
Available online at www.sciencedirect.com

Journal of Approximation Theory 164 (2012) 682–708
www.elsevier.com/locate/jat

Full length article

Universality for ensembles of matrices with potential
theoretic weights on domains with smooth boundary

Christopher D. Sinclair, Maxim L. Yattselev∗

Department of Mathematics, University of Oregon, Eugene, OR, 97403, United States

Received 23 August 2011; received in revised form 12 January 2012; accepted 5 February 2012
Available online 11 February 2012

Communicated by Arno B J Kuijlaars

Abstract

We investigate a two-dimensional statistical model of N charged particles interacting via logarithmic
repulsion in the presence of an oppositely charged compact region K whose charge density is determined
by its equilibrium potential at an inverse temperature corresponding to β = 2. When the charge on the
region, s, is greater than N , the particles accumulate in a neighborhood of the boundary of K , and form
a determinantal point process on the complex plane. We investigate the scaling limit, as N → ∞, of the
associated kernel in the neighborhood of a point on the boundary under the assumption that the boundary
is sufficiently smooth. We find that the limiting kernel depends on the limiting value of N/s, and prove
universality for these kernels. That is, we show that, the scaled kernel in a neighborhood of a point ζ ∈ ∂K
can be succinctly expressed in terms of the scaled kernel for the closed unit disk, and the exterior conformal
map which carries the complement of K to the complement of the closed unit disk. When N/s → 0 we
recover the universal kernel discovered by Lubinsky (2010) in [13].
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Potential theoretic weights

Let K ⊆ C be a compact subset whose boundary T = ∂K is a Jordan curve. We will assume
that T is sufficiently nice in a way that will be made precise in the sequel. For such K , there
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exists a unique measure ωK , the equilibrium measure on K , that minimizes the energy functional
I [σ ] := −


log |z − u|dσ(u)dσ(z) among all positive probability measures σ supported on

K [17]. We define PK : C → (0,∞), by

PK (z) := exp


I [ωK ] +


log |z − u|dωK (u)


. (1)

This function is simply the rescaled exponentiated equilibrium potential of K .
It can be verified that ωK is supported on T, PK is identically one on K and, as z →

∞, PK (z)/|z| → γ−1
K , where γK := exp{−I [ωK ]} is the logarithmic capacity of K .

In this paper we will be interested in random vectors whose joint density is given by

ΩN (λ) :=
1

Z N


N

n=1

w(λn)

 
m<n

|λn − λm |
2
; λ ∈ CN , (2)

where

w(λ) = PK (λ)
−2s, Z N :=


CN


N

n=1

w(λn)

 
m<n

|λn − λm |
2 d AN (λ), (3)

and s > N (that is s is sufficiently large to guarantee that Z N is finite). Here and throughout,
A and AN are Lebesgue measure on C and CN respectively.

We will often refer to the components of such random vectors as eigenvalues, since the joint
density (2) can be thought of as a modification of the joint eigenvalue density of the ensemble
of matrices with i.i.d. complex Gaussian entries. The eigenvalues of this latter matrix ensemble,
originally introduced by Ginibre [10], have joint density given by (2) where w(λ) = e−|λ|2 .

In Section 3 we will give (i) a matrix model whose joint density of eigenvalues is given by
(2) with weight given as in (3) for K equal to the closed unit disk, as well as (ii) models for
more general K where the components of λ represent the positions of electrostatic particles
confined to the plane and in the presence of a field determined by K , and (iii) an ensemble of
random polynomials chosen with respect to a height function determined by K whose roots are
distributed as in (2).

Our primary goal is to demonstrate that, in the double scaling limit as s and N approach
infinity, the local statistics of the eigenvalues near a point on the boundary of K depend only
on the limiting ratio of s and N , but are essentially independent of the specifics of K . This will
follow from the asymptotic behavior of the reproducing kernel of L2(w), which in turn follows
from the asymptotics of the leading coefficient of the related orthonormal polynomials. When
s = ∞, w is simply the characteristic function of K and our results collapse to those given
by Lubinsky [13] for the universality of reproducing kernels formed with respect to Bergman
polynomials for K .

1.2. Eigenvalue statistics

We briefly review some basic concepts for solvable ensembles of random matrices and how
they relate to eigenvalue statistics. In this section we will assume that the joint density of
eigenvalues is given by (2) where, for the purposes of this section, w : C → [0,∞) is any
non-negative function such that 0 < Z N < ∞.

We will suppose that Ξ = {ξ1, ξ2, . . . , ξN } ⊂ C is a random set corresponding to the
eigenvalues of a random matrix from our ensemble. (Or, what amounts to the same thing, Ξ is
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the set corresponding to a random vector sampled from the density ΩN .) Given a set E ⊆ C we
may construct a random variable X given by the cardinality of Ξ ∩ E . Given disjoint subsets
E1, E2, . . . , En we will let X1, X2, . . . , Xn be the corresponding random variables. The n-th
correlation function of our ensemble is defined to be Rn : Cn

→ [0,∞), where

E[X1 X2 · · · Xn] :=


E1


E2

· · ·


En

Rn(λ) d An(λ).

It is straightforward to see that RN = N !ΩN . A less obvious exercise is to show that for
0 ≤ n ≤ N ,

Rn(λ) =
1

(N − n)!


CN−n

RN (λ ∨ x) d AN−n(x), (4)

where λ ∨ x = (λ1, . . . , λn, x1, . . . , xN−n). Many probabilities of interest can be expressed in
terms of correlation functions. One particularly important example is the gap probability that
there are no eigenvalues in E ,

Prob{X = 0} =

N
n=0

(−1)n

n!


En

Rn(λ) d An(λ). (5)

Eqs. (4) and (5) are valid for a wide variety of symmetric measures on CN . However, the presence
of the square of the Vandermonde determinant which appears in (2) leads to additional structure
which may be exploited.

Suppose π0, π1, . . . , πN−1 are the orthonormal polynomials with respect to the weight w.
That is,

C
πn(z)πm(z)w(z) d A = δnm,

where, as usual, δnm is 1 or 0 depending on whether or not n = m. The kernel of the ensemble is
defined by

KN (z, u) :=


w(z)w(u)

N−1
n=0

πn(z)πn(u).

(Following Lubinsky’s notation, we will reserve the symbol KN for the unweighted analog of
this kernel.) In a celebrated result, Mehta and Gaudin [14] were able to express the correlation
functions of ensembles with eigenvalue density (2) in terms of determinants of matrices formed
from this kernel,

Rn(λ) = det
KN (λ j , λk)

n
j,k=1 . (6)

(See also [22] for a more modern derivation.)

1.3. Universality

When N is large we expect that, with high probability, the eigenvalues will accumulate in a
neighborhood of ∂K . Slightly more precisely, if ζ ∈ ∂K , then the number of eigenvalues in a
disk of (small) radius ϵ about ζ is proportional to N ; the constant of proportionality is given by
the integral of the equilibrium measure over the arc of ∂K contained in the disk. The exact details
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of this phenomenon will be explored in a subsequent paper, for now we use this only as intuition
to guess the proper scale on which we expect KN to converge.

From (5) and (6), the probability that there are no eigenvalues in a disk of radius ϵ centered at
ζ is given by

N
n=0

(−1)n

n!


Dn

det

ϵ2KN ,s(ζ + ϵλ j , ζ + ϵλk)

n

j,k=1
d An(λ) (7)

where D is the disk of radius 1 centered at the origin. Here we have made explicit that the kernel
is dependent on s as well as N .

Under the assumption that there are O(N ) eigenvalues in a neighborhood of ζ , then we
should scale ϵ like 1/N in order for (7) to approach a non-trivial limit. That is, the limiting
gap probability of there being no eigenvalues in a shrinking neighborhood with radius ϵ = 1/N
is given by

lim
N→∞

N
n=0

(−1)n

n!


Dn

det


1

N 2
KN ,s


ζ +

λ j

N
, ζ +

λk

N

n

j,k=1

d An(λ). (8)

Since s > N , this limit also depends on how s scales with N and we will assume that N/s
converges to some ℓ ∈ [0, 1].

If it can be shown that there is some limiting kernel Hζ,ℓ so that

1

N 2
KN ,s


ζ +

z

N
, ζ +

u

N


→ Hζ,ℓ(z, u)

uniformly on compact subsets of C × C, then (8) converges to
∞

n=0

(−1)n

n!


Dn

det
 Hζ,ℓ(λ j , λk)

n
j,k=1 d An(λ).

(See for instance [1, Section 3.4].) Our primary result here is that Hζ,ℓ exists, and is dependent on
ζ and K in only the most trivial manner. More specifically, we will express Hζ,ℓ in terms of the
limiting kernel for the ensemble formed from the closed unit disk and the value of a conformal
map from C \ K to C \D evaluated at ζ . This is what is called universality for potential theoretic
ensembles.

We will also demonstrate that Hζ,ℓ is a convex combination of Hζ,0 (Lubinsky’s limiting
kernel) and Hζ,1.

1.4. Potential theoretic orthogonal polynomials

We denote the orthonormal polynomials for the weight P−2s
K , s > 1, by {πn,s}

⌊s−2⌋

n=0 . That is,
these are polynomials with positive leading coefficients that satisfy

C
πn,s(z)πm,s(z)P

−2s
K (z) d A = δnm . (9)

The reproducing kernel for this system of polynomials is given by

KN ,s(z, u) :=

N−1
n=0

πn,s(z)πn,s(u), N ≤ ⌊s − 1⌋, (10)
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Fig. 1. In this figure, K (respectively D) is the region enclosed by the black contour. Here, K has analytic boundary, and
the dashed contour on the left is the inner-most contour outside which we can find a univalent extension of Φ−1. Oρ is
represented by the region outside the contour corresponding to radius ρ. The curves outside T are level lines of PK .

with the weighted kernel given byKN ,s(z, u) := P−s
K (z)P−s

K (u)KN ,s(z, u). (11)

Our derivation of Hζ,ℓ will follow from the asymptotics of KN ,s , which in turn will follow
from the asymptotics of the orthogonal polynomials. These latter asymptotics are of independent
interest, and they provide the other primary results of the paper.

2. Statement of results

In what follows, we assume that T := ∂K is a rectifiable Jordan curve which is either analytic
or of class C p+1,α , where p is a nonnegative integer and α ∈ (0, 1). That is, the arclength
function of T is p times continuously differentiable as a periodic function on the real line and
its p-th derivative is α-Hölder continuous. Denote by Φ the conformal map of O := C \ K
onto O := C \ D such that Φ(∞) = ∞ and Φ′(∞) > 0. In the case where T is an analytic
Jordan curve we denote by ρ(T ) < 1 a number such that Φ−1 has a univalent extension into
|w| > ρ(T ). Moreover, we put Oρ := Φ−1({|w| > ρ}) for each ρ > ρ(T ) (see Fig. 1).

It is known that |Φ| is identically equal to PK on O and therefore Φ′(∞) = γ−1
K . Hence,

orthogonality relations (9) can be rewritten as
D
πn,s(z)πm,s(z)d A +


O
πn,s(z)πm,s(z)|Φ(z)|−2sd A = δnm, (12)

n,m ≤ ⌊s − 2⌋, where D is the interior domain of T . Since |Φ| > 1 in O , we can formally set
πn,∞ to be polynomials satisfying

D
πn,∞(z)πm,∞(z) d A = δnm .

In a sense, potential theoretic polynomials πn,s can be considered as perturbations of πn,∞. The
latter were initially studied by Carleman [2] who derived their exterior asymptotics (asymptotics
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Table 1
The error term Σn depending on the smoothness of T .

T Analytic C p+1,α

ρ(T ) < ρ < 1 p ≥ 2 lim supn,s→∞ n/s < 1 lim supn,s→∞ n/s = 1
p = 1 p = 0 p = 1

Σn ρn log n
n p+α

log n
n1+α n1−2α n−2α

in O) for the case T being an analytic Jordan curve. The results in [2] were subsequently extended
by Suetin [21] to include C p+1,α Jordan curves. Other aspects of the behavior of πn,∞, such as
zero distribution and interior asymptotics, were investigated in [15,6,7]. The following theorem
provides an analog of [21, Theorem 1.2] for potential theoretic polynomials πn,s .

Theorem 1. Let T = ∂K be a Jordan curve of class C p+1,α , p + α > 1/2, and {πn,s}
⌊s−2⌋

n=0 be a
sequence of polynomials satisfying orthogonality relations (9). Then, as n, s → ∞, the leading
coefficient ~n,s of πn,s satisfies

~n,s =
1

γ n+1
K


n + 1
π


1 −

n + 1
s


1 + O


1

n2(p+α)


. (13)

Moreover, if T is an analytic Jordan curve, then the error terms in (13) can be replaced by
O(ρ2n) for any ρ(T ) < ρ < 1. It also holds that

πn,s =


n + 1
π


1 −

n + 1
s


ΦnΦ′


1 + O (Σn)


(14)

uniformly on O as n, s → ∞, where Σn is given by Table 1.

Remark 1.1. When p = 0 and lim supn,s→∞ n/s = 1 the authors were unable to show that
Σn → 0 as n → ∞ (the employed method yields Σn = n2(1−α)), which is the reason this case
is not included in Table 1.

In general, the location of the zeros of πn,s depends on s (as well as, obviously, K and n).
However, as the following proposition shows, this is not the case for a family of ellipses which
interpolate between the unit circle and the interval [−2, 2].

Proposition 2. Let q ∈ [0, 1) and define φ(w) := Φ−1(w) = w +
q
w

so that K is the ellipse
bounded by φ(T). Then, for all n ≤ ⌊s − 2⌋ and all s including s = ∞,

πn,s =


n + 1
π


1 −

n + 1
s


1 − q2n+2 s − n − 1

s + n + 1


ΦnΦ′


1 −

qn+1

Φ2n+2


.

That is, the polynomials πn,s are the renormalized Chebyshëv polynomials of the second kind for
the interval


−2

√
q, 2

√
q

, where ±2

√
q are the foci of T .

Remark 2.1. In the proposition above all the ellipses have unit logarithmic capacity (i.e.,
γK = 1).
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Remark 2.2. If q = 0, then T = T (K = D) and

πn,s(z) =


n + 1
π


1 −

n + 1
s


zn .

Remark 2.3. If q = 1, then T = K = [−2, 2] and

πn,s(z) =


s2 − (n + 1)2

2πs

1
√

z2 − 4

 z +
√

z2 − 4
2

n+1

−


z −

√
z2 − 4
2

n+1
 . (15)

It is easy to see that the asymptotic behavior of the normalizing constant in (15) is different from
the one in (13). However, the case K = [−2, 2] is not covered by Theorem 1.

Theorem 1 is the essential building block in proving results on asymptotic behavior of kernels
KN ,s and KN ,s defined in (10) and (11), respectively.

Proposition 3. Let N ≤ ⌊s − 1⌋. Under the conditions of Theorem 1, it holds that

KN ,s(z, w) =
Φ′(z)Φ′(w)

π

×

1 −
N + 1

s

−(N + 1)


Φ(z)Φ(w)

N

1 − Φ(z)Φ(w)
+

1 −


Φ(z)Φ(w)

N+1


1 − Φ(z)Φ(w)

2



+
1
s

(N + 2)
1 +


Φ(z)Φ(w)

N+1


1 − Φ(z)Φ(w)

2 − 2
1 −


Φ(z)Φ(w)

N+2


1 − Φ(z)Φ(w)

3




+ O


max


1, N 2ΣN


(16)

uniformly for z, w ∈ O, z ≠ w, dist(z, ∂K ) ≤ const./N and dist(w, ∂K ) ≤ const./N.
Moreover, it holds that

KN ,s(z, z) =
|Φ′(z)|2

π


N (N + 1)

2


1 −

N + 1
s


+

N (N + 1)(N + 2)
6s


+ O


max


1, N 2ΣN


(17)

uniformly for z ∈ ∂K .

To continue, denote by A2
D the Hilbert space of holomorphic functions on D whose moduli

are square-integrable with respect to the area measure. We equip A2
D with the norm induced by

the inner product

⟨ f, g⟩ :=


D

f (z)g(z) d A. (18)
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Denote by K D(z, w), z, w ∈ D, the reproducing kernel1 for A2
D . That is,

f (z) =


D

f (w)K D(z, w) d A (19)

for any f ∈ A2
D . It is known [8, Theorem I.5.2] that KN ,∞ is the reproducing kernel for the set

of polynomials of degree at most N − 1 in the sense of (19) and that

|K D(z, w)− KN ,∞(z, w)| → 0 as N → ∞ (20)

locally uniformly for z, w ∈ D.

Theorem 4. Under the conditions of Theorem 1, (20) holds with KN ,∞ replaced by KN ,s as
N , s → ∞, N ≤ ⌊s − 1⌋.

Remark 4.1. The original proof of Theorem 4 as devised by the authors used the full strength
of Theorem 1 and therefore excluded the case p = 0 and ℓ = 1. The authors are grateful to the
anonymous referee who pointed out that only the asymptotics of Carleman polynomials πn,∞ on
O is needed to prove the theorem and thus allowing all p ≥ 0 and ℓ ∈ [0, 1].

To describe the asymptotic behavior of kernels (10) and (11) near the boundary ∂K , it is
convenient to introduce the following notation. Set

H0(τ ) := 2
eτ (τ − 1)+ 1

τ 2 and H1(τ ) := 6
eτ (τ − 2)+ τ + 2

τ 3 ,

and define Hℓ to be the convex combination,

Hℓ(τ ) :=
3 − 3ℓ
3 − 2ℓ

H0(τ )+
ℓ

3 − 2ℓ
H1(τ ), ℓ ∈ (0, 1). (21)

Note that the value at the origin for each of these functions is determined by taking a limit; that
is, Hℓ(0) = 1 for all ℓ ∈ [0, 1]. The following theorem is an analog of [13, Theorem 2.1].

Theorem 5. Let N ≤ ⌊s − 1⌋, z ∈ ∂K , τ (a, z) := aΦ′(z)Φ(z), ℓ := limN ,s→∞ Ns−1
∈ [0, 1]

and for ℓ > 0, set

ω(a, z) :=


exp


−Re (τ (a, z)) /ℓ


, Re (τ (a, z)) > 0,

1, otherwise.
(22)

Under the conditions of Theorem 1, assuming p > 0 when ℓ = 1, it holds that

lim
N ,s→∞

KN ,s

z +

a
N , z +

b
N


KN ,s(z, z)

= Hℓ

τ(a, z)+ τ(b, z)


. (23)

Moreover, if ℓ > 0, then

lim
N ,s→∞

KN ,s

z +

a
N , z +

b
N


KN ,s(z, z)

= ω(a, z)ω(b, z)Hℓ

τ(a, z)+ τ(b, z)


, (24)

1 K D(z, w) =
1
π

ψ ′(z)ψ ′(w)
1−ψ(z)ψ(w)

2 , where ψ is any conformal map from D onto D [8, Section 1.5].



690 C.D. Sinclair, M.L. Yattselev / Journal of Approximation Theory 164 (2012) 682–708

and if ℓ = 0, then

lim
N ,s→∞

KN ,s

z +

a
N , z +

b
N


KN ,s(z, z)

=


H0


τ(a, z)+ τ(b, z)


Re(τ (a, z)),Re(τ (b, z)) < 0;

0 otherwise.
(25)

The convergence in (23)–(25) is uniform for a, b in compact subsets of C and z ∈ ∂K .

Remark 5.1. The argument of τ(a, z) is equal to the angle between a and Φ(z)/Φ′(z), the
outward normal to T at z.

Remark 5.2. As is clear from (11), the function ω(a, z) is designed to describe the limit of
P−s

K (z +a/N ) as N , s → ∞. This limit depends on whether or not the points z +a/N belong to
O for N large enough. The case Re(τ (a, z)) = 0 corresponds to the situation when the sequence
{z+a/N } approaches z ∈ ∂K tangentially to the boundary. This does not cause a problem in (22)
as this function is continuous with respect to a. However, when ℓ = 0 formula (22) cannot be
used as the limit is described by a discontinuous function of a and the convexity of the boundary
∂K at z starts to play a role.

Remark 5.3. Observe that by putting s = ∞ (that is, ℓ = 0), formulas (16)–(23) specialize
to the asymptotic formulas obtained in [13] for Carleman polynomials. Notice also that when
s = N + 1 (ℓ = 1), the first summands in (16)–(23) disappear and only the second ones remain.
For general ℓ, formulas (16)–(23) turn out to be convex combination of these two extreme cases.

3. Three models of potential theoretic ensembles

Before proceeding to the proofs of our main results, we will present three models, a matrix
model, an electrostatic model and a polynomial model, whose joint density of eigenvalues,
particles and roots coincide with the potential theoretic ensembles we are considering.

3.1. Entropic normal matrix ensembles

The entropy of a self-map T on a metric space X is a measure of how the distance between
nearby points is stretched under iteration of T . In the case where Z is an N × N complex matrix
acting on CN , the entropy of Z is given by

h(Z) =

N
n=1

log max{1, |λn|},

where λ1, λ2, . . . , λN are the eigenvalues of Z [23]. We may use this to create a probability
measure on normal N × N complex matrices, which we will denote by N N (C).

There exists a canonical measure on N N (C) induced by the standard metric on CN×N and we
may define a probability density with respect to this measure by writing

PN (Z) =
1

Z N
e−2sh(Z),

where Z N is a normalization constant and s > N is a real number necessary so that the
probability measure is actually finite.
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This probability measure on normal matrices induces a symmetric probability measure on CN

as identified with vectors of eigenvalues. This measure is absolutely continuous with respect to
Lebesgue measure and its density is given as in (2) with w(λ) = max{1, |λ|}−2s [4,16]. Normal
matrix ensembles, and in particular the statistics of their eigenvalues, were first considered
in [3,4].

The function λ → log max{1, |λ|} is the logarithmic (equilibrium) potential of the closed unit
disk, and the weight for the entropic ensemble is formed from this in the obvious manner. We
therefore see that the eigenvalue statistics of the entropic normal matrix ensemble coincides with
the potential theoretic ensemble with K = D.

3.2. Two-dimensional electrostatics

In two-dimensional electrostatics, charged particles are identified with points in the extended
complex plane. The potential energy of a system of two like charged particles located at
z, w ∈ C is proportional to − log |z − w|. More generally, if z1, z2, . . . , zN are the locations
of N identically charged particles, then z determines the state of the system and the potential
energy of this state is given by

−


m<n

log |zn − zm |.

The energy is minimized when the particles are all at ∞. In order for the system to be found in a
state where the particles are at finite positions, there needs to be a potential (or other obstructions)
which repels the particles from ∞. We represent this field by V so that the interaction energy
between a particle located at z and the field is given by V (z). The total potential energy of the
system comprised of the N particles in the field is given by

E(z) =

N
n=1

V (zn)−


m<n

log |zn − zm |.

The system is assumed to be in contact with a heat reservoir so that the energy of the system is
variable, but the temperature is fixed. In this setting, β denotes the reciprocal of the temperature,
and the Boltzmann factor for the state z is given by

e−βE(z)
=


N

n=1

e−βV (zn)

 
m<n

|zn − zm |
β .

This quantity gives the relative density of states, so that the probability (density) of finding the
system in state z is given by

1
Z N

e−βE(z) where Z N =


CN

e−βE(z)d AN (z).

Comparing with (2) we see that, when β = 2 the density of states is identical with the density of
eigenvalues of the normal matrix ensemble with weight w(z) = e−2V (z).

In this model, a compact set K is identified with a conducting region. A charge supported on
K will distribute itself to minimize its potential energy, and this distribution, suitably normalized,
leads to the equilibrium measure on K . In this way, we can think of the function −s log PK (z)
as the potential energy felt by an oppositely charged particle at z when placed in the field given
by the minimal energy configuration formed by placing a total charge of s on K . In this situation
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where our system consists of N charged particles, the condition that s > N is required to make
∞ repulsive (or rather to make K sufficiently attractive so that the particles do not flee to ∞).
It follows that the statistics of particles in this model agree with those of the potential theoretic
ensemble for K .

3.3. Roots of random polynomials

The Mahler measure of a polynomial f (x) ∈ C[x] is given by

M( f ) = exp

 1

0
log | f (e2π iθ )| dθ


,

is an example of height function; that is a function which measures the complexity of arithmetic
objects, in this case polynomials.2One type of problem of interest to number theorists is to
provide asymptotic estimates for the number of arithmetic objects whose height is bounded by
C as C → ∞. For instance, for the Mahler measure, such estimates for the number of integer
polynomials of fixed degree and Mahler measure bounded by C as C → ∞ was given by Chern
and Vaaler in [5]. They also gave a similar estimate for the number of polynomials with Gaussian
integer (Z[i]) coefficients.

In the latter case, the main term in their estimate came from the calculation of the Lebesgue
measure of the set of polynomials of degree N with complex coefficients whose Mahler measure
is at most 1. A key aspect of their proof is to show that this volume is equal to

π

N + 1


CN


M


x N

+

N
n=1

anzN−n

−2N−2

d AN (a).

That is the volume is proportional to an integral of a (negative) power of the Mahler measure
of monic polynomials with respect to Lebesgue measure on the non-leading coefficients of such
polynomials. Moreover, after the change of variables from coefficients to roots of polynomials,
this volume reduces to

π

N + 1


CN

 N
n=1

exp

 1

0
log |αn − e2π iθ

| dθ

−2s
 

m<n
|αn − αm |

2 d AN (α);

s = N + 1. (26)

That is, this volume, up to the factor of π/(N + 1) is equal to the normalization constant Z N for
the potential theoretic ensemble for the unit circle for the value s = N + 1. In fact, Chern and
Vaaler were able to show that this normalization constant as a function of s is a rational function
in s with poles at positive integers ≤ N . This striking result can be seen as a consequence of
determinantal nature of the correlation functions.

The derivation of (26) shows that the roots of a polynomial chosen randomly from the volume
of complex polynomials of degree N and Mahler measure at most 1 obey the same statistics as
those of the potential theoretic ensemble for the disk. This gives a polynomial model for these
statistics.

2 Traditionally Mahler measure is used as a height of polynomials in Q[x], or more generally Q[x]. However, there is
no obstruction in defining it for polynomials in C[x].
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The computation of the normalization constant of this polynomial model for potentials for
certain other compact regions (in particular the ellipses considered in Proposition 2) is given
in [20], while a more general treatment for more general potentials is given in [19]. The special
case where the family of ellipses degenerates to the interval [−2, 2] on the real axis, and its
application to the estimation of counting reciprocal polynomials with bounded Mahler measure
is given in [18,20].

4. Proofs

To prove Theorem 1, we use the method of normal moments in which we rely on the results
in [21, Ch. I]. We must therefore discuss Faber polynomials before proceeding to the proof of
Theorem 1. We start by stating several auxiliary facts that will be useful later.

4.1. Auxiliary facts

If g is holomorphic in O and vanishes at ∞, then for each r ∈ [1,∞) the restriction
g(rτ), τ ∈ T := {|w| = 1}, can be interpreted as the trace on T of g(r/w), w ∈ D, which
is holomorphic and vanishes at the origin. The latter implies that


T τ

k g(rτ)|dτ | = 0 for all

integers k ≥ 0. If, in addition, h is a positive function on [1,∞) and
w j g(w)h(|w|)

 is integrable

with respect to d A for some j ≥ 0, then the Fubini–Tonelli theorem yields that
O
w j g(w)h(|w|)d A =


∞

1


T
τ j g(rτ)|dτ |


r j+1h(r)dr = 0. (27)

Furthermore, since d A(w) = |Φ′(z)|2d A(z), where w = Φ(z), it holds that
O

Φ j (z)Φ′(z)G(z)h(|Φ(z)|)d A = 0 (28)

for any G holomorphic in O and vanishing at ∞ by (27) applied with g = (G ◦φ)φ′, where φ is
the inverse of Φ (granted

Φ jΦ′Gh(|Φ|)
 is integrable with respect to d A).

In another connection, the Cauchy–Green identity for the domain D [12, Thm. 1.2.1] says
that 

D
g(z)h′(z) d A =

1
2i


T

g(z)h(z) dz (29)

whenever g and h′ are holomorphic functions in D that continuously extend to T , where


always means integration in the counter-clockwise direction unless specified otherwise. Now,
assume that g and h are holomorphic functions in O such that g has at least a double zero at
infinity, and g, h and h′ continuously extend to T . Then by using the transformation z → 1/z
and (29), one can show that the Cauchy–Green identity for O assumes the form

O
g(z)h′(z) d A = −

1
2i


T

g(z)h(z) dz. (30)

4.2. Faber polynomials

Denote by Fn the n-th Faber polynomial for D associated with Φ′. That is,

Fn(z) =


T

Φn(t)Φ′(t)

t − z

dt

2π i
, z ∈ D.



694 C.D. Sinclair, M.L. Yattselev / Journal of Approximation Theory 164 (2012) 682–708

In other words, Fn is the polynomial part of ΦnΦ′. Then it follows from Plemelj–Sokhotski
formulas [9] that

Fn = ΦnΦ′
+ En in O, (31)

where En is a holomorphic function vanishing at infinity with integral representation

En(z) :=


T

Φn(t)Φ′(t)

t − z

dt

2π i
, z ∈ O. (32)

We would like to point out that

En(z) = O


1

z2


as z → ∞ (33)

for all integers n ≥ 0. Indeed, consider Fn+1, the (n+1)-st Faber polynomial associated with 1. In
this case (31) gets replaced by Fn+1 = Φn+1

+ En+1, where En+1 has an integral representation
similar to (32). By differentiating both sides of the last equality, we get that (n + 1)Fn = F ′

n+1
and (n + 1)En = E ′

n+1. As En+1 is holomorphic and vanishing at infinity, En has at least a
double zero there.

We are interested in the asymptotic behavior of

ms
k, j :=


C

F j Fk P−2s
K d A =


D

F j Fk d A +


O

F j Fk |Φ|
−2s d A, j, k ≤ ⌊s − 2⌋, (34)

where we used (12) for the second representation.
It was shown in [21, Eq. (1.32)] (combined with (30) above) that the first integral on the

right-hand side of (34) can be written as

π

k + 1


δ jk −

k + 1
π


O

E j Ek d A


=:

π

k + 1


δk j + ID


, (35)

where the integral over O is well defined (finite) by (33). Moreover, it was also obtained there,
see [21, Eq. (1.45) and Lemma 1.5], that

|ID| ≤
const.

( j + 1)p+α(k + 1)p+α
or |ID| ≤ const. ρ j+k, (36)

where both constants are independent of j and k, but depend on T and ρ (in the analytic case).
Hereafter, by stating a double estimate of the form (36), we always assume that the first bound is
given for T of class C p+1,α and the second one for T analytic with ρ(T ) < ρ < 1.

On the other hand, the second integral on the right-hand side of (34) can be written with the
help of (31) as

O
Φ jΦk |Φ′

|
2
|Φ|

−2sd A +


O

Φ jΦ′Ek |Φ|
−2sd A

+


O

E jΦkΦ′|Φ|
−2sd A +


O

E j Ek |Φ|
−2sd A. (37)

It can be immediately computed by conformality of Φ that the first integral in (37) is equal to
O

Φ jΦk |Φ′
|
2
|Φ|

−2sd A =


O
w jwk |w|

−2sd A =
π

s − (k + 1)
δk j .
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The second integral in (37) is zero by (28) applied with G = Ek and h(r) = r−2s, r ∈ [1,∞).
Conjugating the third integral in (37), analogous reasoning shows it is zero as well. Thus, similar
to (35), the second integral on the right-hand side of (34) can be written as

π

s − (k + 1)


δ jk +

s − (k + 1)
π


O

E j Ek |Φ|
−2sd A


=:

π

s − (k + 1)


δk j + IO


. (38)

We claim that |IO | satisfies (36) as well, namely,

|IO | ≤
const.

( j + 1)p+α(k + 1)p+α
or |IO | ≤ const. ρ j+k . (39)

Indeed, to prove (36), it was shown in [21, (1.44) and the following paragraph, (1.45)] that
T

|(En ◦ φ)(τ)φ′(τ )|2|dτ | ≤
const.

(n + 1)2p+2α or ≤ const. ρ2n (40)

for all integers n ≥ 0, where φ is the inverse of Φ. Moreover, the monotonicity of L2-norms
implies that if the integrand in (40) is evaluated at rτ rather than at τ for any fixed r ∈ (1,∞),
the estimate remains valid. Then on account of

O
E j Ek |Φ|

−2sd A

 ≤


∞

1


T

(E j Ek) ◦ φ

(rτ)

 |φ′(rτ)|2|dτ |


r1−2sdr

and the Cauchy–Schwarz inequality, |IO | is bounded by

s − (k + 1)
π


∞

1
r1−2sdr


T

|(Ek ◦ φ)(τ)φ′(τ )|2|dτ |

1/2

×


T

|(E j ◦ φ)(τ)φ′(τ )|2|dτ |

1/2

.

Clearly, (39) follows now from (40).
Finally, gathering together (35) and (38), we get that

ms
k, j =

sπ

(k + 1)(s − (k + 1))


δk j + ϵs

k, j


, (41)

where

ϵs
k, j :=

s − (k + 1)
s

ID +
k + 1

s
IO = −

k + 1
π


1 −

k + 1
s


×


O

E j Ek


1 − |Φ|

−2s


d A (42)

and

|ϵs
k, j | ≤

const.
( j + 1)p+α(k + 1)p+α

or |ϵs
k, j | ≤ const. ρ j+k (43)

by (36) and (39).
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4.3. The Von Koch–Riesz algebra

Denote by D the algebra of all operators defined on ℓ2(N) by matrices A = [ak, j ]
∞

j,k=0 with
respect to the standard basis for which

∥A∥D := max

 ∞
k=0

|ak,k |,


∞
j=0

∞
k=0

|ak, j |
2

1/2
 < ∞.

It is known [11, Theorem II.2.1] that if {An} is a sequence in D converging to A ∈ D (with
respect to ∥ · ∥D ), then the determinant of I + An (I being the identity operator) converges to the
determinant of I + A.

Let {sn} be an increasing sequence of positive reals such that sn → ∞ as n → ∞. Set, for
convenience, ϵsn

k, j := 0 when either j or k is greater than ⌊sn − 2⌋ and define Esn := [ϵ
sn
k, j ]

∞

j,k=0.
We also set E∞ := [ϵ∞k, j ]

∞

j,k=0, where we put

ϵ∞k, j := −
k + 1
π


O

E j Ek d A. (44)

Observe that the estimate in (43) is also valid for s = ∞. Using this bound, it is simple to verify
that

∥Esn ∥D ≤ const.
∞

k=1

1

k2(p+α)
or ∥Esn ∥D ≤

const.

1 − ρ2

for each n including the case n = ∞, where the constant


∞

k=1 k−2(p+α) is finite as p+α > 1/2.
Thus, all the operators Esn belong to the Von Koch–Riesz algebra D. Moreover, it holds that

∥Esn − E∞∥D → 0 as n → ∞. (45)

Indeed, let {kn} be a non-decreasing sequence of integers such that kn → ∞ and kn/n → 0 as
n → ∞. Then

∞
k=kn

ϵsn
k,k − ϵ∞k,k

 ≤

∞
k=kn


|ϵ

sn
k,k | + |ϵ∞k,k |


≤

const.
(kn + 1)p+β

or

∞
k=kn

ϵsn
k,k − ϵ∞k,k

 ≤ const. ρ2kn (46)

by (43). Furthermore, we can readily deduce from (42) and (44) using the notation of (35) and
(38) thatϵsn

k,k − ϵ∞k,k

 =
k + 1

n
|IO − ID| ≤

kn

n

const.

(k + 1)2(p+α)
or

ϵsn
k,k − ϵ∞k,k

 ≤
kn

n
const. ρ2k

by (36) and (39) for all k ∈ {0, . . . , kn − 1}. Therefore, it holds that

kn−1
k=0

ϵsn
k,k − ϵ∞k,k

 ≤ const.
kn

n
. (47)

Combining (46) and (47), we deduce that

∞
k=0

ϵsn
k,k − ϵ∞k,k

 → 0 as n → ∞ (48)
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by the choice of the sequence {kn}. Analogously, one can show that

∞
j=0

∞
k=0

ϵsn
k, j − ϵ∞k, j

2 → 0 as n → ∞, (49)

which finishes the proof of (45).

Naturally [11, Section I.1], it holds that det(I + Esn ) = det

δk j + ϵ

sn
k, j

⌊sn−2⌋

j,k=0
and therefore

we deduce from the remark made at the beginning of this section that

det(I + Esn ) → det(I + E∞) > 0 as n → ∞, (50)

where the last inequality was shown in [21, Section I.4].

4.4. Proof of Theorem 1

Since {Fn} is a complete system of polynomials, each πn,s can be expressed as a linear
combination of F0, . . . , Fn with the coefficients determined via the orthogonality relations (9).
In fact, it holds that

πn,s(z) =
1

Dn−1,s Dn,s


ms

0,0 ms
0,1 · · · ms

0,n
ms

1,0 ms
1,1 · · · ms

1,n
...

...
. . .

...

ms
n−1,0 ms

n−1,1 · · · ms
n−1,n

F0(z) F1(z) · · · Fn(z)

 , (51)

where the moments ms
k, j are defined in (34) and Dn,s := det[ms

k, j ]
n
j,k=0.

Set ∆n,s := det[δk j + ϵs
k, j ]

n
j,k=0 and observe that

Dn,s = ∆n,s

n
k=0

sπ

(k + 1)(s − (k + 1))
and

Dn,s( j) = ∆n,s( j)
n

k=0, k≠ j

sπ

(k + 1)(s − (k + 1))
(52)

by (41), where the determinants Dn,s( j) and ∆n,s( j) are obtained from the same matrices as
Dn,s and ∆n,s only with the last row and the ( j + 1)-st column removed. Given (43), it is a
straightforward algebraic computation using Hadamard’s inequality, see [21, Lemma 1.7], to
derive that

∆n,s( j) ≤
const.

( j + 1)p+β(n + 1)p+β
or ∆n,s( j) ≤ const. ρ j+n (53)

for any j ∈ {0, 1, . . . , n − 1}.
On the other hand, the family {∆n,s} is bounded away from zero. Indeed, as mentioned just

before (12), Φ′(∞) = γ−1
K and therefore the leading coefficient of Fn is equal to γ−n−1

K . Hence,
we get from (51) and (52) that

~n,sγ
n+1
K =


Dn−1,s

Dn,s
=


n + 1
π


1 −

n + 1
s


∆n−1,s

∆n,s
. (54)
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Recall that any monic orthogonal polynomial has the smallest L2-norm with respect to the weight
of orthogonality among all monic polynomials of the same degree. In particular,

1

~2
n,s

=


C

|πn,s/~n,s |
2
|PK |

−2sd A ≤


C

|γ n+1
K Fn|

2
|PK |

−2sd A = γ 2n+2
K ms

n,n .

Therefore, it follows from (54), (41) and (42) that

∆n,s =
n + 1
π


1 −

n + 1
s


∆n−1,s

γ 2n+2
K ~2

n,s

≤
n + 1
π


1 −

n + 1
s


ms

n,n∆n−1,s

= (1 + ϵs
n,n)∆n−1,s < ∆n−1,s .

Hence, it holds that

inf
s

min
1≤n≤⌊s−2⌋

∆n,s = inf
s

∆⌊s−2⌋,s > 0 (55)

by (50) since ∆⌊s−2⌋,s = det(I + Es), which proves the claim.
Thus, expanding the determinant ∆n,s by the last row, we get that

∆n,s = (1 + ϵs
n,n)∆n−1,s +

n−1
j=0

(−1)n+ jϵs
n, j∆n,s( j). (56)

Dividing both sides of the equality above by ∆n−1,s and using (43), (53) and (55) yields

∆n,s

∆n−1,s
= 1 + O


1

n2(p+α)


or

∆n,s

∆n−1,s
= 1 + O


ρ2n


. (57)

Clearly, we get (13) by taking the reciprocal of (57) and substituting it into (54).
Now, expanding the determinant in (51) by the last row as in (56) yields

πn,s =


n + 1
π


1 −

n + 1
s


∆n−1,s

∆n,s

×


Fn +

n−1
j=0

(−1)n+ j ( j + 1)(s − j − 1)
(n + 1)(s − n − 1)

∆n,s( j)

∆n−1,s
F j


.

Hence, by factoring out ΦnΦ′ and using (31), the error term in (14) can be written as
∆n−1,s

∆n,s
− 1 +


∆n−1,s

∆n,s

×

 En

ΦnΦ′
+

n−1
j=0

(−1)n+ j
( j + 1)


1 −

j+1
s


(n + 1)


1 −

n+1
s

∆n,s( j)

∆n−1,s


1 +

E j

Φ jΦ′


1

Φn− j

 .
Since |Φ| > 1 and |Φ′

| is bounded away from zero in O , we get from (40), (53), (55) and (57)
that the error term in (14) is of order

log(n + 1)
(n + 1)p+α

+
1

(n + 1)p+α

n−1
j=0

( j + 1)


1 −
j+1

s


(n + 1)


1 −

n+1
s

 1
( j + 1)p+α

. (58)
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If lim supn,s→∞ n/s < 1, then the fractions (1 −
j+1

s )/(1 −
n+1

s ) are uniformly bounded above
and it easily follows from (58) that the error term in (14) is of order

log(n + 1)
(n + 1)p+α

+
1

(n + 1)2(p+α)−1
, (59)

where the first summand is larger for all p ≥ 1 and the second one is larger when p = 0. Clearly,
the estimate for the error term in the case of analytic curve, can be derived in a similar fashion.
On the other hand, if lim supn,s→∞ n/s = 1, then we use the estimate

1 −
n + 1

s
≥ 1 −

n + 1
n + 2

=
1

n + 2
,

which is valid since n ≤ ⌊s − 2⌋. In this case (59) gets replaced by

log(n + 1)
(n + 1)p+α

+
1

(n + 1)2(p+α)−2
,

where the first summand is larger for all p ≥ 2 and the second one is larger when p = 1 (we
exclude p = 0 as in this case the above bound grows as n2(1−α)). Analogous estimate shows
that the error term in (14) is of order ρ−n when T is an analytic curve. This finishes the proof of
Theorem 1. �

4.5. Proof of Proposition 2

Let Un be the monic Chebyshëv polynomial of the second kind for the interval

−2

√
q, 2

√
q

.

That is,

Un = ΦnΦ′


1 −

qn+1

Φ2n+2


, Φ(z) =

z +


z2 − 4q

2
, z ∈ O.

It can be readily checked that the inverse of Φ is indeed φ(w) = w+q/w,Φ is the conformal map
of the complement of


−2

√
q, 2

√
q


onto

w : |w| >

√
q


with positive derivative at infinity,
and the level lines of Φ are ellipses with foci ±2

√
q .

Let us show that polynomials Un are orthogonal on D with respect to area measure. It follows
from the Cauchy–Green identity (29) that

2i(k + 1)


D
Un(z)zkd A =


T


Φn(z)− qn+1/Φn+2(z)


Φ′(z)zk+1dz

=


T


τ n

− qn+1/τ n+2

(τq + 1/τ)k+1dτ = 0 (60)

for k < n, where we used the identity τ = 1/τ̄ on T and the last equality is a consequence of the
facts


T τ

nτ j dτ = 0 for all j ≥ −n and


T τ
−n−2τ j dτ = 0 for all j ≤ n.

In another connection, it holds that
O

Un(z)zk |Φ(z)|−2sd A =


O


Φn(z)− qn+1/Φn+2(z)


zk/Φ′(z)


|Φ(z)|−2s

|Φ′(z)|2d A

=


O


wn

− qn+1/wn+2φk(w)φ′(w)|w|
−2sd A.
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It is easy to check using the expressions φ(w) = w + q/w and w = rτ, r ∈ [1,∞) and τ ∈ T,
that the chain of equalities above can be continued as

∞

1


T


(rτ)n −

qn+1

(rτ)n+2

 r

τ
+

qτ

r

k


1 −
qτ 2

r2


|dτ |


rdr

r2s
= 0 (61)

for k < n, since the Laurent polynomials in τ integrated over T does not contain a constant term
as the exponents of τ range from n + k + 2 down to n − k and then from k − n down to −k − n.

Altogether, the polynomials Un are orthogonal over C with respect to the measure P−2s
K d A.

In fact, it can be easily shown that they are also the Faber polynomials for this K . It remains to
compute the normalizing factor. Evaluating as in (60) and (61), we get that

D
Un(z)znd A =

1
2i

1
n + 1


T


wn

−
qn+1

wn+2


(qw)n+1

+ · · · +
1

wn+1


dw

=
π

n + 1


1 − q2n+2


and 

O
Un(z)zn|Φ(z)|−2sd A

=


∞

1


T


(rτ)n −

qn+1

(rτ)n+2


−

qn+1τ n+2

rn+2 + · · · +
rn

τ n


|dτ |


rdr

r2s

= π


1

s − (n + 1)
+

q2n+2

s + n + 1


.

Thus, we deduce that

~−2
n,s =


C

|Un(z)|
2 P−2s

K (z)d A =


D

Un(z)znd A +


O

Un(z)zn|Φ(z)|−2sd A

=
πs

(n + 1)(s − n − 1)


1 − q2n+2 s − n − 1

s + n + 1


. �

4.6. Proof of Proposition 3

Fix N ≤ ⌊s − 1⌋ and let ζ be a point such that

ζ ∈ O and dist(ζ, K ) ≤ c/N (62)

for some fixed constant c. Further, let ζ0 ∈ T be such that |ζ − ζ0| = dist(ζ, K ). Since
|Φ(ζ0)| = 1 and Φ is continuously differentiable in O (since T is at least C1,α-smooth) it holds
that

|Φ(ζ )| ≤ 1 + |Φ(ζ )− Φ(ζ0)| ≤ 1 + O(|ζ − ζ0|) = 1 + O(N−1),

where the estimate O(·) does not depend on the choice of ζ satisfying (62). Hence,

max
k∈{1,...,N }

|Φk(ζ )| ≤ const. (63)

for some absolute constant.
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Select z, w satisfying (62) and assume that z ≠ w. Put, for brevity, u := Φ(z)Φ(w). Then we
get from the definition of KN ,s , (14) and (63) that

KN ,s(z, w) =
Φ′(z)Φ′(w)

π

N−1
n=0


(n + 1)−

(n + 1)2

s


un1 + O (Σn)


=

Φ′(z)Φ′(w)

π


N−1
n=0

(n + 1)un
−

1
s

N−1
n=0

(n + 1)2un



+ O


max


1, N 2ΣN


. (64)

Since,

N−1
n=0

(n + 1)un
= −(N + 1)

uN

1 − u
+

1 − uN+1

(1 − u)2
,

and

N−1
n=0

(n + 1)2un
= −(N + 1)2

uN

1 − u
+ (N + 1)

1 − uN+1

(1 − u)2
− (N + 2)

1 + uN+1

(1 − u)2

+ 2
1 − uN+2

(1 − u)3
,

the validity of (16) follows. In a similar but simpler fashion, we also get (17).

4.7. Proof of Theorem 4

Recall the Christoffel variational principle:

KN ,s(z, z) = max
deg(p)<N

|p(z)|2
C |p|2 P−2s

K d A
, z ∈ C, (65)

and the reproducing property:

p(z) =


C

p(w)KN ,s(z, w)P
−2s
K (w)d A, deg(p) < N , (66)

that hold for all s ∈ (1,∞] and N ≤ ⌊s − 1⌋. It can be readily deduced from (65) that

KN ,s(z, z) ≤ KN ,∞(z, z) ≤ K D(z, z), (67)

where the second inequality follows from the fact that K D(z, w) =


∞

n=0 πn,∞(w)πn,∞(z) [8,
Section 1.5]. Furthermore, (66) together with (67) yield

D
|KN ,s(z, w)|

2d A ≤ K D(z, z) and


O
|KN ,s(z, w)| |Φ(w)|−2sd A ≤ K D(z, z). (68)

It follows from (19) and (68) that
D

|K D(u, w)− KN ,s(u, w)|
2d A = K D(w,w)− 2KN ,s(w,w)+


D

|KN ,s(u, w)|
2d A

≤ K D(w,w)− KN ,s(w,w).



702 C.D. Sinclair, M.L. Yattselev / Journal of Approximation Theory 164 (2012) 682–708

Therefore, (19), the Cauchy–Schwarz inequality, and the above estimate yieldK D(z, w)− KN ,s(z, w)
 ≤


D

K D(u, w)− KN ,s(u, w)
 |K D(z, u)|d A

≤

K D(z, z)

1/2K D(w,w)− KN ,s(w,w)
1/2

.

That is, we only need to demonstrate the convergence in (20) along the diagonal. Moreover,
since (20) is valid for KN ,∞, it suffices to show only that KN ,∞(z, z)− KN ,s(z, z) → 0 locally
uniformly in D as N , s → ∞. To this end, observe that

KN ,∞(z, z) =


C

KN ,∞(z, u)KN ,s(u, z)P−2s
K (u)d A

= KN ,s(z, z)+


O

KN ,∞(z, u)KN ,s(u, z)|Φ(u)|−2sd A

by (66) and the positivity of KN ,∞(z, z). Then we get from the equality above, the
Cauchy–Schwarz inequality, and (68) that

KN ,∞(z, z)− KN ,s(z, z) ≤


O

|KN ,s(z, u)|2

|Φ(u)|2s
d A

1/2 
O

|KN ,∞(z, u)|2

|Φ(u)|2s
d A

1/2

≤

K D(z, z)

1/2 
O

|KN ,∞(z, u)|2

|Φ(u)|2s
d A

1/2

. (69)

To estimate the integral in (69), observe that

|KN ,∞(z, u)|2 ≤ KN ,∞(z, z)KN ,∞(u, u) ≤ K D(z, z)KN ,∞(u, u)

by the Cauchy–Schwarz inequality and (67). Hence,
O

|KN ,∞(z, u)|2|Φ(u)|−2sd A ≤ K D(z, z)
N−1
n=0


O

|πn,∞|
2
|Φ|

−2sd A

≤ const.K D(z, z)
N−1
n=0


O

|Φ|
2n−2s

|Φ′
|
2d A

≤ const.K D(z, z)
N−1
n=0

n + 1
s − (n + 1)

= const.K D(z, z)
N 2

s − N
, (70)

where we used (14) for s = ∞. Clearly, (70), (69), and the reduction process carried out above,
prove Theorem 4 under the condition N 2/s → 0 as N , s → ∞. The proof for all N readily
follows from the obvious inequality KN ,s(z, z) ≤ KM,s(z, z), N ≤ M . �

4.8. Proof of Theorem 5

Since p > 0 when ℓ = 1, it holds that ΣN → 0 as N → ∞. Thus, we deduce from (17) that

lim
N ,s→∞

KN ,s(z, z)N−2
=

|Φ′(z)|2

π


1 − ℓ

2
+
ℓ

6


=

|Φ′(z)|2

π

3 − 2ℓ
6

(71)
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uniformly for z ∈ T . Fix c > 0 and let a, b be such that |a|, |b| < c. It follows from the
Cauchy–Schwarz inequality thatKN ,s


z +

a

N
, z +

b

N

 ≤ max |KN ,s(ζ, ζ )|, (72)

where the maximum is taken over all ζ satisfying (62). Furthermore, we get from the
Bernstein–Walsh inequality and (63) that

|KN ,s(ζ, ζ )| ≤ |Φ(ζ )|2(N−1) max
w∈T

|KN ,s(w,w)| ≤ const.max
w∈T

|KN ,s(w,w)| (73)

for any ζ satisfying (62) with some absolute constant. Combining (72) and (73) with (71), we
see that


KN ,s


z +

a
N , z +

b
N


N−2


is a normal family for |a|, |b| < c, where the functions in

this family are indexed by z ∈ T, N ∈ N, and s ∈ [N + 1,∞). Therefore, it suffices to prove
(23) only for those a, b for which z +

a
N , z +

b
N ∉ K (since T has a tangent at z, it holds that

either z + a/N ∈ K for all N large enough or z + a/N ∉ K for all N large enough).
As |Φ′

| is bounded above in O , there exists a path γ ⊂ O connecting z and z +
a
N whose

length is proportional to 1/N . Hence,

Φ


z +
a

N


− Φ(z)−

a

N
Φ′(z) =


γ


Φ′(t)− Φ′(z)


dt = o


1
N


, (74)

where the estimate holds uniformly for z ∈ T and locally uniformly for a, b ∈ C. As |Φ(z)| = 1,
it holds that

Φ


z +
a

N


Φ


z +
b

N


= 1 +

τ(a, z)+ τ(b, z)

N
+ o


1
N


(75)

and 
Φ


z +
a

N


Φ


z +
b

N

N

= exp

τ(a, z)+ τ(b, z)+ o(1)


, (76)

where τ(·, ·) was defined before (22) and o(1) is again uniform for z ∈ T and a, b in compact
subsets of C. As before, we can assume without loss of generality that τ(a, z) + τ(b, z) ≠ 0.
Then we get from (16), (75), (76), and the continuity of Φ′ that

lim
N ,s→∞

KN ,s


z +

a

N
, z +

b

N


N−2

=
|Φ′(z)|2

π


1 − ℓ

2
H0


τ(a, z)+ τ(b, z)


+
ℓ

6
H1


τ(a, z)+ τ(b, z)


(77)

uniformly for z ∈ T and a, b in compact subsets of C. The limit in (23) now follows from (71),
(77) and (21).

As obvious from (11), to prove (24), it suffices to show that

lim
N ,s→∞

P−s
K (z + a/N ) = ω(a, z) (78)

uniformly for z ∈ T and locally uniformly for a ∈ C. To this end observe that an outward normal
to T at z is given by Φ(z)/Φ′(z). Hence, the angle between the vectors a/N and Φ(z)/Φ′(z) is



704 C.D. Sinclair, M.L. Yattselev / Journal of Approximation Theory 164 (2012) 682–708

less than π/2 if and only if the vector aΦ′(z)/Φ(z) = τ(a, z) belongs to the right half-plane. That
is, if Re(τ (a, z)) > 0. Hence, the limit in (78) holds for Re(τ (a, z)) < 0 as PK (z + a/N ) ≡ 1
for such a. Moreover, when Re(τ (a, z)) > 0, (78) follows immediately from (76). The case
Re(τ (a, z)) = 0 can be deduced by continuity and the uniformity of the estimate follows from the
uniform character of the estimate in (74). Finally, the same arguments yield (24) for ℓ = 0. �

Appendix. Plots of correlation functions

To provide intuition for the results reported here we consider the scaled limit of R1 and R2 of
the entropic (potential theoretic, with K = D) ensemble in a neighborhood of a point on the unit
circle. By the radial symmetry of the weight it suffices to restrict ourselves to a neighborhood of
1. In this case τ(a, 1) = a and ω(a, 1) = e−Re(a)/ℓ for Re(a) > 0 and ω(a, 1) = 1 otherwise.
As before, if ℓ = 0 and Re(a) > 0 then we take ω(a, 1) = 0. For convenience we define the
scaled kernel at z = 1 byHℓ(a, b) = ω(a, 1)ω(b, 1)Hℓ


a + b


.

The limiting density of scaled eigenvalues is then given by

Rℓ1(a) = Hℓ(a, a),

and the scaling limit of the second correlation function is given by

Rℓ2(a, b) = Hℓ(a, a)Hℓ(b, b)− Hℓ(a, b)Hℓ(b, a).

The visualizations provided here are for the cases where a and b are either real or on the
imaginary axis.

A.1. Tangent to the curve

The tangent line of the circle at z = 1 is parallel to the imaginary axis and the local density of
eigenvalues in this direction is given byHℓ(i t, i t) = 1.

This is expected since the spatial density of eigenvalues on the unit circle must be invariant under
rotation (and locally, this rotation is given by translation up the imaginary axis).

Looking at the second correlation function, when a and b are on the imaginary axis, we see
that Hℓ is a function of t = −i(a + b). Figs. A.2–A.4 show plots of the second correlation
function for various values of ℓ in various regions as a function of t .

By way of comparison we also provide plots of the second scaled correlation function for
ensembles with the sine kernel. Specifically,

S(a, b) = 2
sin

(a − b)/2


(a − b)

and Rsin
2 (a, b) = 1 − S(a, b)2.

(The slightly unusual normalization given by the superfluous appearing factors of 2 in the first
equation arises in the scaling limit when we take the expected distance between eigenvalues to
be 2π—this allows for the most accurate comparison with our other figures (Figs. A.5–A.8).)
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Fig. A.2. Plots of R1
2(a, b) as a function of t = −i(a + b). The second plot is an enlargement of the shaded region.

Fig. A.3. Plots of R0
2(a, b) as a function of t = −i(a + b).

Fig. A.4. Plot of the interpolation between R0
2(a, b) and R1

2(a, b) as a function of t = −i(a + b).

A.2. Normal to the curve

In the regime where a and b are real, we are looking in a neighborhood of z = 1 in a direction
perpendicular to that where the density of eigenvalues becomes constant. That is, the first scaled
correlation function should decay as a moves away from 0. Negative a corresponds to moving
into K (where the potential is constant) whereas positive a corresponds to moving away from K
where the potential acts to make ∞ repulsive. As ℓ decreases to 0, the field increases in strength
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Fig. A.5. Plots of Rsin
2 (a, b) as a function of t = a − b.

Fig. A.6. Plot of the interpolation between R0
1(a) and R1

1(a) as a function of t = −Re(a). When ℓ = 0 there is a sharp
cutoff at t = 0.

Fig. A.7. Plot of R1
2(a, b) when a and b are reals, with part of the surface removed to see the cross-section.

until at ℓ = 0 there is no possibility that an eigenvalue can be outside K . That is, when ℓ = 0 the
first correlation function vanishes for a > 0.

When a and b are real, Rℓ2(a, b) is no longer a function of a linear combination of a and b,
and we plot this as a surface for ℓ = 0 and ℓ = 1.
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Fig. A.8. Plot of R0
2(a, b) when a and b are reals. Note that R0(a, b) is identically zero if either a or b is greater than 0.
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