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1. In this note we consider inequalities related to Hill equations 

wherep(t) is a non-negative, periodic, integrable function of the real variable t 
and h is a parameter. The period of p is denoted by W. 

Liapounoff’s theory [I] of the equation (1) is reviewed in [2], Section 4.2, 
and [3], Chapter 1. Liapounoff proves that there exists an increasing sequence 
of real numbers 

0 < x, < A, < A, < A, < *.. < A,-, < x, < A, < .*. 

such that the nth eigenvalues of (1) for all possible intervals [a, a + w] of 
length w are exactly the numbers h E [Ai , A,]. This is a byproduct of the 
theory of stability since it turns out that (1) h as a solution which is bounded 
for all t if and only if h E [An , A,] f or some rz and that all solutions are bounded 
if h E (A, , A,). For n = 2k - 1, A, and A, are eigenvalues of the problem 

x(0) = -x(w); x’(0) = -x’(w). 

For n = 2k, AIE and A, are eigenvalues of 

x(0) = x(w); x’(0) = x’(w). 

This means that for h = A,,.+ or A,,-, , the equation (1) admits a semi- 
periodic solution of period W, whereas for X = ha, or A,, there exists a 
periodic solution of period W. If A,, < A, then only one solution is (semi-)- 
periodic at a time and the prolongation by continuous variation of the 
(semi-) periodic solution for A = An is not even bounded for h = A, . 
Therefore, the condition for the existence of two linearly independent 
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solutions of (I) with n zeros in [0, w and which are either periodic (/l ~~ 2k) ] 
or semi-periodic (n 2k -~ I) of period W, is 

4, A,,’ (2) 

In the theory of stability, the expression 

f(X) ~~ hw J“” p(t) dt 
. 0 

plays an important role. Following Liapounoff, &kovskii [#] proved that 
X E [An , A,] implies 

Z(h) > 4n”. (3) 

The inequality is best possible; the limit is attained for p, a distribution 
corresponding to equally spaced identical point masses on a vibrating string. 
Under special assumptions, a great number of sharper inequalities have 
been derived; see [2], Section 4.3, and [3]. In this note, we prove that (2) 
implies 

&I,) ,- 4(n + I)’ cos2 +,7 

where again equality is obtained for a certain distribution of point masses. 
The proof uses unimodular centro-affine differential geometry ([5], [6], [7]). 

In fact, we reduce the problem of estimating I(&) to a minimal problem 
concerning locally convex curves which is of considerable independent 
interest. This problem is formulated in Section 4 and solved in Sections 5 to 7. 

The author wants to thank Professor Harry Hochstadt who suggested that 
Liapounoff’s theory might be the right setting for the author’s previous 
result onI and properties of the solutions of (1) for A, = A, ([7], Section 17, 
[8], Section 4). He also was informed by Professor 0. Boruvka that centro- 
affine differential geometry is a major tool in a forthcoming book on the 
Hill equation by the latter. 

2. From now on we suppose that (2) holds and denote by xl(t), x2(t) 
a pair of linearly independent solutions of unit Wronskian of (1) for X = A,, . 
For each value t, we obtain a point x = (xl(t), x2(t)) in an (x1 , x,)-plane. 
Since A, p(t) 3 0, the curve obtained in this way is non-convex towards the 
origin at all points. For n even, we obtain a closed curve as image of 0 < t < w. 
This curve winds n times about the origin and the radius vector Y is a univalent 
function of the polar angle 9, 0 < IJJ < 27~2. The polar angle itself is a 
monotone function 9) = p)(t) == arctan xs(t)/xl(t) of the parameter t. For n 
odd, the curve ?c(t), 0 :,< t .L’ 2~0, is symmetric with respect to the origin, 
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x(t + W) = -x(t). Here again the polar angle is a monotone function of t 
and the curve is non-convex towards the origin. The rotation number of 
the origin is n. 

3. In a twodimensional real vectorspace we consider a curve y = y(u), 
ug < u < u1 . We assume that y is twice continuously differentiable and 
that y and dy/du are linearly independent for all u (in particular, this implies 
y + 0 and the absence of inflection points on the curve). We are interested 
in the properties of the curve invariant under area preserving linear trans- 
formations, i.e., under the action of the matrix group SL(2, R) on the space. 
According to E. Cartan’s method of moving frames [9] we have to find an 
invariant parameter. An obvious choice is the area spanned by vector and 
tangent to the curve. The determinant of two vectors a, b will be denoted 
by [a, 61. We define the unimodular parameter t of y by the condition 

dr i 1 Yc& =I (5) 

or 

t = to + j-1, [y, 21 du. 

Differentiation with respect to t will be denoted by a prime. By hypothesis, 
the two vectors r(t) and y’(t) form a basis for every t, t, < t < t, ; hence, 
they form an invariant moving frame. The Lie algebra of a unimodular 
group is formed by matrices of trace zero. Therefore, we have the Frenet 
equation 

and two curves are images of one another in a unimodular transformation of 
the vector space if and only if they define the same curvature p = p(t) 
referred to the same interval t, < t < t, . We see also that every C2 arc 
without inflection points and not passing through the origin is the solution 
of an equation 

Y ” $ p(t)y = 0. 

It is easy to find the geometric meaning ofp and t. By (5), t, - t, is twice 
the area covered by the radius vectory for values c[t,, , tJ. In particular, 
ify(t) describes a closed curve for t, < t < t, + i3, then G is twice the area S 
covered by the radius vector describing the curve. 

For the moment we introduce a Cartesian system of coordinates based on 
two orthonormal vectors (e r , e,) relative to some positive definite quadratic 
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form. The angle of the +x1 axis and the oriented tanget to the curve at y(t) 
is denoted by 0. The distance from the origin of this tangent (measured on 
the negative euclidean normal) is the support distance h. The euclidean 
arclength is s and the radius of curvature is p = ds/&. From (5) it follows 
that 

dt = h ds = hp d0. (7) 

We denote by (t, n) the euclidean tangent and normal to the curve at y(t). 
Then ([9], p. 55) 

y(t) = -h(t)ii(t) + $ t(t). 

From (7) it follows, with t = dy/ds, that 

d2y 1 -=-- 
dt2 ph3 

(-h(t)ii + $ i) . 

Hence 

P(t) = $ 
and 

j;)(t) dt = j;;;. 

The curve whose polar equation is 

(8) 

is the polar reciprocal in the euclidean unit circle of the given curve. The 
integral (9), therefore, is twice the area covered by the radius vector of the 
reciprocal. The reciprocal of a locally convex curve that winds n times 
around the origin is a curve of the same type. If y(t) describes a closed curve 
for t, < t < t, + G, then Jfp dt is twice the area S* covered by the radius 
vector of the polar reciprocal curve. 

4. A comparison with the developments of Sections 1 and 3 shows that 

4ss* n even 
Vn) = 

SP n odd 

for the curve x(t) given by the periodic solutions of (1). The inequality (4) 
will be proved if we show that 

ss* >, (2k + 1)s cos2 2(2k; 1) (104 
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for any locally convex, closed curve for which the polar angle is a monotone 
function of the arclength and the rotation number (Kronecker index) of the 
origin is k, and 

ss* > 4(n + 1)2 cos2 ,+“- 1) (lob) 

for the special case of a centrally symmetric curve of rotation number n. 

The cases 71 = 1 of (lob) and k = 1 of (lOa) are due to K. Mahler [IO]. 
The case n = 1 of (4) is essentially contained in a result ofPetty and Barry [IZ]. 
The invariant SS* for convex curves was studied by Santalo [12], see also [7], 
Section 10. By our own construction, SS* is invariant for the action of 
unimodular central affinities. But it is also easily seen to be invariant for 
homotheties of center 0. Hence, SS* is invariant for all affine transformations 
for which the origin 0 is a fixed point. Santa16 proves that every oval contains 
a unique point for which S* is minimal. His proof carries over to our case of 
non-convex, locally convex curves. However, we shall not need this fact. 

5. We shall consider the inequalities (lOa) and (lob) for closed polygonal 
arcs. If a locally convex curve is bounded away from the origin, then for 
sufficiently close locally convex polygonal approximation the reciprocal 
polygon will be an approximation of the reciprocal curve. Therefore, the 
proof of the inequality for polygons will imply the validity of the same 
inequality for curves. In fact, we shall see that the case of equality can 
happen only for polygons and, therefore, equality in (4) can hold only if p 
is a distribution but not a function. At this occasion we note that the Blaschke 
selection theorem ([I.?], p. 34) implies that the support functions of ZocaZly 
convex, closed curves of rotation number k form a locally compact set in the 
space of continuous functions defined on [0, 2kn] and provided with the topology 
of uniform convergence. In fact, for k = 1 this is the Blaschke theorem since 
nlinkowski addition then is equivalent to addition of support functions and 
the Blaschke metric becomes the metric max,+, j hi(v) - he(v)]. For k > 1 
we consider the convex sets Si(i = l,..., 2k) defined as the convex hull of 
the arc of support function k(q), (i - 1) QT <y < ir. A Cauchy sequence 
of support functions htS)(p) in the metric d(h(“‘, htt)) = max j hcs)(cp) - hct)(F)l, 
0 < cp << 2kn, induces a set of convex sets Si”. By a diagonal process based 
on the Blaschke theorem we may find a sequence (s’) such that all lim Sl”) 
and lim S!“” n S:s;’ exist. But this means that lim hcS’) exists and is the 
support finction of a locally convex curve of rotation number k. This 
implies also the existence of a minimum for our functional since it is constant 
on sets of similar figures and, hence, is continuous on a compact space. 

6. Next, we consider a polygon P of vertices Xi(i = l,..., N) numbered 
in cyclic order. We assume that the polygon is locally convex, closed, and 
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such that the radius vector from the origin 0 is a univalent function of the 
polar angle. In addition, we assume that 0 is not an interior point of any 
triangle formed by three consecutive vertices. (Hence, A’ ’ 4). We denote 
by gi the segment SiX-i, r and indicate the polar reciprocal of any datum by 
an asterisc. First, we study the minimum of S* : S(P*) if all vertices of P 
are fixed except -Xi and -Y, is varied in such a way that S .: S(P) is constant. 
This means that X, may vary on a segment g parallel Xj..rX~+l and contained 
in the interior of the angle formed by the lines which carry gCP1 and g,_i 
In the reciprocal figure, the lines X:-i and X;, pass through the points 
s,*-~ andg,*,, , respectively. Our problem is to find the line X,+ through the 
point g* in the interior of the triangle formed by dYEI and ST+, over the 
base b 7: g,Fpzg,*,, such that the area of the convex figure bounded by 

g,*-2 , X-E, I q+ , Xf. 1 , ,&$+I be minimal. Let G be a line through g* and 
let us assume for definiteness that the segment of / between g* and 
Xz”,i be not less than the segment intercepted by g* and X:-i Also, let 
k be the line g*gi*,, A reflection in g* shows that the area of the triangle 
of edges b, k, Xz-, is smaller than the area of the quadrilateral bounded by 

b, Xi!+1 > C, XE, . Hence, the minimum of S* is obtained if either X-7 k 
or X: =L g&ag*, i.e., either .Y, == R n g,,, or .Y, .r n g,+, and the 
N-gon is a (N - 1)gon. 

We assume first that P is a convex polygon. Then the preceding construc- 
tion shows that we can find a triangle A such that 

S(P) s(P*) ‘3 S(A) S(/J “). 

Since all triangles are affine to one another, the minimum of S’S* can be 
computed, e.g., on the right isosceles triangle. On finds easily that other 
minimum is obtained for 0 the centroid and 

min S( a)S( a)* = ‘+ = 32 co9 i. 

Similarly, for a convex symmetric polygon P of 2N-vertices we obtain by 
symmetric variation of X, and T i ‘N+i an (N - 2)gon of smaller area S(P*). 
The process ends with the symmetric 4-gon, the parallelogram, for which 

S(P,)S(P,*) = 8 = 4 . 2” . co2 & . 

7. 111 the general case of a polygon of rotation number k > 1 we see that 
for a given P we can find a P’, homotopic to P in the pointed plane, such 
that 0 is in the interior of every triangle formed by three consecutive vertices 
and S(P)S(P*) > S(P’)S(P’*). We change the name P’ into P and again 
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consider three consecutive vertices X,-, , Xi , X,+, . This time we var! 
Xi so as to preserve the local convexity, the condition OE interior x’i-,XiXi+l, 
and the sum of the areas of the triangles X-,OXi and X,0X,,., . This again 
means that the locus of Xi is a segment g 11 Xi-lXi+, and bounded by the 
lines Xi-,0 and X:+,0. In the dual configuration, we are looking for a line 
X: through a fixed point g* such that the points of intersection 
A == Xf n X,*_, and B = X: n X2, define a triangle ABO of minimum 
area. By a very elementary reflection argument ([14], p. I 15, I:151 problem 
5-1, Ko. 12) one sees that the minimal area is obtained for the li.ne for which 
the two segments defined by g* are equal: Ag* := g”B. 

Now we use the fact that SS”k is invariant under centro-.affine trans- 
formations. This means that we may assume that we are dea.ling with an 
affine image of P for which X,-l , X,,.1 and g* are on the unit 
circle of center 0. Then X,? is the tangent to that circle at g* and 
S(X,_lOX,) s n(X,OX,,,). By a repetition of this argurnent we see 
that to P we can construct P’ such that 

S(P) s(P*) 3 S(F) s(P’*) 

and any two adjacent triangles of P’ are affine images of a pair of isosceles 
triangles symmetric with respect to their common edge, i.e., P’ is affine to 
a regular starpolygon. By the argument of Section 6, P’ will be minimal if 
the number of its vertices is minimal. The right hand sides of the inequalities 
(lOa) and (lob) simply express SS* for these starpolygons. 
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