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a Instituto de Matematicas de lar UNAM, Campus Morelia, Apartado Postal 61-3 (Xangari) CP 58 089,

Morelia, Michoacan, Mexico
bDepartment of Mathematics, Auburn University Montgomery, PO Box 244023, Montgomery,

AL 36124-4023, USA

Received 20 September 2002; revised 25 March 2003

Communicated by D. Goss

Abstract

In this paper, we prove two results. The first theorem uses a paper of Kim (J. Number

Theory 74 (1999) 307) to show that for fixed primes p1;y; pk; and for fixed integers

m1;y;mk; with pi[mi; the numbers ðep1
ðnÞ;y; epk

ðnÞÞ are uniformly distributed modulo

ðm1;y;mkÞ; where epðnÞ is the order of the prime p in the factorization of n!: That implies one

of Sander’s conjectures from Sander (J. Number Theory 90 (2001) 316) for any set of odd

primes. Berend (J. Number Theory 64 (1997) 13) asks to find the fastest growing function f ðxÞ
so that for large x and any given finite sequence eiAf0; 1g; ipf ðxÞ; there exists nox such that

the congruences epi
ðnÞ � ei ðmod 2Þ hold for all ipf ðxÞ: Here, pi is the ith prime number. In

our second result, we are able to show that f ðxÞ can be taken to be at least

c1ðlog x=ðlog log xÞ6Þ1=9; with some absolute constant c1; provided that only the first odd

prime numbers are involved.

r 2003 Elsevier Inc. All rights reserved.

1. Introduction

For a prime number p and every positive integer m let epðnÞ be the power at which

the prime number p appears in the prime factorization of n!: In [6], it was asked
whether for every fixed positive integer k there exists a positive integer n so that all
the numbers epi

ðnÞ are even, where p1op2o?opk denote the first k prime numbers.

The above question was answered in the affirmative by Berend in [1]. In fact, Berend
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proved more, namely that for a fixed value of kX1 the number of positive integers
satisfying the above property has bounded gaps. Specifically, there exists a
computable constant CðkÞ; depending only on k; such that every interval of length
CðkÞ of positive numbers contains a positive integer n satisfying the above property.
This result has been extended in [5] to the following setting: There exists a positive
constant CðkÞ depending only on k; such that if eiAf0; 1g (for i ¼ 1;y; k) are such
that there exists at least one positive integer n satisfying the congruences epi

ðnÞ �
ei ðmod 2Þ for all i ¼ 1;y; k; then there exist infinitely many such positive integers n;
and the set of such positive integers has gaps bounded by CðkÞ: This extends the
result of Berend on the original problem addressed by Erd +os and Graham, because
there n ¼ 1 clearly satisfies the above congruences with ei ¼ 0 for all i ¼ 1;y; k: The
authors of [5] mention that for 2pkp5 every pattern eiAf0; 1g for 1pipk appears
at least once (hence, infinitely often by the above result), and they conjectured that
every pattern of length k appears for all values of kX1: This conjecture was recently
proved by Chen [4]. In [9], a stronger conjecture is stated, and this conjecture was
mentioned by Yong-Gao Chen in his talk at the ICM2002 in Beijing.

Conjecture 1 (Sander [9]). Let p1;y; pk be distinct primes, and let e1;y; ekAf0; 1g:
Then

jf0pnoN: epi
ðnÞ � ei ðmod 2Þ; 1pipkgjBN

2k
as N-N:

In [9], it is shown that the above conjecture holds for k ¼ 1; and it is also shown that
every pattern of length 2 appears with two arbitrary primes p1 and p2:

In this paper, we first address the following more general conjecture:

Conjecture 2. Let p1;y; pk be distinct primes, m1;y;mk be arbitrary positive integers

ðX2Þ; and 0paipmi 	 1 for i ¼ 1;y; k be arbitrary residue classes modulo mi: Then

jf0pnoN: epi
ðnÞ � ai ðmod miÞ; 1pipkgjB N

m1ymk

as N-N:

Thus, Conjecture 2 says that for fixed prime numbers p1;y; pk and for fixed
integers m1;y;mk the numbers ðep1

ðnÞ;y; epi
ðnÞÞ should be uniformly distributed

modulo ðm1;y;mkÞ; which is just a natural extension of Conjecture 1.
We give the following partial result which resolves the above Conjecture 2 under

some technical assumptions.

Theorem 1. Let p1;y; pk be distinct primes, m1;y;mk be arbitrary positive integers

ðX2Þ and 0paipmi 	 1 for i ¼ 1;y; k be arbitrary residue classes modulo mi:
Assume further that pi[mi for i ¼ 1;y; k: Then

jf0pnoN: epi
ðnÞ � ai ðmod miÞ; 1pipkgj ¼ N

m1ymk

þ OðN1	dÞ;

with d :¼ 1=ð120k2p3mm2Þ; where m :¼ maxfmi: 1pipkg; and p :¼ maxfpi: 1pipkg:
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Notice that Theorem 1 not only proves Conjecture 2 under the particular
assumptions that pi[mi for i ¼ 1;y; k; but it even gives an upper bound on the
size of the error term. In particular, Theorem 1 proves Conjecture 1 for all finite sets
of prime numbers not containing the prime number 2.

In the last section of his paper [1], Berend asks the following question: Assume that
2 ¼ p1op2o? is the increasing sequence of all the prime numbers. Given kX1 and
an arbitrary pattern eiAf0; 1g for i ¼ 1; 2;y; k; how far does one need to go (as a
function of k) in order to insure that one finds a number n so that epi

ðnÞ � ei ðmod 2Þ:
Since there are exactly 2k such patterns, we expect such a number to be larger than 2k:
Put it differently, find the fastest growing function f ðxÞ such that for large x there exists
nox such that the congruences epi

ðnÞ � ei ðmod 2Þ hold for all ipf ðxÞ; where ei is an

arbitrary function defined on the set of positive integers with values in f0; 1g: While we
are unable to prove that f ðxÞ can be taken of the form c log x with some constant c (the
optimal one being 1=log 2), we can give the following lower bound for f ðxÞ:

Theorem 2. Let 3 ¼ p1op2o? be the sequence of odd prime numbers and let ðeiÞiX1

be an arbitrary sequence taking only the values 0 and 1: Then there exists an absolute

constant c1 such that for each large positive real number x; there exists a positive

integer nox such that all congruences

epi
ðnÞ � ei ðmod 2Þ; i ¼ 1;y; kðxÞ

hold with kðxÞ :¼ Ic1
log x

ðlog log xÞ6

� �1=9

m:

2. The proofs

In 1999, Kim (see [8]) published a very important paper in which he generalized
results of Gelfond [7], Bésineau [2], and others, concerning the joint distribution of
completely q-additive functions in residue classes. The results from Kim’s paper
found immediate applications, an example of such being a paper by Tichy and
Thuswaldner (see [10]), in which these two authors use Kim’s results to prove a
version of the Erd +os–Kac theorem for sets described by congruence properties of
systems of completely q-additive functions.

In this paper, we point out that our theorems are immediate applications of Kim’s
main result.

We now describe Kim’s main result, and explain how it can be used to prove our
results.

Let qX2 be any integer. A function f defined on N,f0g satisfying f ð0Þ ¼ 0 and

f ðaqk þ bÞ ¼ f ðaÞ þ f ðbÞ for all integers aX1; kX1; and 0pboqk is called
completely q-additive. Note that a completely q-additive function may be
characterized also as given by the sum of the values of some function, taken over
the base q digits of the argument.
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Let q :¼ ðq1;y; qkÞ; and m :¼ ðm1;y;mkÞ be k-tuples of integers satisfying
qi;miX2 for i ¼ 1;y; k; and gcdðqi; qjÞ ¼ 1 for iaj: For each i; let fi be a completely

qi-additive function with integer values, and write f :¼ ð f1;y; fkÞ: Define

Fi :¼ fið1Þ; ð1Þ

di :¼ gcdðmi; ðqi 	 1ÞFi; fiðrÞ 	 rFi ð2prpqi 	 1ÞÞ; ð2Þ

and let F :¼ ðF1;y;FkÞ and d :¼ ðd1;y; dkÞ: For brevity, we write fðnÞ � a ðmodmÞ
if the congruence fiðnÞ � ai ðmod miÞ holds for all i ¼ 1;y; k: Assume further that
gcdðFi; diÞ ¼ 1 for all i ¼ 1;y; k; and that gcdðdi; djÞ ¼ 1 for all iaj: Kim’s theorem

says the following:

Theorem K (Kim [8]). With the previous assumptions and notations, the estimate

jf0pnoN: fðnÞ � a ðmodmÞgj ¼ N

m1ymk

þ OðN1	d1Þ ð3Þ

holds as N goes to infinity, and for all k-tuples of residue classes a modulo m; where

d1 :¼ 1=ð120k2q3m2Þ; with q :¼ maxfqi: 1pipkg; and m :¼ maxfmi: 1pipkg:

Proof of Theorem 1. To apply Kim’s theorem, let i be any fixed index in f1;y; kg:

Let li be the minimal positive integer such that the congruence
pli

i 	 1

pi 	 1
� 0 ðmod miÞ

holds. Such a value li exists because pi[mi: Clearly, liX2 because miX2: To estimate
li from above, write mi :¼ mi

0m00
i ; where mi

0 and m00
i are coprime, all the prime factors

of mi
0 divide pi 	 1; and m00

i is coprime to pi 	 1: It is clear that mi
0 and m00

i are

uniquely determined. By the well-known divisibility properties of Lucas sequences
(see [3]), it follows easily that the number mi :¼ mi

0fðm00
i Þ satisfies the condition that

p
mi
i
	1

pi	1
� 0 ðmod miÞ: Here, for an arbitrary positive integer n we used fðnÞ to denote

the Euler f function of n: It is easy to see that mi
0fðm00

i ÞX2 holds for all positive

integers miX2 (if mi ¼ 2; then pi is odd, in which case li ¼ mi
0 ¼ mi ¼ 2; while if

mi42; then either mi
0
X2; or fðm00

i Þ ¼ fðmiÞX2). In particular, lipmipm; where the

number m is defined in the statement of Theorem 1.

We now write qi :¼ pli

i : Notice that gcdðqi; qjÞ ¼ 1 holds for all iaj; and that

q :¼ maxfqi: 1pipkgppm; where p and m are defined in the statement of Theorem 1.
Define the completely qi-additive function fi as follows. Let a be an integer in the

interval 0papqi 	 1; and write it in base pi as

a :¼ a0 þ a1pi þ?þ ali	1pli	1
i with 0pajppi 	 1 for j ¼ 0;y; li 	 1: ð4Þ
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Set

fiðaÞ :¼ a0
p0

i 	 1

pi 	 1
þ a1

pi 	 1

pi 	 1
þ?þ ali	1

pli	1
i 	 1

pi 	 1
; ð5Þ

and extend fi in the obvious way to all the nonnegative integers in such a way that it
becomes completely qi-additive. A compact formula of fi in all nonnegative integers
is obtained as follows. Let nX0; and write it in base pi as

n :¼ n0 þ n1pi þ?þ ntp
t
i with 0pnjppi 	 1 for all j ¼ 0;y; t: ð6Þ

For every nonnegative integer j write %j � j ðmod liÞ (the least residue). Then

fiðnÞ ¼
Xt

j¼0

nj

p
%j
i 	 1

pi 	 1
: ð7Þ

The next observation is that fiðnÞ � epi
ðnÞ ðmod miÞ: Indeed, it is well-known that, if

the base pi representation of n is given by (6), then

epi
ðnÞ ¼

Xt

j¼0

nj

p
j
i 	 1

pi 	 1
: ð8Þ

Thus, comparing (7) with (8), it suffices to show that

p
j
i 	 1

pi 	 1
� p

%j
i 	 1

pi 	 1
ðmod miÞ;

which is equivalent to

p
j	%j
i 	 1

pi 	 1
� 0 ðmod miÞ;

and the last congruence is obvious by the definition of li and by the fact that j 	 %j is a
multiple of li:

Having concluded that the completely qi-additive function fi represents precisely
epi

modulo mi; in order to complete the proof of Theorem 1, it suffices, via Theorem

K, to verify that the functions fi satisfy the assumptions of Theorem K. But it is clear
that by choosing r :¼ pi; then 2prpqi 	 1 (because liX2), and with such an r we
have fiðrÞ 	 rFi ¼ fiðpiÞ ¼ 1 (notice that Fi ¼ fið1Þ ¼ 0). Thus, formula (2) tells us
that di ¼ 1; therefore that all the relations gcdðFi; diÞ ¼ 1 for i ¼ 1;y; k; and
gcdðdi; djÞ ¼ 1 for iaj hold. All the assertions of Theorem 1 can now be read off

from Theorem K. &

Proof of Theorem 2. Given k; we shall apply Kim’s theorem with the error term to
find N :¼ NðkÞ in such a way as to make sure that there exists noN such that
epi

ðnÞ � ei ðmod 2Þ: In order to do so, we shall need first to find the dependence of the
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constants understood in O from Theorem K as a function of the data k; m; and q: A
close analysis of Kim’s arguments points out that the error term appearing in
Theorem K can be made explicit by going through the arguments from Propositions
1 and 2 in [8]. In both Propositions 1 and 2 in [8], the constant understood in the

error term can be taken to be of the type c2k1=2q; where c2 is an absolute constant.

Thus, with Theorem 1, we have that m :¼ 2; pk is the kth odd prime, q :¼ p2
k; and

d :¼ 1=ð480k2p6
kÞ: By Theorem 1 and Kim’s theorem with the explicit dependence of

O on the initial data, it follows that there exists an absolute constant c3 such that
whenever the inequality

N

2k
4c3k1=2p2

kN1	d ð9Þ

holds, then there must exist a positive integer noN such that epi
ðnÞ � ei ðmod 2Þ

holds for all i ¼ 1; 2;y; k: Inequality (9) is equivalent to

log N4
1

d
logðc32kk1=2p2

kÞ ¼ 480k2p6
kðlog c3 þ k log 2þ 0:5 log k þ 2 log pkÞ: ð10Þ

With the Prime Number Theorem, we have pk ¼ ð1þ oð1ÞÞk log k; and so inequality
(10) yields

log N4480ðlog 2Þð1þ oð1ÞÞk9 log6 k: ð11Þ

Setting x :¼ N in the left-hand side of the above inequality, and expressing k as a
function of x; we see that there exists indeed an absolute constant c1 so that by

setting k to be the largest integer less than or equal to c1
log x

ðlog log xÞ6

� �1=9

then inequality

(11) holds. &

3. Comments

In this note, we just pointed out how problems about the distributions of
exponents of (fixed) primes appearing in the prime power factorization of n! in
residue classes should be tackled via the general theory of joint distributions of
completely q-additive functions in residue classes. Indeed, by the simple observation
of treating this problem in this way, we pointed out that a result far more general
than any other results available in the literature on this topic can be inferred in a
straightforward way from Kim’s results. In this spirit, we assert that it is probably
not too hard to prove Conjecture 2 in its full generality. However, in order to do so,
it is probably far more interesting and worthwhile to try to prove an extension of
Kim’s results to the following setting.

Let q :¼ ðq1;y; qkÞ; m :¼ ðm1;y;mkÞ; and f :¼ ð f1;y; fkÞ be as in Kim’s
theorem. Let further u :¼ ðu1;y; ukÞ and v :¼ ðv1;y; vkÞ; where uiX1 and vi are
nonnegative integers for i ¼ 1;y; k: Write f ðun þ vÞ ¼ ð f1ðu1n þ v1Þ;y; fkðukn þ
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vkÞÞ: We argue that it would be worthwhile to study the distribution of the positive
integers n such that f ðun þ vÞ � a ðmodmÞ; and to conclude that, under certain
natural arithmetical conditions on q;m; u; v and f; the numbers f ðun þ vÞ are
uniformly distributed in arithmetical progressions. For example, let us see how one
would attempt to include the number 2 into the picture in order to prove Conjecture
1 in its full generality. If pi is an odd prime, then define the completely qi-additive
function fi as in the present paper. When pi ¼ 2; then if one writes n binary as
n :¼ n0 þ 2n1 þ?þ 2tnt; with niAf0; 1g for i ¼ 0;y; t; then epi

ðnÞ � n1 þ?þ
nt ðmod 2Þ: Fix eiAf0; 1g; and assume that p1 ¼ 2: For i ¼ 1; define f1ðnÞ to be the
sum of the digits of n in base 2. Consider the system of congruences:

fið2nÞ � ei for i ¼ 1;y; k ð12Þ

and

f1ð2n þ 1Þ � e1 þ 1; fið2n þ 1Þ � ei for i ¼ 2;y; k: ð13Þ

If Kim’s theorem could be extended as we pointed out above under pertinent
assumptions on q;m; u; v and f; and if such pertinent assumptions were fulfilled for
the systems of congruences (12) and (13), (with the obvious choices on q;m; u; v and
f), then one would get a positive answer to Conjecture 1. By a procedure similar to
the one indicated above, one could also get a positive answer to Conjecture 2 via
such an extension of Kim’s results.
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