolds.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

One of the most exciting advances regarding the topology of 3-manifolds in 2004
was the solution of the “Property P ” conjecture by Kronheimer and Mrowka [25].
Namely, they proved that no surgery on a knot in S3 can produce a counter-example to
the Poincaré conjecture. The last ingredient in their proof was supplied by a recent theorem
of Eliashberg [10]: Any weak filling of a contact 3-manifold can be embedded symplect-
ically into a closed symplectic 4-manifold. This particular way of embedding a weak filling
into a closed symplectic 4-manifold was also used by Ozsváth and Szabó [31] to show
that their (appropriately twisted) contact Heegaard Floer invariant of a fillable contact
structure does not vanish.
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In order to prove his theorem Eliashberg attaches a symplectic 2-handle along the binding
of an open book compatible with the given weakly fillable contact structure, such that the
other end of the cobordism given by this symplectic 2-handle attachment symplectically
fibers over S1. Then he fills in this symplectic fibration by a symplectic Lefschetz fibration
over D2 to obtain a symplectic embedding of a weak filling into a closed symplectic 4-
manifold. Note that the method of construction in [10] takes its roots from the one considered
in [2].

Eliashberg’s theorem was obtained independently by Etnyre [12] using different methods.
The first step in Etnyre’s construction is to embed a weak filling into a weak filling of an
integral homology sphere. Note that, from the surgery point of view, this step also fairly
easily follows from Stipsicz’s results in [32]. Then one can modify the symplectic form
near the boundary so that it becomes a strong filling (cf. [8,29]). This is just a homological
argument. Now the problem is reduced to finding an embedding of a strong filling. The
strategy at this point is to find a concave filling to cap off the convex boundary of this strong
filling from the “other side”. One way of finding this concave filling is to further reduce the
problem (cf. [14]) to the existence of a symplectic embedding of a Stein filling into a closed
symplectic 4-manifold, which was already provided by Lisca and Matic [26]. Alternatively,
one can proceed with constructing an explicit concave filling (cf. [15]) obtained by a careful
investigation of the monodromies of the open books compatible with different types of
symplectic and contact surgeries.

The purpose of this survey article is to describe and compare embeddings due to
Eliashberg and Etnyre and discuss some previous work on the subject. We note that there
are now many ways of embedding a weak filling symplectically into a closed symplectic
4-manifold. In Section 8, we construct an embedding which is obtained by combining the
various ideas developed in the article. We would like to point out that these embeddings
are constructed by making use of a recent theory developed by Giroux [19] which estab-
lishes a (one-to-one) correspondence between open-book decompositions of 3-manifolds
and contact structures.

We would also like to point out that in [13] Etnyre gives quite a bit of details of the
arguments in [12] including the necessary background. In addition, there is another recent
survey article by Geiges [18], where he emphasizes the role that contact geometry has
played in the proof of “Property P ” for knots.

2. Open-book decompositions and contact structures

We will assume throughout this paper that a contact structure � = ker � is coorientable
(i.e., � is a global 1-form) and positive (i.e., � ∧ d� > 0) unless otherwise stated. In the
following we describe the compatibility of an open-book decomposition with a given contact
structure on a 3-manifold.

Suppose that for a link L in a 3-manifold Y the complement Y\L fibers as �: Y\L → S1,
such that the fibers are interiors of Seifert surfaces of L. Then (L, �) is an open-book
decomposition (or just an open book) of Y. For each t ∈ S1, the Seifert surface F = �−1(t)

is called a page, while L the binding of the open book. The monodromy of the fibration �
is called the monodromy of the open-book decomposition.
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Any locally trivial bundle with fiber F (a compact oriented surface) over an oriented circle
is canonically isomorphic to the fibration

I × F

(1, x) ∼ (0, h(x))
→ I

�I
≈ S1

for some orientation preserving self-diffeomorphism h of F. In fact, h is determined by the
fibration up to isotopy and conjugation by an orientation preserving self-diffeomorphism of
F. The isotopy class represented by h is called the (topological) monodromy of the fibration.

The mapping class group �F of F is defined as the quotient of the group of orientation
preserving self-diffeomorphisms of F fixing �F pointwise modulo isotopies fixing �F

pointwise. Given a compact oriented surface F with non-empty boundary and h ∈ �F , then
we can consider F(h) = I × F/(1, x) ∼ (0, h(x)) which is called a mapping torus. Note
that since h is the identity on �F , the boundary �F(h) can be canonically identified with r
copies of T 2 =S1 ×S1, where the first S1 factor is identified with I/�I and the second one
is identified with a component of �F . Hence, F(h) can be completed to a closed 3-manifold
Y equipped with an open-book decomposition by gluing in r copies of D2 × S1 to F(h),

so that �D2 is identified with S1 = I/�I and the S1 factor in D2 × S1 is identified with a
boundary component of �F . In conclusion, an element h ∈ �F determines a 3-manifold
together with an open-book decomposition on it.

Theorem 1 (Alexander [3]). Every closed and oriented 3-manifold admits an open-book
decomposition.

The contact condition � ∧ d� > 0 can be strengthened in the presence of an open-book
decomposition on Y by requiring that � > 0 on the binding and d� > 0 on the pages.

Definition 2. An open-book decomposition of a 3-manifold Y and a contact structure � on
Y are called compatible if � can be represented by a contact form �, such that the binding is
a transverse link, d� is a symplectic form on every page and the orientation of the transverse
binding induced by � agrees with the boundary orientation of the pages.

Theorem 3 (Giroux [19]). Every contact 3-manifold admits a compatible open book
(with a connected binding).

We refer the reader to [13,30] for more on the correspondence between open books and
contact structures.

3. Lefschetz fibrations

Suppose that X and � are given compact, oriented, connected 4- and 2-dimensional
manifolds. A smooth map f : X → � is called a Lefschetz fibration if df is onto with finitely
many exceptions {p1, . . . , pk} = C ⊂ int X (called the set of critical points), the map f is
a locally trivial surface bundle over � − f (C) and around pi ∈ C and qi = f (pi) ∈ f (C)
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there are orientation preserving complex charts Ui and Vi , respectively, on which f is of the
form z2

1 + z2
2.

Notice that the manifolds X and � might have boundaries. If the typical fiber f −1(t) is a
closed surface then f −1(��)= �X, but the definition also allows f −1(t) to have boundary,
in which case f −1(��) forms only part of �X. We call the fibers f −1(qi) (qi ∈ f (C))
singular, while the other fibers are called regular. Two Lefschetz fibrations f : X → � and
f ′: X′ → �′ are called equivalent if there are diffeomorphisms �: X → X′ and �: � → �′,
such that f ′ ◦ � = � ◦ f .

By definition removing the singular fibers turns a Lefschetz fibration into a fiber bun-
dle with a connected base space. Consequently, all but finitely many fibers of a Lefschetz
fibration are smooth, compact and oriented surfaces, all of which have the same diffeomor-
phism type. We will assume that there is at most one critical point on each fiber and no
fiber contains an embedded 2-sphere of self-intersection number-1. Each critical point of a
Lefschetz fibration corresponds to an embedded circle called a vanishing cycle in a nearby
regular fiber, and the singular fiber is obtained by collapsing the vanishing cycle to a point.

The boundary of a regular neighborhood of a singular fiber is a surface bundle over
circle. In fact, a singular fiber can be described by the monodromy of this surface bundle
which turns out to be a right-handed Dehn twist along the corresponding vanishing cycle.
Once we fix an identification of a regular fiber with a compact, connected, oriented surface
F, the topology of the Lefschetz fibration is determined by its monodromy representation
�: �1(� − {critical values}) → �F . In case � = D2 the monodromy along �D2 = S1 is
called the total monodromy of the fibration; according to the above said it is the product of
right-handed Dehn twists corresponding to the singular fibers.

A Lefschetz fibration over S2 with closed fibers can be decomposed into two Lefschetz
fibrations over D2, one of which is trivial. Hence, a Lefschetz fibration over S2 is deter-
mined by a relator in the mapping class group. Conversely, given a product of right-handed
Dehn twists in the mapping class group we can construct the corresponding Lefschetz fi-
bration over D2, and if the given product of right-handed Dehn twists is isotopic to identity
(and g�2) then the fibration extends uniquely over S2. The monodromy presentation also
provides a handlebody decomposition of a Lefschetz fibration over D2: we attach 2-handles
to F × D2 along the vanishing cycles with framing −1 relative to the framing the circle
inherits from the fiber. (For a more detailed introduction to the theory of Lefschetz fibrations
see [21,30].)

4. Different types of fillings of contact 3-manifolds

In this section, we give definitions of different types of symplectic fillings of contact
3-manifolds. A symplectic 4-manifold (X, 	) will be assumed to be oriented by 	 ∧ 	.

4.1. Weak filling

A contact 3-manifold (Y, �) is said to be weakly fillable if there is a compact symplectic
4-manifold (W, 	), such that �W = Y as oriented manifolds and 	|� > 0. In this case we
say that (W, 	) is a weak filling of (Y, �).
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4.2. Strong filling

A contact 3-manifold (Y, �) is said to be strongly fillable if there is a compact symplectic
4-manifold (W, 	) such that �W = Y as oriented manifolds, 	 is exact near the boundary
and its primitive � (i.e., a 1-form with d�=	) can be chosen in such a way that ker(�|�W)=�.
In this case we say that (W, 	) is a strong filling of (Y, �). Clearly a strong filling is a weak
filling by definition.

Suppose that (W, 	) is a compact symplectic 4-manifold with non-empty boundary
�W =Y and there exists a Liouville vector field v (i.e.,Lv	=	) defined in a neighborhood
of and transverse to Y. Then v induces a contact structure � = ker � on Y, where � = 
v	|Y
is a contact 1-form. If v points out of W along Y then we say that (W, 	) is a convex filling
of (Y, �), and (Y, �) is said to be the convex boundary of (W, 	). It is easy to see that the
notion of a convex filling is the same as the notion of a strong filling. If v points into W
along Y, on the other hand, then we say that (W, 	) is a concave filling of (Y, �) and (Y, �)

is said to be the concave boundary of (W, 	). Here, notice that if v points out of W then
� is a positive contact structure on Y, while if v points into W then � is a positive contact
structure on −Y .

If a compact symplectic 4-manifold W has multiple boundary components and if Y is
a boundary component of W which satisfies the definition of convexity (concavity, resp.)
above then we say that Y is a convex (concave, resp.) boundary component of W. It is
quite possible that a symplectic 4-manifold W can have a convex (concave, resp.) boundary
component Y without W being a filling of Y, since the other components of W may not be
convex (concave, resp.).

4.3. Stein filling

A compact 4-manifold W with non-empty boundary �W = Y is called a Stein domain
if there is a Stein surface X with plurisubharmonic function �: X → [0, ∞), such that
W = �−1([0, t]) for some regular value t. So a compact manifold with boundary (and a
complex structure J on its interior) is a Stein domain if it admits a proper plurisubharmonic
function � which is constant on the boundary. Then the complex line distribution induced
by J is a contact structure � on Y. In this case we say that the contact 3-manifold (Y, �)

is Stein fillable and (W, J ) is a called a Stein filling of (Y, �). It is easy to verify that a
Stein filling is a strong filling. In fact, dJ ∗(d�) induces a Kähler structure on (W, J ). More
generally, a cobordism W (with boundary −Y1 ∪ Y2) is a Stein cobordism if W is a complex
cobordism with a plurisubharmonic function �: W → R, such that �−1(ti) = Yi , for some
regular values t1 < t2.

We refer the reader to [11,30] for a further detailed discussion of different types of fillings
of contact 3-manifolds.

5. Embedding a Stein filling

The first result in the literature about embedding a filling of a contact 3-manifold into a
closed symplectic 4-manifold was obtained by Lisca and Matic. Recall that a Stein filling
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(i.e., a Stein domain) admits a Kähler form dJ ∗(d�) which is an exact symplectic form,
where � is the plurisubharmonic function defining the Stein filling.

Theorem 4 (Lisca-Matic [26]). A Stein filling admits a Kähler embedding into a (minimal)
compact Kähler surface X (of general type), such that the pull-back of the Kähler form on
X is the exact symplectic form on the Stein filling.

Apparently what motivated Lisca and Matic to construct such an embedding was their
search for a method to distinguish tight contact structures. Using Seiberg–Witten theory
coupled with their embedding result, Lisca and Matic were able to show that for any positive
integer n, there exists a homology 3-sphere with at least n homotopic but non-isomorphic
tight contact structures. Lisca and Matic use analytical tools in the construction of their
embedding and the starting point of their embedding is given by a holomorphic embedding
of a Stein domain into an affine algebraic manifold with trivial normal bundle (cf. [4]).
Roughly speaking, the idea here is to approximate analytical maps by algebraic ones, namely
by polynomials.

A very different approach to embed a Stein filling smoothly into a closed symplectic
4-manifold was presented in [2]. The construction in [2] is topologically more explicit than
the method of Lisca and Matic although the result is weaker since only the smoothness of
the embedding is clear from the presentation.

The simple construction in [2] is based on a theorem of Loi and Piergallini ([27], cf.
also [1]) which says that every Stein domain admits a Lefschetz fibration over D2, whose
vanishing cycles are homologically non-trivial on the respective nearby regular fibers. Notice
that the fibers of such a Lefschetz fibration will necessarily have non-empty boundaries. It is
easy to see that the boundary a Lefschetz fibration (whose fibers have non-empty boundaries)
admits a canonical open-book decomposition and we can assume that the binding of this
open book is connected. To embed a Stein filling (which has a Lefschetz fibration structure)
into a closed symplectic 4-manifold, we first attach a 2-handle to the binding of the open
book in the boundary of this Lefschetz fibration over D2 to get a Lefschetz fibration over
D2 with closed fibers. Then we extend this fibration to a Lefschetz fibration over S2. The
resulting 4-manifold is known to be symplectic by a result of Gompf ([21]). This construction
gives a smooth embedding of a Stein filling into a closed symplectic 4-manifold.

6. Embedding a strong filling

In [14], Etnyre and Honda proved that every contact 3-manifold has (infinitely many
distinct) concave fillings. Their proof was based on the embedding result of Lisca and
Matic we discussed in the previous section. In [15], Gay proved the same existence result
(independent of the Lisca–Matic embedding) by presenting a method to explicitly construct,
handle by handle, a concave filling of a given contact 3-manifold. A symplectic embedding
of a strong filling of a contact 3-manifold into a closed symplectic 4-manifold trivially
follows from Proposition 5.
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Proposition 5 (Etnyre–Honda [14] and Gay [15]). Any contact 3-manifold admits a con-
cave filling.

Proof. We will describe a proof (cf. [30]) which is very similar to the one given in [14]. The
difference here is that we rather do not translate contact (±1)-surgeries along Legendrian
knots into the monodromy language of open books.

Given an arbitrary contact 3-manifold (Y, �). Let � be a contact 1-form for �. Consider a
compact piece (W =Y ×I, 	 = d(et�)) of the symplectization of (Y, �). It is easy to see that
Y × {1} is a convex boundary component of (W, 	) while Y × {0} is a concave boundary
component. Our strategy here will be to cap off the convex end of (W, 	) obtaining a
concave filling of Y = Y × {0}.

In [6], Ding and Geiges proved that every (closed) contact 3-manifold (Y, �) can be given
by a contact (±1)-surgery on a Legendrian link L in the standard contactS3. Here, the surgery
coefficients are measured with respect to the contact framing. Let L± ⊂ L denote the set
of the components of the link L with (±1)-surgery coefficients, respectively. Let K denote
the Legendrian link we get by considering Legendrian push-offs of the components of L+.

Proposition 6 (Weinstein [34]). Let (W, 	) be a compact symplectic 4-manifold with a
convex boundary component (Y, �). A 2-handle can be attached symplectically to (W, 	)

along a Legendrian knot L ⊂ (Y, �) in such a way that the symplectic structure extends to

the 2-handle and the new symplectic 4-manifold (W̃ , 	̃) has a convex boundary component

(Ỹ , �̃), where (Ỹ , �̃) is given by contact (−1)-surgery (i.e., Legendrian surgery) along
L ⊂ (Y, �).

Thus when we attach symplectic 2-handles to (W, 	) along the knots of K ⊂ Y =Y ×{1}
we get a symplectic 4-manifold (W ′, 	′) with a convex boundary component (Y ′, �′) by
Proposition 6. We observe that the contact manifold (Y ′, �′) can be given by a Legendrian
surgery along L−, since a combination of a contact (+1)-surgery on a Legendrian knot
in L+ and a contact (−1)-surgery on its push-off in K cancels out (cf. [6]). We note that
the cancellation of these contact (±1)-surgeries just corresponds to the cancellation of a
right-handed Dehn twist along a curve with a left-handed Dehn twist along a curve parallel
to it in the monodromy of an open book in the proof of Etnyre and Honda [14].

Consequently (Y ′, �′) is Stein fillable by a result of Eliashberg [7] since it is obtained from
the standard contact S3 via Legendrian surgeries only. Consider a Stein filling (W ′′, J ) of
(Y ′, �′) and embed this filling into a closed symplectic 4-manifold (Z, 	Z) using
Theorem 4. Then since a Stein filling is a convex filling by definition, (Z\int W ′′) will
be a concave filling of (Y ′, �′). Hence we conclude that

(W ′, 	′)
⋃

(Y ′,�′
)

(Z\int W ′′, 	Z)

is a concave filling of (Y, �), which is illustrated in Fig. 1. Here, we use Lemma 11 to glue
these symplectic 4-manifolds symplectically. �

Next we will discuss another proof of Theorem 5 given in [13] which is not based on
the embedding of Lisca and Matic. This method of proof is essentially due to Gay [15]
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W, ω

W, ω

ω, zZ  

W , J Y, ξ

Y, ξY, ξ Y, ξ

Z − int W ω, z

Fig. 1. A concave filling of (Y, �).
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Fig. 2. Genus g surface F with boundary.

except for a slight short-cut at the end. We first collect below a few results that we will need.
We denote by t� a right-handed Dehn twist about a curve � on a surface F.

Lemma 7 (Wajnryb [33]). The relation tc = (ta1 ◦ ta2 ◦ · · · ◦ ta2g−1 ◦ ta2g )
4g+2 holds in

the mapping class group �F , where ai’s are the curves on a genus g surface F with one
boundary component depicted in Fig. 2 and c is a curve parallel to �F .

Lemma 8. Any element � of the mapping class group of a surface F with one boundary
component can be expressed as � = tmc ◦ t−1

1
◦ · · · ◦ t−1

n
for some m ∈ Z and some non-

separating curves i ⊂ F , where c is a curve parallel to �F .

Proof. We can express ta1 as a product of non-separating left-handed Dehn twists and tc by
Lemma 7. Therefore, anynon-separating right-handed Dehn twist – being conjugate to ta1 –
is a product of non-separating left-handed Dehn twists and tc. This finishes the proof since
it is well-known that the mapping class group of a surface with one boundary component
is generated by non-separating Dehn twists. �

Lemma 9 (Kanda [23]). A non-separating curve  on a convex surface in a contact
3-manifold can be made Legendrian by isotoping the surface through convex surfaces such
that the contact framing of  agrees with its surface framing.

Lemma 10 (Gay [15]). Given a Legendrian knot L on a page of an open book ob� com-
patible with (Y, �). Let h ∈ �F denote the monodromy of ob�. Then a contact (−1)-surgery
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on L induces a contact structure �′ compatible with the open book ob�′ whose monodromy
is given by h′ = h ◦ tL ∈ �F .

Lemma 11. If (Y, �) is a convex boundary component of (W1, 	1) and is a concave bound-
ary component of (W2, 	2) then we can glue (W1, 	1) and (W2, 	2) symplectically along
their common boundary component (Y, �).

The result above was first explicitly stated in [11] although it was implicit in
Eliashberg’s work in [9]. Note that after gluing one of the symplectic forms needs to be
scaled appropriately.

We are now ready to describe a second proof of Theorem 5. Consider the compact piece
(W, 	) of the symplectization of (Y, �) as in the proof above. Let ob� be an open-book
decomposition of Y with a connected binding which is compatible with �. Let � be the
monodromy of this open book. Now use Lemma 8 to write � = tmc ◦ t−1

1
◦ · · · ◦ t−1

n
. We

can assume that the curve n is a Legendrian curve which lies on a convex page of ob�
by Lemma 9. Then contact (−1)-surgery along n yields a contact structure which has a
compatible open book whose monodromy is given by � ◦ tn

= tmc ◦ t−1
1

◦ · · · ◦ t−1
n−1

by
Lemma 10.

We repeat this process for all the curves i (for i = n − 1, . . . , 1) to obtain a contact
3-manifold (Y ′, �′) whose compatible open book ob�′ has monodromy tmc . Moreover we
can assume that m is odd and m�1, otherwise we can just perform some more contact
(−1)-surgeries along ai’s (depicted in Fig. 2), after making them Legendrian on distinct
convex pages using Lemma 9.

On the other hand, by Proposition 6, a contact (−1)-surgery along a Legendrian knot L in
a convex boundary component of a symplectic 4-manifold can be obtained by a symplectic
2-handle attachment along L. Hence, there exists a symplectic 4-manifold (W ′, �′) with a
convex boundary component (Y ′, �′) which is obtained from (W, 	) by attaching symplectic
2-handles along i’s in the convex end of (W, 	). Next we will prove that we can actually
assume that m = 1.

We note that Proposition 6 is also true for attaching symplectic 1-handles. Namely, one
can attach a symplectic 1-handle to a symplectic 4-manifold along two points on the binding
of a compatible open-book decomposition of a convex boundary component in such a way
that the symplectic structure extends over the 1-handle. In addition the induced surgery
on the convex boundary component corresponds to taking a connected sum with a copy of
standard contact S1×S2.At the level of compatible open books, attaching a (4-dimensional)
symplectic 1-handle to a convex boundary component along two points in the binding of a
compatible open book corresponds to attaching a (2-dimensional) 1-handle to the page of
that open book. Note that we extend the old monodromy by identity over the new 1-handles.

Let g′ = mg + 1
2 (m − 1). Now, we attach symplectic 1-handles to (W ′, �′) so that the

resulting compatible open book on the boundary has a page F ′ of genus g′ with one boundary
component. Let c′ be a curve parallel to �F ′ as shown in Fig. 3.

Then by Lemma 7 we have

tc′ = (ta1 ◦ ta2 ◦ · · · ◦ ta2g′−1
◦ ta2g′ )

4g′+2

= (ta1 ◦ ta2 ◦ · · · ◦ ta2g ◦ ta2g+1 ◦ · · · ◦ ta2g′−1
◦ ta2g′ )

m(4g+2) ∈ �F ′ .
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a1
a g2 a g2

c c
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Fig. 3. Genus g′ surface F ′ with boundary.

To simplify the notation we will denote the result of attaching symplectic 1-handles
to (W ′, 	′) again as (W ′, 	′). Now, attach more symplectic 2-handles to (W ′, 	′) along
the Legendrian curves a2g+1, a2g+2, . . . , a2g′ sufficiently many times so that the resulting
convex boundary has a compatible open book with monodromy tc′ . Here note that we
are inserting (rather than appending as in Lemma 10) some right-handed Dehn twists, but
nevertheless Lemma 10 holds true in this case (cf. [15]). We will still denote the resulting
symplectic 4-manifold by (W ′, 	′), to simplify the notation.

Summarizing the above discussion, by attaching symplectic 1- and 2-handles to (W, 	)

we end up with a symplectic 4-manifold (W ′, 	′) with a convex boundary component
(Y ′, �′) whose compatible open book ob�′ has the following description: The page F ′ is a
genus g′ surface with one boundary component and the monodromy is a single right-handed
Dehn twist along a curve c′ parallel to �F ′. Let F̂ denote the surface obtained by capping
off the surface F ′ by gluing a 2-disk along �F ′.

Lemma 12. The 3-manifold Y ′ is a circle bundle over the surface F̂ with Euler
number −1.

Proof. This is a well-known result; we repeat the proof described in [2]. Recall the relation

(ta1 ta2 · · · ta2g′ )
4g′+2 = tc′

in the mapping class group �F ′ . It induces a relation

(ta1 ta2 · · · ta2g′ )
4g′+2 = 1.

in the mapping class group �F̂ . This later relation induces a Lefschetz fibration f : X → S2

admitting a section of square −1. Consider a neighborhood U of a regular fiber union this
section. We observe that �U = −Y . This is because X\int U is a Lefschetz fibration (with
bounded fibers) with monodromy

(ta1 ◦ ta2 ◦ · · · ◦ ta2g′−1
◦ ta2g′ )

4g′+2 = tc′ .

Moreover, U is obtained by plumbing a D2 × F̂ (a regular neighborhood of the fiber) and a
disk bundle over S2 with Euler number −1 (a regular neighborhood of the section). In Fig.
4 we illustrated a handlebody diagram of the 4-manifold U.

We can blow down the −1 sphere to get a disk bundle over F̂ with Euler number +1 (cf.
Fig. 5). Blowing down a −1 sphere changes the 4-manifold but the boundary 3-manifold
remains the same (up to diffeomorphism). Note that the boundary of a disk bundle over F̂

with Euler number +1 is circle bundle over F̂ with Euler number +1. Our claim follows
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1
0

Fig. 4. Plumbing a D2 × F̂ and a D2-bundle over S2 with Euler number −1.

+1

Fig. 5. D2-bundle over F̂ with Euler number +1.

by reversing the orientations, since when we change the orientation of a circle bundle over

F̂ with Euler number +1, we get a circle bundle overF̂ with Euler number −1. �

Now consider the disk bundle M over F̂ with Euler number 1. Then M admits a natural
symplectic structure 	M so that (M, 	M) has a concave boundary (Y ′, �′) (cf. [28]). Thus

(W ′, 	′)
⋃

(Y ′,�′
)

(M, 	M)

is a concave filling of (Y, �) by Lemma 11. This finishes the proof of Proposition 5. �
Finally, we would like to point out how Gay’s proof in [15] differs from the proof in [13].

Consider the open book ob�′ which is compatible with (Y ′, �′) as above. Then Gay explains
how to attach a symplectic 2-handle along the binding of ob�′ with framing +1 relative to
the page framing of the binding so that the resulting contact 3-manifold (Y ′′, �′′) is also a
concave boundary component of the symplectic cobordism given by the 2-handle attach-
ment. Note that this operation has the affect of turning a convex boundary component of a
symplectic 4-manifold to a concave boundary component. Denote the resulting symplectic
4-manifold obtained by attaching this symplectic 2-handle to (W ′, 	′) by (W ′′, 	′′). More-
over, the monodromy of the open book compatible with (Y ′′, �′′) is given by the identity map.
This implies that (Y ′′, �′′) is contactomorphic to the standard tight contact (�k S1 ×S2, �st).
Note that there is a standard convex filling (�k S1 × D3, 	st) of (�k S1 × S2, �st). Hence,

(W ′′, 	′′)
⋃

(�k S1×S2,�st)

(�k S1 × D3, 	st)

is a concave filling of (Y, �) by Lemma 11.
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Alternatively, a general method on how to find a natural open book on the boundary of any
plumbed 4-manifold is given in [17]. Moreover, Gay explains how to construct a symplectic
structure on a “positive” plumbing 4-manifold whose concave boundary is compatible with
this open book. In the situation above note that U is obtained by a positive plumbing of a

D2 × F̂ with a disk bundle over S2 with Euler number −1.

Proposition 13 (Etnyre–Honda [14] and Gay [15]). If (W, 	) is a strong filling of (Y, �)

then W can be symplectically embedded into a closed symplectic 4-manifold.

Proof. Suppose that (W, 	) is a strong filling of (Y, �). Consider a concave filling (W1, 	1)

of (Y, �). Then we can glue (cf. Lemma 11) the symplectic manifolds (W, 	) and (W1, 	1)

along their common boundary (Y, �) to get a closed symplectic 4-manifold including (W, 	)

as a symplectic subdomain. �

7. Embedding a weak filling

In this section we will give the most general embedding result that will cover the cases
in Sections 5 and 6.

Theorem 14 (Eliashberg [10] and Etnyre [12]). If (W, 	) is a weak filling of (Y, �) then
W can be symplectically embedded into a closed symplectic 4-manifold.

7.1. Eliashberg’s construction

We first briefly outline Eliashberg’s construction: Let (W, 	) be a weak filling of a
contact 3-manifold (Y, �) and let ob� be an open-book decomposition ofY (with a connected
binding B) compatible with the contact structure �. Attach a symplectic 2-handle along
B ⊂ Y = Y × {1} to an appropriate symplectic collar Y × I to obtain a cobordism with
boundary −Y ∪ Y ′, such that Y ′ fibers over S1 with symplectic fibers. Then fill in Y ′ → S1

by a symplectic Lefschetz fibration over D2 to complete W ∪ H into a closed symplectic
4-manifold.

Eliashberg’s idea above is to reduce the question of embedding a weak filling to a question
of embedding a symplectic surface fibration over the circle. Notice that the binding B of
ob� is transverse to �, so the crucial point of Eliashberg’s construction is the way that he
attaches a symplectic 2-handle along the transverse binding B. We would like to mention
here that in [16], Gay gives a general construction of attaching symplectic 2-handles along
transverse knots.

Eliashberg’s construction is “topologically” equivalent to the construction that was given
in [2] to embed a Stein filling smoothly into a closed symplectic 4-manifold.

Now we proceed with the details of Eliashberg’s construction. We start with describing the
symplectic 2-handle H to be attached along the transverse binding B. We identify C2(z1, z2)

with R4(x1, y1, x2, y2) as usual: z1 = x1 + iy1 and z2 = x2 + iy2. Let (ri, �i ) denote the
polar coordinates in the zi-plane for i = 1, 2. Then the standard symplectic 2-form 	0 on
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Fig. 6. The graph of the smooth function g.

P

r2 1

r1 a

P

Fig. 7. Smoothing the corners of the polydics.

R4 is given by

	0 = dx1 ∧ dy1 + dx2 ∧ dy2 = r1 dr1 ∧ d�1 + r2 dr2 ∧ d�2.

Let a be a positive real number and let P = {r1 �a, r2 �1} ⊂ C2 be a polydisc. Now
we define a domain P̃ = {r1 �g(r2) : r2 ∈ [0, 1]} ⊂ P for some non-increasing smooth
function g(t) : [0, 1] → [0, a] as shown in Fig. 6, where g([0, 0.5]) = a and g′(t) < 0 for
t ∈ (0.5, 1). We will determine the real number a and the particular form of the function
g(t) near t = 1 later in the proof. Here, we can view P̃ as obtained from the polydics P by
smoothing its corners as shown in Fig. 7.

We define � = {r1 = g(r2) : r2 ∈ [0.5, 1]} as part of �P̃ . (There is a typo here in [10],
r2 ∈ [0.5, 1] not r1.) We observe that � is diffeomorphic to S1 × D2: As r2 increases
from 0.5 to 1 in the z2-plane (with polar coordinates (r2, �2)) the boundary of the disks
{r1 � g(r2)} in the z1-plane will shrink smoothly to a point according to the function g
sweeping out a disk for each fixed �2. Here note that the core circle of � is parameterized
by �2 ∈ [0, 2�] for r2 = 1 (cf. Fig. 8).

Then, we observe that  = 1
2 (r2

1 d�1 + r2
2 d�2) is a primitive of 	0 on R4 and that

|� = 1

2
(g2(r2) d�1 + r2

2 d�2) = r2
2

2

(
g2(r2)

r2
2

d�1 + d�2

)
is a contact 1-form on�. This can be verified by a direct calculation where r2 d�1∧ dr2 ∧ d�2
is a volume form on �. Also observe that the core circle of � is transverse to the contact
structure ker(|�) since (�/��2)|{r2=1} = 0.5.
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Fig. 8. � � S1 × D2.
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Fig. 9. The 2-handle H.

Moreover, (�, |�) is a convex boundary component of (P̃ , 	0) but we would like to
convert it to a concave component. So we apply the following trick. We embed P̃ into a
symplectic S2 × D2 by a symplectomorphism and take the complement of the image in
S2 ×D2. Let (S2, �1) be a symplectic sphere with area 2� and (D2, �2) be symplectic disk
with area �a2. Denote by S2± the upper and lower hemispheres of area �, respectively. Then
�1 ⊕ �2 induces a symplectic form on S2+ × D2. Let

� : P �D2 × D2 → S2+ × D2 ⊂ S2 × D2

be a symplectomorphism. From now on we will identify the symplectic form on P induced
from 	0 on R4 with the symplectic form �1 ⊕ �2 on S2+ × D2 by the above symplectomor-
phism �. Define the 2-handle H (see Fig. 9) as

H = S2 × D2 − �(P̃ ).

Now consider the boundary �H of the 2-handle H. We will denote �(�) also by � to
simplify the notation. Let

� = �H\�.
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Fig. 10. The diffeomorphism F : � → U .

Observe that � is fibered by discs Dx = S̃2− ×{x} for x ∈ �D2, where we have S2− ⊂ S̃2− ⊂
S2. This is illustrated in Fig. 9: imagine the complement of �(P̃ ) in S2 × D2 restricted to

�D2. Notice here that S̃2− is symplectic (with respect to 	0) with fixed area 7�/4 (not 9�/4
as mistakenly typed in [10]) for each x ∈ �D2. This is precisely because of our identification
of 	0 with �1 ⊕ �2.

Next, we would like to find an appropriate way to attach this 2-handle H to Y × I by
identifying � with a neighborhood U of the binding B of the compatible open book ob� in
Y × {1} ⊂ Y × I . By Giroux [19], we can find coordinates (r, �, u) near the binding B of
ob�, such that

U � [0, R] × (R2/2�Z) × (R2/2�Z)

satisfying the following conditions:

(1) �|U = h(r)(du + r2d�) for some positive function h defined on [0, R], such that
h(r) − h(0) = −r2 near r = 0, and h′(r) < 0 for all r > 0;

(2) d� is symplectic on the pages of ob� and;
(3) pages of ob� in U are given by � = constant.

Now we fix R and set a (in the definition of the function g) equal to R/2. Consider
the following map F : � → U (cf. Fig. 10) given by the following identifications of
coordinates:

r = g(r2)

r2
, � = �1, u = �2.

Notice that under this map the core circle of � parameterized by �2 is mapped onto the
binding B parameterized by u. It is clear that F is a diffeomorphism but we would like F to
be a contactomorphism which takes the contact structure ker(|�) onto the contact structure
�|U . Well, we will simply choose our function g (depicted in Fig. 6) accordingly near t = 1
so that F becomes a contactomorphism. The function

t → g(t)

t
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W, ω

Ω

ω + C d (tα)

Y × I

Y, ξ
ω

10 ε

Fig. 11. Extending 	 to � ∈ H 2(Y × I ).

is a decreasing function from [0.5, 1] to [0, 2a] = [0, R]. Let � : [0, R] → [0.5, 1] be the
inverse of this function. Recall that

|� = r2
2

2

(
g2(r2)

r2
2

d�1 + d�2

)
.

Hence by the change of coordinates which describes the diffeomorphism F we get

(F−1)∗(|�) = �2(r)

2
(r2 d� + du)

which is a 1-form defined on U. Then we have h(r) = 1
2�2(r), where h(r) − h(0) = −r2

near r =0 so that 1
2 (�2(r)−�2(0))=−r2 and thus �(r)=√

1 − 2r2. Recall that r2 =�(r)

and r = (g(r2)/r2) under the diffeomorphism F. Considering that � : [0, R] → [0.5, 1] is
the inverse of the function t → g(t)/t we finally obtain

r2 =
(

1 − 2
g2(r2)

r2
2

)1/2

,

which implies that

g(t) = 1
2 t
√

1 − t2

near t = 1. Notice that g(t) has a vertical tangent at t = 1. This calculation determines the
particular form of the function g(t) near t = 1. (Our calculation of the function g is slightly
different from the one given in [10].)

While preparing our 2-handle for gluing we also have to equip the cobordism Y ×I by an
appropriate symplectic form. Let C > 0 be an arbitrary constant. It is easy to see (cf. [10])
that there is a symplectic form � on Y × I (see Fig. 11) which “extends” 	 and agrees with
	 + Cd(t�) for t ∈ [ε, 1].

Now observe that Y × {1} ⊂ Y × I is convex with respect to d(t�). Recall that (H, 	0)

is a concave filling of (�, |�). Thus by Lemma 11, we can glue (H, 	0) to (Y × I, d(t�))

identifying � and U by the contactomorphism F which extends to a symplectomorphism in
some neighborhoods of � ⊂ H and U ⊂ Y × I . Consequently we have F ∗(d(t�)) = 	0.
Notice that F ∗	 is exact in a regular neighborhood �(�) of � in H because the second
cohomology group of �(�)� I ×S1 ×D2 is trivial. Since F ∗	 is exact, there is a 1-form �
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on �(�), such that F ∗	=d�. Take a smooth cut-off function � on H which vanishes outside
of �(�). Then d(��) defines an extension 	̃ of F ∗	 from �(�) to H.

Finally, we are ready to define a symplectic form on H that will allow us to make this
2-handle attachment in the symplectic category. Let �0 = 	̃+C	0 on H for some constant
C. It is not hard to see that �0 will be symplectic for sufficiently large values of C since
C2	0 ∧ 	0 > 0 will dominate the other terms in�0 ∧ �0 on a compact manifold. Here notice
that we have a well-defined symplectic form on (Y × I )∪U=F(�)H since � = 	 + Cd(t�)

on (Y × I ) is identified with �0 on H in the gluing region. This is because 	̃ is an extension
of F ∗	 and F ∗(Cd(t�)) = C	0 so that F ∗� = �0.

On the other hand, by attaching the 2-handle H we perform a Dehn surgery on the 3-
manifold Y to yield a 3-manifold Y ′ which fibers over the circle. This should be clear since

we take out a neighborhood U from Y and glue in S̃2− × �D2 to cap off each page F of ob�
by a disk Dx = S̃2− × {x}. Let F̂ denote the closed surface obtained by capping off a page F
by gluing a 2-disk Dx along its boundary. Consider the 2-form �|Y = �|Y×{1} = 	 + Cd�.
We know that d� is symplectic on every page F of ob�. Thus 	+C d� will be a symplectic
form on F for sufficiently large values of C.

Recall that we identified the symplectic forms � and �0 when we attached the symplectic
2-handle H. Also note that Dx is symplectic with respect to 	0. Consequently, since every
page F of ob� is symplectic (with respect to �) and the disk Dx is symplectic as well (with
respect to �0) we get a fibration over S1 for which 	′ =�0|Y ′ restricts to a symplectic form
on each fiber F̂ for sufficiently large values of C. We will call such a surface fibration over
S1 a symplectic fibration over S1. Note that we have the freedom to choose C as large as
we wish. Also note that in order to prove that we have a symplectic fibration over S1 after
surgery we had to use the compatibility of � and ob�.

Denote by (W ′, 	′) the resulting symplectic 4-manifold obtained by attaching the sym-
plectic 2-handle H to the given weak filling (W, 	) of (Y, �). To finish Eliashberg’s con-
struction we need to cap off the symplectic fibration �W ′ = Y ′ → S1 by a symplectic
4-manifold. Let � be the topological monodromy of this surface fibration. Then we can
smoothly fill in −Y ′ (see [2]) by a symplectic Lefschetz fibration over D2 with regular fiber
F̂ since the monodromy �−1 of −W ′ can be written as a product of right-handed Dehn
twists by Lemma 15.

Lemma 15. Any element in Map(F̂ ) can be expressed as a product of non-separating
right-handed Dehn twists.

Proof. We repeat the proof described in [2] for this elementary result. Recall that the relation
(cf. Lemma 7)

(ta1 ta2 · · · ta2g )
4g+2 = tc

in �F induces a relation

(ta1 ta2 · · · ta2g )
4g+2 = 1

in �F̂ . We conclude that t−1
a1

is a product of non-separating right-handed Dehn twists. There-
fore any left-handed non-separating Dehn twist – being conjugate to t−1

a1
– is
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a product of non-separating right-handed Dehn twists. This finishes the proof of the lemma
combined with the fact that �F̂ is generated by (right and left-handed) non-separating Dehn
twists. �

In fact, Eliashberg proves a “symplectic” version of Lemma 15 in [10] so that we can
actually fill in −�W ′ = −Y ′ symplectically by a symplectic 4-manifold. The point here is
that when we measure the topological monodromy of a symplectic fibration Y ′ → S1 we
do not take into account the symplectic structure on the fiber. But to fill in such a symplectic
fibration symplectically we need to measure the holonomy (i.e., “symplectic” monodromy)
of this fibration, which we describe below. Suppose that the symplectic fibration Y ′ → S1

is normalized so that
∫
F̂

	′=1. Since the 2-form 	′ is positive on the fibers its kernel ker 	′
is a 1-dimensional line field on Y ′ transverse to the fibers. The flow generated by a vector
field which directs this line field determines a holonomy automorphism Hol(	′): F̂0 →
F̂0 of a fixed fiber F̂0. This is an area and orientation preserving diffeomorphism (i.e., a
symplectomorphism) which defines (Y ′, 	′)uniquely up to fiber preserving diffeomorphism
fixed on F̂0.

Now let (V , �) denote the symplectic Lefschetz fibration over D2 mentioned above with
regular fiber F̂ which will be used to fill in the symplectic fibration −Y ′ → S1. Since
(V , �) → D2 is a symplectic Lefschetz fibration, the symplectic 2-form � restricts to a
symplectic form on each regular fiber and moreover we can assume that �|�V integrates
to 1 on the fibers of the symplectic fibration �V → S1. If we can choose (V , �), such
that Hol(	′|Y ′)−1 = Hol(�|�V ) then we are done since we can glue (W ′, 	′) to (V , �)

symplectically. Eliashberg constructs such a symplectic Lefschetz fibration over D2 in
[10]. In fact it is shown in [25] that it suffices to prove Lemma 16 below. (See also Section
8 for another argument for the sufficiency of Lemma 16.)

Lemma 16 (Kronheimer–Mrowka [25]). Let � be a closed symplectic surface of area 1
and genus g > 1. Let � : � → � be an area preserving diffeomorphism that is smoothly
isotopic to the identity. Then there is a symplectic Lefschetz fibrationp : (V , �) → D2, such
that p−1(1) = � and Hol(�|�V ) = �.

As it is pointed out in [10], we could alternatively use Lemma 17 to cap off a symplectic
fibration over S1 by a symplectic surface bundle over a surface with boundary. Recall that a
group G is said to be perfect if it is equal to its commutator subgroup [G, G]. In other words,
G is perfect if and only if every element in G can be expressed as a product of commutators.
Yet another way of characterizing the perfectness of a group is given by the triviality of its
first homology group H1(G) = G/[G, G].

It is well-known that the mapping class group of a surface of genus greater than two is
perfect. This is a consequence of the lantern relation (cf. [22]) in the mapping class groups
which essentially says “three equals four”. The fact that one can smoothly fill in a smooth
surface bundle over S1 by a smooth surface (of genus > 2) bundle over a surface with
boundary easily follows from the perfectness of the corresponding mapping class group (of
genus > 2). Here, we need a symplectic version of this fact which is provided by Kotschick
and Morita [24]. Let Symp�� denote thegroup of all symplectomorphisms of the closed
symplectic surface (�, �) with respect to a prescribed symplectic form � on � which is
normalized, such that

∫
� � = 1.
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Lemma 17 (Kotschick–Morita [24]). If the genus of � is greater than two then Symp��
is perfect.

The restriction in Lemma 17 on the genus of the fiber is not a serious one since in the
construction above one can arbitrarily increase the genus of the page of ob� (which is
compatible with (Y, �)) by positively stabilizing ob� (cf. [19]) to begin with.

7.2. Etnyre’s construction

We first briefly outline Etnyre’s construction: in Section 6 we showed that to find an
embedding of a strong filling one can use an embedding of a Stein filling. Etnyre’s idea
in [12] was to find an embedding of a weak filling using an embedding of a strong filling.
Suppose that (W, 	) is a weak filling of a contact 3-manifold (Y, �). Etnyre showed that
(W, 	) can be embedded into a symplectic 4-manifold (W ′, 	′) which weakly fills its
boundary (�W ′ = Y ′, �′), where Y ′ happens to be a integral homology sphere. Now by
a homological argument the symplectic structure 	′ can be perturbed near the boundary
so that (W ′, 	′) strongly fills (Y ′, �′). Therefore, (W ′, 	′) can be embedded into a closed
symplectic 4-manifold (X, 	X) by Proposition 13 and hence (W, 	) ⊂ (W ′, 	′) can be
embedded symplectically into (X, 	X). Below we proceed with the details.

Let (W, 	) be a weak filling of (Y, �) and let ob� be an open book compatible with (Y, �).
We can assume that the binding B of ob� is connected. Let � be the monodromy of this
open book and use Lemma 8 to express � as

� = tmc ◦ t−1
1

◦ · · · ◦ t−1
n

.

Now Legendrian Realize n (cf. Lemma 9) on a convex page of ob� and perform contact
(−1)-surgery on n. The new open book will have monodromy

� ◦ tn
= tmc ◦ t−1

1
◦ · · · ◦ t−1

n−1
.

Repeat this for all the curves i (for i = n − 1, . . . , 1) to get down to tmc as in the proof of
Proposition 5. Denote by (Y ′, �′) the contact 3-manifold obtained as a result of the contact
(−1)-surgeries above. Then (Y ′, �′) is compatible with the open book whose monodromy
is given by tmc , by Lemma 10.

Recall that by Theorem 6 we can attach a symplectic 2-handle to a strong filling along a
Legendrian knot in its convex boundary in such a way that the symplectic structure extends
to the 2-handle and the new symplectic 4-manifold strongly fills its boundary. In this gluing
process, however, the Liouville (i.e., symplectically dilating) vector field is used only in
a neighborhood of the attaching circle. It turns out that if L ⊂ (Y, �) is Legendrian and
(W, 	) is a weak filling of (Y, �) then there is always a symplectically dilating vector field
near L, implying

Proposition 18. Suppose that (Y ′, �′) is given by contact (−1)-surgery along L ⊂ (Y, �).
If (Y, �) is weakly fillable then so is (Y ′, �′).

The result above was first explicitly stated in [14] although it was probably known to the
experts, and certainly to Eliashberg.
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Fig. 12. A right-handed Legendrian trefoil knot K.

Hence, there exists a weak filling (W ′, 	′) of (Y ′, �′) obtained by attaching symplectic
2-handles to (W, 	). The page of the compatible open book ob�′ is a genus g surface with
one boundary component. Consider the curves ai depicted in Fig. 2. Legendrian realize ai’s
and perform contact (−1)-surgery on each ai to get (Y ′′, �′′) compatible with the open book
ob�′′ whose monodromy is given by

tmc ◦ t−1
a1

◦ · · · ◦ t−1
a2g

.

It is not hard to see that Y ′′ is an integral homology sphere. Moreover, by Proposition 18,
there exists a weak filling (W ′′, 	′′) of (Y ′′, �′′). Then we use Proposition 19 to modify the
symplectic form 	′′ near the boundary so that it is a strong filling of (Y ′′, �′′). Note that
(Y ′′, �′′) has a concave filling by Proposition 5. Thus, we cap off (W ′′, 	′′) by this concave
filling using Lemma 11 to get a closed symplectic 4-manifold (X, 	X) in which (W, 	)

sits as a symplectic subdomain.

Proposition 19 (Eliashberg [8,10] and Ohta-Ono [29]). Any weak filling of a rational
homology sphere can be deformed into a strong filling by modifying the symplectic form
near the boundary.

The main step in Etnyre’s construction is embedding a weak filling of an arbitrary contact
3-manifold into a weak filling of an integral homology sphere. We would like to point out
here that this follows also from a result that was obtained by Stipsicz in [32]. Namely,
Stipsicz showed the existence of a Stein cobordism from an arbitrary contact 3-manifold
to an integral homology sphere. Stipsicz’s construction (which we describe below) can be
slightly modified to imply the main step above.

Let (W, 	) be a weak filling of (Y, �). Consider the right-handed Legendrian trefoil
knot K as depicted in Fig. 12 in the standard contact S3, having tb(K) = 1. To construct
such a cobordism start with a contact surgery diagram L of (Y, �) and for every knot Li in
L add a copy Ki of K into the diagram linking Li once, not linking the other knots in L.
Adding symplectic 2-handles along Ki we get (W ′, 	′) and the resulting 3-manifold Y ′ is an
integral homology sphere. To see this just convert the contact surgery diagram into a smooth
handlebody diagram and calculate the first homology. Observe that the topological framing
of K is 0. Denote by �i a small circle meridional to Ki and �′

i a small circle meridional to
Li for i = 1, . . . , n. Recall that H1(Y

′, Z) is generated by [�i] and [�′
i] and the relations

are [�′
i] = 0 and [�i] +∑

j �=i lk(Li, Lj )[�′
j ] = 0. It follows that H1(Y

′, Z) = 0.
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Although it was not considered in [32], Stipsicz’s construction immediately implies the
main step above because one can add a symplectic 2-handle along a Legendrian knot in the
boundary of a weak filling to extend it to another weak filling by Proposition 18.

8. A hybrid solution

In this section, we suggest another symplectic embedding of a weak filling into a closed
symplectic 4-manifold which is obtained by a mixture of the ideas we discussed so far. First,
we note that it is possible to attach symplectic 1-handles (as well as symplectic 2-handles)
to a weak filling to extend it to another weak filling. Suppose that (W, 	) is a weak filling
of a contact 3-manifold (Y, �). Now we proceed as in the second proof of Proposition 5
to embed (W, 	) into a weak filling (W ′, 	′) by attaching symplectic 1- and 2-handles so
that the resulting contact structure on the boundary �W ′ has a compatible open book whose
page has only one boundary component and whose monodromy is just one right-handed
boundary-parallel Dehn twist. Then we attach a symplectic 2-handle to (W ′, 	′) along the
binding of this open book and we get a symplectic fibration over a circle with topologically
trivial monodromy on the other end of the cobordism given by this 2-handle attachment.
Finally, we cap off this surface bundle by a symplectic Lefschetz fibration over D2 using
Lemma 16.

9. Final comments

The presentation in this article may suggest that Eliashberg’s method is unnecessarily
long but he constructs from scratch a symplectic 2-handle to be attached to the binding of a
compatible open book – which is crucial. Note that a construction of attaching symplectic
2-handles along transverse knots was also given in [16]. It would be very interesting to
interpret this symplectic surgery in terms of contact surgery. Unfortunately, there does not
seem to exist a natural contact structure on the symplectic fibration over S1 obtained by
this surgery. This is exactly the point where Eliashberg’s method differs from the method
of Etnyre. In Etnyre’s construction one always makes use of the contact structures on the
boundaries of symplectic 4-manifolds to glue them symplectically. In fact, based on Giroux’s
correspondence, Etnyre mostly deals with open books compatible with these contact struc-
tures rather than the contact structures directly. In Eliashberg’s construction, however, at
one point or another we have to glue a symplectic (Lefschetz) fibration to a symplectic
4-manifold whose boundary symplectically fibers over S1. This is achieved by matching
up the holonomy diffeomorphisms on the boundaries and contact structures are not visible
in this picture. It might be worth pointing out that the proof of the non-triviality of the
contact Heegaard Floer invariant of a fillable contact structure follows from Eliashberg’s
embedding but it is not clear whether or not it follows from Etnyre’s construction.

Also it is intriguing to note that most of the constructions in this article rely on the relation

tc = (ta1 ◦ ta2 ◦ · · · ◦ ta2g−1 ◦ ta2g )
4g+2 ∈ �F
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given in Lemma 7 which implies

1 = (ta1 ◦ ta2 ◦ · · · ◦ ta2g−1 ◦ ta2g )
4g+2 ∈ �F̂ ,

where F̂ denotes the closed surface obtained by capping off the surface F by gluing a 2-disk
along �F . This latter relation says that identity can be expressed as a product of right-handed
Dehn twists in the mapping class group of a closed surface. It is not possible, however, to
express the identity as a product of right-handed Dehn twists in the mapping class group of
a surface with non-empty boundary (cf. [30]).
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