INFORMATION AND COMPUTATION 114, 315-328 (1994)

Combinatorial Properties of Dependence Graphs
A. EHRENFEUCHT

Department of Computer Science, University of Colorado at Boulder,
Boulder, Colorado 80309

H. J. HooGEBOOM

Depariment of Computer Science, Leiden University,
P.O. Box 9512, 2300 RA Leiden, the Netherlands

AND
G. ROZENBERG

Department of Computer Science, University of Colarado at Boulder,
Boulder, Colorado 80309; and
Department of Computer Science, Leiden University,
P.O. Box 9512, 2300 RA Leiden, the Netherlands

Combinatorial properties of dependence graphs are considered. In particuiar, a
characterization is given of sets of unlabelled transitive graphs that can be labelled
according to a dependence alphabet. © 1994 Academic Press, Inc.

INTRODUCTION

The theory of traces (introduced in [Maz77]; see also [AalRoz88,
Die90]) is a successful mathematical framework for modelling and
studying concurrent systems. Within this theory the notion of a dependence
graph formalizes the notion of a process in a concurrent system. For this
reason the investigation of dependence graphs constitutes an important
research line in the theory of traces (see [EhrRoz87, AalRoz88,
EhrHooRo0z90]).

In trace theory the description of a concurrent system is given by a trace
system, which consists of a finite alphabet X (giving the atomic events of
the system), a binary relation D over X (representing the dependence
between events), and a language K over X (consisting of the sequential
observations of the behavior of the system); the pair (X, D) is usually
called the dependence alphabet of the system. A pair of events (i.e., letters

315

0890-5401/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

316 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

from X) is called dependent if it is an element of D, and independent
otherwise (D is assumed to be a symmetric relation). Two sequential obser-
vations in K are equivalent, i.e., considered to be observations of the same
“concurrent run” of the system, if one of them can be obtained from the
other by (repeatedly) interchanging two adjacent letters that are independ-
ent. This leads to the notion of a trace, a set of equivalent strings over 2.
The dependence of events within such a trace can be more adequately
represented by a graph, the dependence graph of the trace. It is a directed
acyclic graph in which the nodes are labelled by the events and the edges
represent the ordering between dependent events. Consequently, the
concurrent behaviour of a trace system is more adequately represented by
the set of dependence graphs, corresponding to sequential observations
from the language K.

In other words, given a trace system M, its set of dependence graphs
%(M) consists of the set of graphs resulting from the set of sequential
observations of M by breaking it down through the dependence relation of
M. A way to understand the structure of 2(M) is to investigate the proper-
ties of the set of unlabelled graphs obtained from 2(M) by erasing the
labels of its nodes. A natural question here is: Is a given set ¢ of unlabelled
(acyclic directed) graphs “dependence graph consistent”? That is, does
there exist a dependence alphabet /” which can be used to label ¥ so that
the resulting set of labelled graphs is a set of dependence graphs? (Note
that in general 4 may be an infinite set, whereas I has to be finite.) If the
answer to this question is positive, then the set 4 is indeed cousistent in the
sense that if from one graph in % one deduces that the pair of labels (a, b)
should be dependent in a dependence alphabet /" labelling 4, then one will
not deduce from another graph in % that (a, b) should not be dependent
in I

In this paper we demonstrate that one can obtain a combinatorial
answer to the above question: one can obtain a necessary and sufficient
condition ¥ which is of a combinatorial nature. In proving this result we
introduce the notion of a spine graph for a given graph, capturing the
essential information based on which nodes of the graph can be given the
same label; we think this notion is of independent combinatorial interest.

1. PRELIMINARIES

We assume the reader to be familiar with basic notions of graph
theory—the aim of this section is to settle the specific notation and
terminology concerning graphs that we will use in this paper.

Graphs. This paper will be concerned with (finite nonempty) directed
acyclic graphs only; hence a directed acyclic graph is referred to simply as

COMBINATORICS OF DEPENDENCE GRAPHS 317

a graph. A graph g is specified in the form (V, E), where V is the set of
nodes of g and E is the set of (directed) edges of g; for a given graph g we
will sometimes use V, to denote V and E, to denote £,

Let g=(V, E) be a graph. The Hasse graph of g, denoted hasse(g), is the
graph (V, Ey..), where (x, y)e E,, . if and only if (x, y)e E and there
exist no path in g from x to y containing more than one edge. The trans-
itive closure of g, denoted tr(g), equals (V, E,.), where (x, y)e E,, if and
only if there exists a path in g from x to y.

It is weill known that the hasse graph and the transitive closure
of a (directed acyclic) graph contain the same amount of information
concerning the partial order defined by the graph; i.e., for graphs g, and
g, hasse(g,)=hasse(g,) if and only if tr(g,)=tr(g,). Since these notions
are defined in terms of edges in a graph, and do not change the nodes of
a graph, they carry over to node-labelled acyclic graphs through their
underlying graphs.

A topological ordering of a graph g is a linear ordering x,, .., x,, of the
nodes of g which satisfies the partial ordering defined by g; i€, (x;, x,)€ E,
implies { < j.

Let g,=(V,, E,), g,=(V,, E,) be graphs. A function y: ¥V, ~V, is a
homomorphism of g, into g, if, for all u,veV,, (4,v)e E, if and only if
(Y (u), Y (v)) e E,; y is an isomorphism if Y is also bijective. If g, and g, are
isomorphic, then we write g, =;; g,.

A graph language is a set of graphs.

A (node-) labelling of a graph g is a (total) function on V,. A (node-)
labelled graph is a triple (V, E, @) where (¥, £) is a graph and ¢ is a label-
ling of (V, E). For a node-labelled graph h=(V, E, ¢) we use V,, E,, and
¢, to denote V, E, and ¢ respectively. The graph (V, E), called the
underlying graph of h, is denoted by und(h).

A (node-) labelled graph language is a set of node-labelled graphs. For a
node-labelled graph language K, und(K)= {und(h): he K }.

Traces and Dependence Graphs. Given an alphabet X, I'=(ZX, D) is
called a dependence alphabet (over X) if D is a symmetric and reflexive rela-
tion over X'; D is called the dependence relation of I'. If (a, b)e D, then a
and b are called dependent. Let =, be the least congruence over X'* that
satisfies ab = ba for a, be 2 and (a, b)¢ D, i.e., two words in L'* are equal
modulo =, if one can be obtained from the other by interchanging
repeatedly a pair of adjacent non-dependent letters. Elements of the
quotient monoid X*/ =, are called traces.

For a word w=a,---a, over X, with n21 and a,e2 for ie {1, .., n},
the canonical I'-dependence graph of w, denoted {w), is the node-labelled
graph g = (V, E, ¢) with V= {1, .., n}, such that ¢(i)=a, for all ie V, and
foralli, je V, (i, j)e Eif and only if i< j and (a;,a;)e D. For we 2", any

318 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

FiGURE 1

node-labelled graph isomorphic with {w), is called a I'-dependence graph
(of w).

It is well known (see, e.g., [AalRoz88]) that dependence graphs faith-
fully represent traces in the sense that two words are equal modulo =, if
and only if their I-dependence graphs are isomorphic.

A node-labelled graph is a dependence graph if it is a I'-dependence graph
for some dependence alphabet I. A naked dependence graph is an
unlabelled graph g such that g =und(4) for a dependence graph 4.

1.1. ExampLE. Let I'=(2, D) be the dependence alphabet where
X =1{a,b,c d}, and where D contains the pairs (a,), (a, d) and (b, ¢) (as
well as the obvious pairs needed to make D a symmetric and reflexive
relation).

The I'-dependence graph {w) , of the word w = achdab is given in Fig. 1.

2. [-LABELLINGS AND SPINES

Assume we are given a dependence alphabet I, a transitive graph g, and
a labelling of g. If we want to check whether the labelling makes g the
transitive closure of a /-dependence graph, we have to verify at least the
following two properties. First, every pair of nodes with dependent labels
should be connected by an edge. Second, if two nodes are connected
by an edge in hasse(g), ie., this edge is not the shortcut of some path
in g, then this edge should connect two nodes labelled by dependent
letters.

This leads to the following notion.

2.1. DeriNvITION. Let g=(V, E) be a transitive graph, and let
I'=(Z, D) be a dependence alphabet. A mapping ¢: V— 2 is called a
I-labelling of g, if

COMBINATORICS OF DEPENDENCE GRAPHS 319

i. (@(x), o(y))e D, x # y, implies that either (x, y)e E or (y, x)e E,
and

il. (X, ¥) € Epagee(q) implies that (¢(x), o(y)) e D.

It is clear that labelling functions of the transitive closures of
I'-dependence graphs are examples of [-labellings. In fact, the two
requirements in the definition above turn out to be sufficient to charac-
terize transitive closures of dependence graphs in terms of their labellings.
This is shown in the next result.

22. LemMA. Let g=(V, E) be a transitive graph, and let I'= (X, D) be
a dependence alphabet. The mapping @ is a I'-labelling of g if and only if
(V, E, @) is the transitive closure of a I'-dependence graph.

Proof. (1) Let h=(V, E, @) be the transitive closure of a dependence
graph. We verify the two requirements from the definition of a /™-labelling.

i. If the labels of two nodes are dependent, then according to the
definition of dependence graphs, there should be an edge between these
nodes (in one direction or the other). Obviously this edge remains present
in the transitive closure of the graph.

ii. Edges present in h where either present in the original
dependence graph or added when taking the transitive closure. The edges
present in hasse(k) cannot have been added and are contained in the
dependence graph. Hence they connect nodes with dependent labels.

(2) Let @ be a I-labelling of the transitive graph g, and consider a
topological ordering x,, ..., x, of the nodes of g. We show that k= (V, E, ¢)
is the transitive closure of the dependence graph é=(V, E;, ¢) of
w=p(x;) -@(x,) -+ -¢{x,); ie., we show that h =tr(d). Of course é can
be seen to be isomorphic to the canonical dependence graph (w), using
the isomorphism which maps node i of {w) into node x; of 4. It suffices
to demonstrate that E=E, .

i. Due to the given isomorphism between 6 and (w),
(x;,, x;)e E; implies that (¢(x;), ¢(x;)})eD and i<, Hence either
(x;, x;)€ E or (x;, x;} € E; the latter edge, however, is not present, because
we have assumed that the sequence x,, .., x,, forms a topological ordering
of the nodes of g. This of course shows E;< E, which implies that
E.s < E

ii. It remains to be demonstrated that E< E, ;. Clearly, since
both A and tr(6) are transitive, we may as well show that the hasse graph
of 4 is included in J. By definition, (x;, X;) € Eyageen) = Enasseq) implies that
(p(x,), o(x;))e D (and i<j), and consequently (x,, x;)e E;. Hence
Ehassc(h] & Eé . l

320 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

Now assume that we are given an unlabelled transitive graph g, and ask
ourselves the question whether two specific nodes of g can be labelled with
the same letter by some [-labelling of g, where I’ is an unspecified
dependence alphabet. First, of course, the two nodes—having dependent
labels—should be connected by an edge. Second, any node which is
connected to one of the nodes by an edge in hasse(g) must have a label
that is dependent on the common label of the two nodes. Consequently, it
should also be connected to the other node (not necessarily in hasse(g)).

We formalize these two observations in the notion of the spine of a
graph.

2.3. DerFINITION. Let g=(V, E) be a transitive graph. The spine of g,
denoted by sp(g), is the graph (V, E,;), where (x, y)€ E,, if and only if

a. (x, y)ek
b. For each ze V, (x, z) € E\ (g implies z=y or (z, y)e E, and
c. Foreach zeV, (z, y) € Ep e,y implies x =z or (x, z)e E.

As for previous notions, this notion carries over to node-labelled trans-
itive graphs through their underlying unlabelled graphs.

24. ExaMPLE. Let g be the graph from Fig. 2.1, which is the transitive
closure of the dependence graph from Fig. 1, Example 1.1. The hasse graph
and the spine of g are given in Fig. 2.2 and Fig. 2.3, respectively.

As an illustration of the construction of sp(g), note that (2, 5) is not an
edge in sp(g) because (4,5) is an edge in hasse(g), while (2,4) is not
present in g (cf. ¢ from the above definition). §

Note that in b and c of the definition of the spine of a graph only nodes
z are considered that are either direct successors of x, or direct predecessors
of y. It is not necessary to consider the direct predecessors of x or the direct
successors of y, since—by transitivity—these nodes are also connected to y
and x, respectively.

The spine of a transitive graph is again transitive. This will simplify both
the construction and the representation of spines, since we can represent a
spine by its hasse diagram.

25. LeMMa. Let g=(V,E) be a transitive graph. Then sp(g) is
transitive.
Proof. Elementary, using the transitivity of g. |}

As the following result shows, the spine at least partially fulfills its
purpose: whenever two nodes of a transitive graph can be given the same

COMBINATORICS OF DEPENDENCE GRAPHS 321

FIGURE 2.1

FIGURE 2.2

®

FIGURE 2.3

322 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

label by some [/™-labelling, then they are connected in the spine of the
graph. This property of course motivated the introduction of the notion of
a spine.

2.6. LEMMA. Let g=(V, E) be a transitive graph, let I" be a dependence
alphabet, and let @ be a I'-labelling of g. If ¢(x)=@(y) and x +# y, then x
and y are connected by an edge in sp(g).

Proof. We check the requirements from the definition of the spine of a
graph.

a. By the definition of I'-labelling, nodes that get the same label are
connected by an edge in g. Assume that (x, y)e E (the case that (y, x)e E
is treated analogously).

b. Choose ze V such that (x, z)€ Ep,ge,)- By the definition of a
I-labelling this implies that (@(x), ¢(z))e D. Consequently, we conclude
that (¢(y), ¢(z)) e D, which implies that either (y, z)e E or (z, y)e E. The
first of these alternatives is impossible because we have assumed that
(x, y)EE; (p, z) € E would contradict (x, z) € Eyase(g)-

c. Symmetric to b above. |}

Alternatively, this result shows that if two nodes are unconnected in the
spine of a graph, then these nodes should get different labels if we want to
construct a [-labelling of the graph, making it the transitive closure of a
I'-dependence graph. Hence the maximal number of nodes in a completely
unordered (unconnected) subgraph of the spine gives a lower bound on the
size of the dependence alphabet I. We use the following terminology
related to this number.

2.7. DEFINITION. Let g=(V, E) be a transitive graph.

(1) maxco(g)=max{#U|UcVand UxUNE=¢}.

(2) g s called a fline graph f E can be written as
{(x;, x;)I1 <i<j<n} for some ordering x,, .., x, of V.

Obviously, a line graph corresponds to a totally ordered subset of the
nodes of g. The value maxco(g)} on the other hand equals the maximal
number of nodes of g in a totally unordered subset. It is well known that
maxco{g) <n» if and only if the (nodes of the) graph g can be covered by
(the nodes of) n (not necessarily disjoint) line graphs (see, e.g., [Bog70]).
Note that such a covering contains no edges other than those in g, but may
very well leave some of the edges of g uncovered.

As discussed above, the information present in the spine of a graph will
help in constructing a dependence alphabet I” and a [-labelling of a given
graph. We will show that this construction can be done in a uniform way

COMBINATORICS OF DEPENDENCE GRAPHS 323

for any set of graphs for which the maxco-values of the spines can be
bounded by some constant.

2.8. THEOREM. Let n>=1. There exists a dependence alphabet I' such
that, for each transitive graph g with maxco(sp(g)) <n, there is a I'-labelling

of g.

Proof. Fix an arbitrary alphabet £ with cardinality », and let 2, be the
alphabet {(a, A)e £x2*|ae A}. Consider the dependence alphabet
I'=(%,, D), where (a, A) and (b, B) in X, are dependent (with respect to
I')if and only if ae B or be A.

Let g=(V, E) be a transitive graph with maxco(sp(g)) < n. Because of
the bound on maxco, the nodes of sp(g) can be covered by n (not
necessarily disjoint) line graphs. Using such a covering, the nodes of sp(g)
can be partitioned into »n (disjoint) sets, such that the nodes in each set
induce a line graph as subgraph of g. From this partition we construct a
labelling y: ¥ — 2 such that each pair of nodes with the same label is
connected by an edge in sp(g).

For each node x we add to the label ¥(x) the labels of the immediate
neighbours of x in hasse(g):

(p(x) = (‘IJ(XL {‘l’(x)} o {l//(y)‘ (y’ X)e Ehasselg)
or (x’ y)EEhasse(g)})EZl'

We verify that ¢ is a /~labelling of g.

i. First, we prove that every pair of dependent nodes is conected by
an edge. Let x and y be nodes of g, and let ¢(x)=(q, 4) and ¢(y)= (b, B)
such that ((a, 4), (b, B))e D. Without loss of generality we may assume
that ae B. Then, by construction of ¢, there exists a node z with label
(a, A,) such that y and z are connected by an edge in hasse(g). The nodes
x and z are connected by an edge in sp(g), since y labels both these nodes
with the same label. If z = x, then it is clear that x and y are connected by
an edge in g: the edges of hasse(g) form a subset of those of g. Otherwise,
one considers the different possibilities for the directions of the edge
between x and z, and the edge between y and z. In all four cases it is easily
verified that x and z are connected by an edge in g. This follows either by
transitivity or by the definition of the spine.

ii. Second, if two nodes are connected by an edge in hasse(g), then
their labels are dependent. This is an immediate consequence of the
construction of the labelling ¢. |

We give an example to illustrate the construction used in the proof.

324 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

29. ExaMPLE. Let g be the transitive closure of the naked version of
the dependence graph from Example 1.1, as represented in Fig. 1, and con-
sider its spine, given in Fig. 2.3, Example 2.4. Clearly maxco(sp(g)) =4, so
a dependence alphabet I” which can be used to find a I™labelling for g can
be based on an alphabet with four letters, say 2= {a, b, ¢, d}.

(1) sp(g) can be covered by the “lines” {1, 5,6}, {3}, {2}, and {4},
inducing the labelling ¢(1)=y¢(5)=y(6)=a, Y(3)=b, Y(2)=c, and
Y(4)=d. Adding context information, we get the labels ¢(1)=
(a,{a,b,d}), @(5)=(a,{a, b d}), @6)=(a {a}), @(3)=(b,{a b, c}),
@(2)=(c, {b,c}), and ¢(4)=(d, {a, d}). In this way we find a dependence
alphabet with five distinct symbols.

(2) As an alternative, consider the covering by {1, 5}, {3}, {2}, and
{4, 6}. After naming these lines by a, b, ¢, and d, respectively, we get the
labels o(1)=(5)=(a, {a, b, d}), ¢(3)=(b, {ab,c}) @(2)=(c {bc}),
and ¢(4)=¢(6)=(d, {a,d}). Note that this reduces to the labelling
ei(D=9,(5)=a, ¢,3)=b, ¢,(2)=c, and ¢,(4)=¢,(6)=d over the
dependence alphabet I'=({a, b, ¢, d}, D), where D is the symmetric and
reflexive relation containing the pairs (g, b), (a, d) and (b, ¢). Although this
is the relation we started with in Example 1.1, the labelling we have
obtained differs from the original labelling. |

Combining Lemma 2.6 and Theorem 2.8 yields the following result.

2.10. COROLLARY. Let K be a graph language consisting of unlabelled
transitive graphs. The following conditions are equivalent.

(1) There exists a dependence alphabet I’ such that for each ge K
there exists a I'-labelling of g.

(2) There exists a constant ¢ such that, for each geKk,
maxco(sp(g))<ec. |

3. SPINES AND SQUARES

The last result in the previous section states that if the maxco-values of
the set of spines of a transitive uniabelled graph language can be bounded
by some constant, then one can find a dependence alphabet I such that
all graphs in the language can be labelled to become transitive closures
of I'-dependence graphs. This is a characterization in terms of a graph-
theoretical property of the spines of the graphs involved. In this section we
establish a more direct characterization in terms of the graphs themselves.

We need the following notions.

COMBINATORICS OF DEPENDENCE GRAPHS 325

3.1. DeErINITION. Let g=(V, E) be a transitive graph.

(1) The nodes x,, .., x,, Vi,.., ¥, of V induce a square graph (of
size n) if

— (xn,x,)eEfor 1<i<j<n,
— (Yo y;JeEfor I<i<j<n,
- (xh yi)eEhasse(g) for ISISn, and
— (Yo x;)¢ Efor 1<, j<n.

(2) maxsq(g)=max{n|g contains an induced square of size n}.

Hence, when nodes x,, .., X,,, ¥, -, ¥, induce a square graph, then we
get a situation as in Fig. 3.1, where edges required to be in the hasse graph
are given as solid arcs, other edges as dashed ones. Note that we have
omitted arcs that would follow by transitivity.

32. Remark. Let g(V, E), with V'={x,,..,x,, ¥{, . ¥,} be a square
graph; i.e., the nodes x, .., X,,, ¥y, ..., ', satisfy the conditions of the above
definition. Then the nodes x, .., x, form a totally unordered set in the
spine of g. The edge (x;, x;), i</, is not present in sp(g) because
(xi’)’1)‘5 Ehassc(g)’ whereas (yi’ xj)¢E-

From this it is clear that maxco(sp(g)) = n, while maxco(g)= 2.

This gives an example of a class of graphs for which the maxco-values
are bounded, while these values are not bounded for the corresponding
spines. |}

It is easily seen that the maxco-value and the maxsg-value of a given
graph are bounded by the maxco-value of the spine of the graph.

3.3. LemMa. For each transitive graph g, maxco(g) < maxco(sp(g)), and
maxsq(g) < maxco(sp(g)).

Proof. The inequality maxco(g)< maxco(sp(g)) is clear since nodes
that are unconnected in g remain unconnected in sp{g).

The inequality maxsq(g) < maxco(sp(g)) follows from the above remark.
If the graph g contains an induced square of size n, then one can find at
least n unconnected nodes in sp(g). [

Xl =Y x2 ey xn
I !
_yl RN yz s ‘Yn

Fic. 3.1. Diagram of a square graph.

326 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG

X > X, > X X X1 Xy 1 Ir
Y] Y2 Yr Yo 7Y SRS R
Upper-side Lower-side
FIGURE 3.2

We will need the following notions of sequences that form “half of a
square graph.”

34. DeFINITION. Let g=(V, E) be a transitive graph. A sequence
Xy s X,» X, .y Of Dodes 1s an upper-side of length r, if

i (x,x)eEforal 1<i<j<r+1, and

ii. there exist nodes y;, y,, .., y, such that (x,, ¥,) € Ej ., for each
I<igrand (y,x)¢Eforall I<i<j<r+1

A sequence v, V, -, X,, of nodes is a lower-side of length r, if

i (y,y)eEforall 0<i<j<r, and
ii. there exist nodes x,, x,, .., x, such that (x,, y,) € E} (s for each
1<i<rand (y,x)¢Eforall 0<i<j<r |

Hence, an upper-side and a lower-side correspond to situations as
depicted in Fig. 3.2.

If we want to find lower-sides or upper sides in a given graph, then we
have to look for lines in the graph that are completely unconnected in the
spine of the graph.

35. LeMMA. Let g=(V, E) be a transitive graph and let r,seN,
r+sz1. Let p=2z,,z,,..,2,, where n=r+s, be a sequence of nodes such
that, for 1 <i<j<n, (z;,z,)€E and (z;,2) ¢ E)

Then either there is a subsequence x,,..,X,, X, of p that forms an
upper-side (of length r), or there is a subsequence yo, vi, .., ¥, of p that
forms a lower-side {of length s).

Proof. By induction on r+ 5. When either r =0 or s =0 then the result
is obvious: any single node forms an upper-side and a lower-side.

We proceed with the induction step. The proof will recursively yield a
structure of the form in Fig. 3.3, where in each step either r or s is increased
by 1.

According to the assumption of the lemma, (z,,z,)¢ E,,), Whereas
(21, z,) € E. This implies there is a node z such that either (z,, z) € Epyge(q)
and (z,z,)¢ E, or (z,2,) € Eypge(p) and (z,, 2) ¢ E.

COMBINATORICS OF DEPENDENCE GRAPHS 327

" Ys-1 s
! | !
X 2 X P Xp o XYoo 2 Y 2 Ysi1 > Y
| | !
X] X Xy
FIGURE 3.3

In the former case consider z,, ..., z,. By inductive assumption it contains
either a subsequence of length r—1 that forms an upper-side, or a
subsequence of length s that forms a lower-side. In case of an upper-side,
it can be combined with z, to form an upper-side of length r since, by
transitivity, (z, z,)¢ E implies that (z, z;) ¢ E for 2<j<n. Hence we have
found either an upper-side of length r, or a lower-side of length s.

The latter case is dealt with in an analogous way by considering

-SSR |

We are now able to prove some sort of converse of Lemma 3.3: the
maxco-value of the spine of a graph can be bounded by a polynomial in
the maxco- and maxsq-value of the graph.

3.6. THEOREM. For each transitive graph g, if maxco(g)<c and
maxsq(g) < d, then maxco(sp(g)) <2c*-d.

Proof. We will show that, if maxco(g) < ¢ and maxco(sp(g)) > 2¢? - d,
then maxsq{(g)=>d.

Consider a set CO of 2¢? - d nodes that are not connected by edges in
sp(g). Since maxco(g)<c¢, (the nodes of) g can be covered by at most ¢
line graphs. One of these line graphs should contain at least 2¢d nodes from
CO. In this way we have found a sequence p of at least 2¢d nodes, such
that, if x precedes y in p, then (x, y)e E, whereas (x, y) ¢ E .

According to Lemma 3.5, either p contains a subsequence that forms an
upper-side of length cd, or p contains a subsequence that forms a lower-
side of length c¢d. We will assume here that p contains an upper-side—the
case where p contains a lower-side being analogous.

So, let the sequence x,, ..., X4, X4, be an upper-side of length cd, and
let ¥y, ¥2, .., Yea be nodes such that (x;, y,)€ Epae(q) for each 1<i<ed
and (y,, x;)¢ E for all 1 i< j<cd+ 1. Again each of the nodes y,; is part
of (at least) one of the ¢ line graphs covering g. Hence there is a
subsequence of length & of the y; that is contained in a single line graph.
Clearly these y, form, together with the corresponding x,, a square graph
of size d that is an induced subgraph of g. |}

643/114/2-11

328 EHRENFEUCHT, HOOGEBOOM, AND ROZENBERG
Combining our results, we obtain the main result of this paper.

3,7. THEOREM. Let K be a graph language consisting of unlabelled trans-
itive graphs. The following three conditions are equivalent.

(1) There exists a dependence alphaber I' such that for each ge K
there exists a [-labelling of g.

(2) There exists a constant ¢ such that, for each geKk,
maxco(sp(g)) <ec.

(3) There exist constants ¢ and d such that, for each geKk,
maxco(g) < ¢, and maxsq{g) < d.

Proof. (1) if and only if (2): this is Corollary 2.10.
{2) implies (3): this follows from Lemma 3.3.
(3) implies (2): this follows from Theorem 3.6. |

ACKNOWLEDGMENTS
This paper was written within the working group ASMICS, ESPRIT Basic Research Action
3166. The authors are indebted to V. Diekert and an anonymous referee for detailed

comments on a previous version of this paper.

RECEIVED September 12, 1991; FINAL MANUSCRIPT RECEIVED June 18, 1992

REFERENCES
[AalRoz38] AALBERSBERG, 1J. J. AND ROZENBERG, G. (1988), Theory of traces, Theoret.
Comput. Sci. 60, 1-82.
[Bog70] Bogart, K. P. (1970), Decomposing partial orderings into chains,
J. Combin. Theory 9, 97-99.
[Die90] DiexerT, V. (1990), “Combinatorics on Traces,” Lecture Notes in

Computer Science, Vol. 454, Springer-Verlag, Berlin/New York.

[EhrHooRo0z90] EHRENFEUCHT, A., HooGEpooM, H. J. AND ROZENBERG, G. (1993), On
the structure of recognizable languages of dependence graphs, RA/RO,
Informatique théorique et Applications 27, 7-22.

[EhrRoz87] EHRENFEUCHT, A. AND RozeEnBerG, G. (1987), On the structure of
dependency graphs, in “Concurrency and Nets,” pp. 141-170, Springer-
Verlag, Berlin/New York.

[Maz77] MAZURKIEWICZ, A (1977), “Concurrent Program Schemes and Their Inter-
pretations,” DAIMI Rep. PB-78, Aarhus University, Aarhus.

