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A model that gives family gauge bosons with an inverted mass hierarchy is proposed, stimulated by
Sumino’s cancellation mechanism for the QED radiative correction to the charged lepton masses. The
Sumino mechanism cannot straightforwardly be applied to SUSY models because of the nonrenormaliza-
tion theorem. In this Letter, an alternative model which is applicable to a SUSY model is proposed. It
is essential that family gauge boson masses m(A j

i ) in this model is given by an inverted mass hierarchy
m(Ai

i) ∝ 1/
√

mei , in contrast to m(Ai
i) ∝ √

mei in the original Sumino model. Phenomenological meaning
of the model is also investigated. In particular, we notice a deviation from the e–μ universality in the tau
decays.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

It seems to be meaningful to consider that the flavor physics
can be understood on the basis of a family symmetry [1]. Regret-
tably, since a constraint from the observed K 0–K̄ 0 mixing is very
tight, the family gauge boson masses must be super heavy, so that
it is hard to observe such gauge boson effects in terrestrial ex-
periments. Recently, one positive effect of the existence of family
gauge bosons has been pointed out by Sumino [2,3]. Since we pro-
pose a model with a Sumino-like mechanism in the present Letter,
we first give a brief review of the Sumino mechanism.

We know a miraculous formula for the charged lepton masses
[4]:

K ≡ me + mμ + mτ

(
√

me + √
mμ + √

mτ )2
= 2

3
, (1.1)

which is satisfied with the order of 10−5 for the pole masses,
i.e. K pole = (2/3) × (0.999989 ± 0.000014) [5]. However, in con-
ventional flavor models, “masses” do not mean “pole masses”, but
“running masses”. The formula (1.1) is only valid with the order
of 10−3 for the running masses, e.g. K (μ) = (2/3) × (1.00189 ±
0.00002) at μ = mZ . The deviation of K (μ) from K pole is caused
by a logarithmic term mei log(μ/mei) in the QED radiative correc-
tion term [6]
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mei(μ) = mpole
ei

[
1 − αem(μ)

π

(
1 + 3

4
log

μ2

m2
ei(μ)

)]
. (1.2)

Note that the value of K is invariant under the transformation

mei → mei(1 + ε0 + εi), (1.3)

when εi = 0, where ε0 and εi are factors which are independent
of and dependent on the family-number i (i = 1,2,3), respectively.
If the logarithmic term in the radiative correction (1.2) due to the
photon can be cancelled by a some additional effect, the relation
K pole = K (Λ) ≡ 2/3 can be satisfied (Λ is an energy scale at which
K = 2/3 is given).

Sumino [2] has seriously taken why the mass formula K = 2/3
is so remarkably satisfied with the pole masses, and proposed a
cancellation mechanism of the logarithmic term in the radiative
correction (1.2). He has assumed that the family symmetry is local,
and that the logarithmic term is cancelled by that due to the fam-
ily gauge bosons. In the Sumino model, the left- and right-handed
charged leptons eLi and eRi are assigned to 3 and 3∗ of a U(3) fam-
ily symmetry, respectively. (A similar fermion assignment has been
proposed by Appelquist, Bai and Piai [7].) The charged lepton mass
term is generated by a would-be Yukawa interaction

He = ye

Λ2
�̄i

LΦ
e
iαΦeT

α j e j
R H, (1.4)

where i and α are indices of U(3) and O(3), respectively, H is the
Higgs scalar in the standard non-SUSY model, and �L = (ν, e−). The
VEV matrix 〈Φe〉 is assumed as

〈Φe〉 = diag(v1, v2, v3) ∝ diag(
√

me,
√

mμ,
√

mτ ). (1.5)
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Then, the family gauge boson masses m(A j
i ) are given by

m2(Ai
j

) ∝ 〈
Φe

iα

〉〈(
Φe)†αi 〉 + 〈

Φe
jα

〉〈(
Φe)†α j 〉 ∝ mei + mej . (1.6)

Since in the Sumino model, the charged lepton fields (eL, eR) are
assigned to (eL, eR) ∼ (3,3∗) of the U(3), the family gauge bosons
in the off-diagonal elements A j

i (i 
= j) cannot contribute to the
radiative corrections. Then, the cancellation takes place between
logmei in the QED diagram and log m(Ai

i) ∝ log mei in the family
gauge boson diagram. (Of cause, the family gauge boson coupling
constant gF must satisfy a relation g2

F /4 � e2.) As a result, we can
obtain K (Λ) = K pole .

In Ref. [2], and also in this Letter, it is assumed that the formula
(1.1) is already given at an energy scale Λ, and is not discussed
how to derive the formula.1

Now, it is interesting to apply this Sumino mechanism to a su-
persymmetric (SUSY) scenario. It should be noted that a vertex
correction is, in general, vanishing in the SUSY scenario, so that
the Sumino mechanism cannot be applied to SUSY models straight-
forwardly. In this Letter, we investigate how to restore the Sum-
ino mechanism in such models. The essential idea in the present
model is as follows: The cancellation in the Sumino mechanism
occurs due to the vertex correction diagram, while that in the
present Letter does due to the wave function renormalization dia-
grams. (The details are given in Section 2.) In the original Sumino
mechanism, the QED correction is cancelled by gL

F g R
F log m(Ai

i) ∝
−g2

F logmei with gL
F = −g R

F ≡ gF , while in the present SUSY model

it is done by (gL,R
F )2 log m(A j

i ). For this purpose, we will assume
the gauge boson masses with an inverted hierarchy m2(Ai

i) ∝ 1/mei
as we state in the next section.

In the Sumino model, the gauge boson Ai
j couples to

(
J Sumino
μ

) j
i = ψ̄

j
L γμψLi − ψ̄Riγμψ

j
R , (1.7)

so that the current–current interactions inevitably cause interac-
tions which violate the individual family number N F by |�N F | = 2.
This |�N F | = 2 effects are somewhat troublesome in the low en-
ergy phenomenology. In contrast to the Sumino currents (1.7), our
family currents are given by the canonical form

( Jμ)
j
i = ψ̄

j
L γμψLi + ψ̄

j
RγμψRi = ψ̄ jγμψi, (1.8)

so that the |�N F | = 2 effects appear only through a small quark
family mixing.

In summary, the present model has the following characteris-
tics compared with the Sumino model: (i) Since we can assign
the family multiplets as ( f L, f R) ∼ (3,3) of the U(3), it is easy to
make the model anomaly-less. (ii) In contrast to the Sumino cur-
rents (1.7), we can take a canonical form of the family currents
(1.8). Therefore, the |�N F | = 2 effects appear only through a small
quark mixing. (iii) Family gauge bosons with the lowest and high-
est masses are A3

3 and A1
1, respectively. Note that gauge bosons

which can couple to the light quarks u, d and s are only Ai
j with

i, j = 1,2. Therefore, we may consider that the contributions of the
family gauge boson exchanges with i, j = 1,2 are reduced com-
pared with a conventional family gauge boson model. This means
that we can take a lower value of m(A3

3) (e.g. a few TeV), and may
expect to observe A3

3 → τ+τ−/bb̄/tt̄ via bb̄/tt̄ associated produc-
tion in the LHC. In Section 4, we will investigate a deviation from

1 The first attempt to understand the mass formula (1.1) from the bilinear form
of Φe has been done by assuming a U(3) family symmetry and a “nonet” ansatz for
Φ [8]. For more plausible derivation of the formula, see Ref. [3], where the model
is based on a U(9) family symmetry.
the e–μ universality in the tau lepton decays. The present data
allow the lowest gauge boson mass m(A3

3) to be of the order of
a few TeV. We will also investigate possible family-number con-
serving but lepton flavor violating decays of K , D and B mesons.
The observations of K → πμ+e− and B → Kμ−τ+ are within our
reach. Thus, we can expect fruitful low energy phenomenology.

2. Cancellation mechanism in a SUSY model

In a SUSY model, the contributions of the family gauge bosons
in the vertex correction diagram become vanishing, so that the
original Sumino mechanism does not work. On the other hand,
those from the wave function renormalization diagram still re-
main:

δmei = 2mei

∑
j

γei j

(4π)2
log

μ

Mij
= mei

αF

2π

∑
j

log
M2

i j

μ2
. (2.1)

Here γei j gives the anomalous dimension γei when summed over
j,

γei j = −2g2
F

∑
a

(
T a)

i j

(
T a)

ji, γei =
∑

j

γei j, (2.2)

where T a is the generator of the U(3). Therefore, in the present
model, the values of εi defined by Eq. (1.3) are given by

εi = ρ

(
log

m2
ei

μ2
+ ζ

∑
j

log
M2

i j

μ2

)
, ρ = 3

4

αem

π
, ζ = 2

3

αF

αem
,

(2.3)

and Mij are the family gauge boson masses Mij = m(A j
i ) given by

M2
i j ∝ 1

mei
+ 1

mej
. (2.4)

(For a model for Mij , see the next section.)

Note that since the gauge bosons A j
i with j 
= i can contribute

to the εi term, differently from the Sumino model, the QED log mei
term cannot be cancelled by the gauge boson terms exactly even
if we adjust the parameter ζ . The ratio of K (mei) to K (m0

ei) for
mei = m0

ei(1 + ε0 + εi)

R ≡ K (mei)

K (m0
ei)

, (2.5)

is, in general, dependent on the values ζ and ε0. (The value of ε0
is practically not essential as |ε0| � 1.)

Next, we investigate the ζ -dependence of the ratio R . Since the
ε0 term can always be shifted by a common value, we shift the εi
terms as εi → εi − ε3 and ε0 → ε0 + ε3. Then, we obtain

1

ρ
ε1 = log

m2
e1

m2
e3

+ ζ

(
1

2
log

m2
e3

m2
e1

+ 1

2
log

m2
e2

m2
e1

+ log
1 + me1/me2

1 + me2/me3

)
, (2.6)

1

ρ
ε2 = log

m2
e2

m2
e3

+ ζ

(
1

2
log

m2
e3

m2
e2

+ log
1 + me1/me2

1 + me1/me3

)
, (2.7)

and ε3/ρ = 0. Here, the first terms in the parentheses in the
right-hand sides represent the contributions of the diagonal gauge
fields Ai

i , while the succeeding terms do those of the off-diagonal

ones A j
i ( j 
= i). As expected, by setting ζ appropriately (ζ = 2), the

diagonal gauge fields cancel the QED logarithmic terms as in the



386 Y. Koide, T. Yamashita / Physics Letters B 711 (2012) 384–389
Table 1
The fields in the present model and their quantum numbers.

� ec Hd L L̄ Ec Ēc Φ Φ̄ Ψ Ψ̄ θΦ ΘA ΘB S θS

SU(2)L 2 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1
U(3) 3 3∗ 1 1 1 1 1 3 3∗ 3 3∗ 1 8 + 1 1 1 1
U(3)′ 1 1 1 3 3∗ 3∗ 3 3∗ 3 3∗ 3 1 1 8 + 1 1 1
U(1)S 0 0 −1 1 −1 0 −1 1 1 0 0 −2 −1 −1 1 −1
U(1)R 1 1 0 1 1 1 1 0 0 0 0 2 2 2 0 2
Sumino mechanism, but the off-diagonal ones make the cancella-
tion incomplete, as ε2/ρ = 2 log[(1 + me1/me2)/(1 + me1/me3)] �
2(me1/me2) and ε1/ρ � log(me1/me2)

2 in this case. Interestingly,
however, since ε2 is quite small and safely neglected, the effect
on the parameter K which has a mild dependence on me1 is
relatively suppressed. Although the suppression is not sufficient,
R − 1 = O(10−4), we expect that the deviation is cancelled by
some other effects, such as the tau-Yukawa effect, a misarrange-
ment of ζ for instance due to the renormalization group (RG)
effects, and so on.

If we want more precise value of ζ at which R becomes 1,
we can obtain it numerically. For convenience, we use the fol-
lowing input values: the observed charged lepton pole masses [5]
m0

e1 = 0.510998910 × 10−3 GeV, m0
e2 = 0.105658367 GeV, m0

e3 =
1.77682 GeV; the fine structure constant at μ = mZ , α(mZ ) =
1/127.916 [5]. For the time being, we do not specify an energy
scale Λ at which the formula K (Λ) = 2/3 holds. Then, we find that
a value of ζ which gives R = 1 is ζ = 1.752. We can check that the
value of R −1 at ζ = 1.752 is insensitive of the value ε0. The value
ζ = 1.752 is near to a value 7/4. If we consider ζ = 7/4, we can
also show that R − 1 is always smaller than 10−5 independently
of the value ε0. Thus, although the present model cannot give rig-
orous cancellation of the log mei term, it can practically give R = 1
with an accuracy of 10−5.

3. Model

A simple way to make a model for the charged leptons
anomaly-less is to assign the lepton doublet � and charged lep-
ton singlet ec to 3 and 3∗ of the U(3) family symmetry, re-
spectively, in contrast to the Sumino model [2,3] where both
have been assigned to 3. If we adopt a yukawaon model[9],
the would-be Yukawa interaction for the charged lepton sec-
tor is given by (ye/Λ)�i(Ye)

i
je

cj Hd . Then, however, another term

(y′
e/Λ)�i(Ye)

j
je

ci Hd is also allowed by the symmetry, and there are
no reasons to forbid it. (This problem always appear when we take
a model with � ∼ 3 and ec ∼ 3∗ .) Therefore, in the present Letter,
we do not adopt such a yukawaon model. Following to the Sum-
ino model, we will consider a bilinear contribution (Φ̄e)

i
α(Φe)

α
j

instead of (Ye)
i
j . To be more concrete, we assign (Φ̄e)

i
α ∼ (3∗,3)

and (Φe)
α
j ∼ (3,3∗) of U(3) × U(3)′ family symmetries. Note that

we consider U(3)′ instead of O(3) in the Sumino model. This al-
lows us to take a flavor basis in which 〈Φe〉 is diagonal. Hereafter,
we simply denote Φe and Φ̄e in the present model as Φ and Φ̄ ,
respectively.

We take the following would-be Yukawa interaction terms

W Y = y��iΦ̄
i
α L̄α + yHd Lα Hd Ecα + ye Ēc

αΦα
j ecj

+ ME Ecα Ēc
α + ML Lα L̄α, (3.1)

where �i = (νi, ei), eci , Lα = (Nα, Eα), Ecα , L̄α = (N̄α, Ēα) and Ēc
α ,

have the electric charges (0,−1), +1, (0,−1), +1, (0,+1) and −1,
respectively. Here, (Ec, Ēc) and (L, L̄) are vector-like SU(2)L singlets
and doublets, respectively. Then, we obtain the following effective
superpotential

W eff
Y = yHd y� ye

ME ML
�iΦ̄

i
αΦα

j ecj Hd. (3.2)

Note that the counterpart of the y′-term Tr[Φ̄Φ]�ieci Hd is not gen-
erated at the tree level, and then, in great contrast to non-SUSY
models, is protected against the radiative corrections thanks to the
nonrenormalization theorem. To be complete, we should forbid a
term �ieci Hd and hopefully the above effective nonrenormalizable
term generated already at the cutoff scale Λ. The former term can
be forbidden by a U(1)S symmetry as usual. A concrete example of
assignment of the charge and other quantum numbers (including
those of the U(1)R symmetry that the superpotential considered
here has) are shown in Table 1. The latter term may be forbid-
den effectively by assuming that the cutoff scale is large enough,
or by replacing for instance the mass ME with a VEV of a field S
charged under the U(1)S symmetry. Here, we employ the former
way for simplicity and consider only renormalizable terms, while
we also introduce the field S for the later convenience.

To avoid the massless Nambu–Goldstone mode, we assume that
the U(1)S charge conservation is broken by a soft term

Wbr = μS SθS − εμ2
SθS , (3.3)

where S and θS are family singlets, and ε has been put in or-
der to denote that the R charge conservation in the term (3.3) is
softly broken with a small extent ε. The superpotential (3.3) leads
to 〈S〉 = εμS .

The effective superpotential (3.2) reduces to the charged lepton
Yukawa interaction when Φ and Φ̄ acquire VEVs. The magnitude
of 〈Φ〉〈Φ̄〉 is set by

WΦ = λ1Φ
α
i Φ̄ i

αθΦ − λ2 S2θΦ, (3.4)

where θΦ is a family singlet field, which leads to

Tr
[〈Φ〉〈Φ̄〉] = ε2 λ2

λ1
μ2

S . (3.5)

As mentioned, we do not discuss how appropriate forms (1.5) of
the VEVs, 〈Φ〉 and 〈Φ̄〉, are obtained but just assume that a super-
potential W K (Φ, Φ̄, . . .) leads them. Here, in addition, we assume
that W K is invariant2 under the exchange of the U(3) and the
U(3)′ , which exchanges Φ and Φ̄ , and that the VEVs respect this
S2(= Z2) symmetry:

〈Φ〉 = 〈Φ̄〉 = vΦ Z = vΦ diag(z1, z2, z3). (3.6)

Here, in the last equality, we have used the U(3) and U(3)′ de-
grees of freedom to diagonalize 〈Φ〉, and the parameters zi are
normalized as z2

1 + z2
2 + z2

3 = 1, without loosing generality. With
this notation, from Eq. (3.5), we obtain

v2
Φ = ε2 λ2

λ1
μ2

S . (3.7)

2 The superpotential (3.1) does not possess this invariance.
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Next, we investigate a superpotential for the field Ψ whose VEV
〈Ψ 〉 gives an inverted mass hierarchy (2.4):

WΦΨ = (
λAΨ̄ i

αΦα
j + λ̄AΦ̄ i

αΨ α
j

)
(ΘA)

j
i

+ (
λ′

AΨ̄ i
αΦα

i + λ̄′
AΦ̄ i

αΨ α
i − μA S

)
(ΘA)

j
j

+ (
λBΦα

i Ψ̄ i
β + λ̄BΨ α

i Φ̄ i
β

)
(ΘB)

β
α

+ (
λ′

BΦα
i Ψ̄ i

α + λ̄′
BΨ α

i Φ̄ i
α − μB S

)
(ΘB)

β
β . (3.8)

Again, we impose that WΦΨ is S2 invariant, i.e. λA = λ̄B , λ̄A = λB ,
λ′

A = λ̄′
B , λ̄′

A = λ′
B and μA = μB . Then, from the F -flatness condi-

tions, we obtain

〈Ψ 〉 = 〈Ψ̄ 〉 = vΨ Z−1, (3.9)

which satisfies the D-term condition too. We also obtain

vΦ vΨ = 3ε
μSμA

λA + 3λ′
A + λ̄A + 3λ̄′

A

. (3.10)

Comparing with Eq. (3.7), we see

vΦ

vΨ

= εk ∼ O (ε), (3.11)

where k = (1/3)(λ2/λ1)(λA + 3λ′
A + λ̄A + 3λ̄′

A)(μS/μA). Since the
charged lepton masses mei are given by

Me ≡ diag(me1,me2,me3) ∝ v2
Φ Z 2 = v2

Φ diag
(
z2

1, z2
2, z2

3

)
, (3.12)

from Eq. (3.2), the parameter values of zi are given by

zi =
√

mei√
me1 + me2 + me3

, (3.13)

where (me1,me2,me3) = (me,mμ,mτ ). The explicit values of zi are
given by

(z1, z2, z3) = (0.016473,0.23688,0.97140). (3.14)

Thus, we can approximately estimate the family gauge boson
masses m(Ai

j) as follows

M2
i j ≡ m2(Ai

j

)

= 1

2
g2

F

[∑
α

(〈(
Ψ †)i

α

〉〈
Ψ α

i

〉 + 〈
Ψ̄ i

α

〉〈(
Ψ̄ †)α

i

〉) + (i → j) + O
(
ε2)]

� g2
F v2

Ψ

(
1

z2
i

+ 1

z2
j

)
∝

(
1

mei
+ 1

mej

)
, (3.15)

if the mixing between the U(3) gauge boson and the U(3)′ one
can be neglected. This happens when the latter gauge boson is
sufficiently heavy and we assume such a case. Namely, we assume
another sector that breaks U(3)′ at a high scale which is basically
decoupled from the sector we have discussed above.

In this case, in addition to the interactions in the superpoten-
tial (3.1), the gauge interaction (below the U(3)′ breaking scale)
violates the S2 symmetry assumed in W K and WΦΨ , and the RG
effects modify the S2 relations shown above Eq. (3.9). Neverthe-
less, amazingly, the nonrenormalization theorem protects the VEV
relations (3.6) and (3.9) against the RG effects, which justifies the
above discussion.

So far, we have not discussed the neutrino mass matrix, be-
cause the purpose of the present Letter is to discuss how to apply
the Sumino mechanism to a SUSY model. Here, we would like to
give a brief comment on the neutrino mass matrix. In order to ob-
tain neutrino masses, we add, for instance, a new field Nc , which
is SU(2)L doublet with 3∗ of the family symmetry SU(3)′ . (How-
ever, we do not consider the vector-like partner N̄c unlike the case
(Ec, Ēc). Therefore, in order to make the model anomaly free, some
additional fields are needed. In this Letter, we do not comment on
it.) The field generates the following superpotential terms in addi-
tion to Eq. (3.1):

yHu Lα Hu Ncα + yM Ncα(Y M)αβ Ncβ. (3.16)

The superpotential terms (3.1) and (3.16) leads to the effective
neutrino mass matrix as Eq. (3.2):

W eff
ν = yHu y�

yM M2
L

(�i Hu)Φ̄ i
α

(〈Y M〉−1)αβ
Φ̄

j
β(� j Hu). (3.17)

Here, we consider that the VEV value 〈Y M〉αβ breaks SU(3)′ sym-
metry at a higher scale Λ′ (Λ′ � Λ). This realizes the above
assumption used in Eq. (3.15), and is a reason that we will not
discuss SU(3)′ family symmetry gauge boson effects in the follow-
ing low energy scale phenomenology.

4. Possible effects of the family gauge bosons

Since the gauge boson masses are given by Eq. (3.15), we obtain
the following hierarchical structure:

2g2
F v2

Ψ

1

z2
1

= M2
11 � 2M2

12 � 2M2
13,

2g2
F v2

Ψ

1

z2
2

= M2
22 � 2M2

23,

2g2
F v2

Ψ

1

z2
3

= M2
33. (4.1)

The family currents in the Sumino model are given by Eq. (1.7),
while, in the present model, those are given by

( Jμ)i
j = ēi

LγμeLj + ēi
RγμeR j + · · · = ēiγμe j + · · · , (4.2)

where, for convenience, we have denoted only charged lepton sec-
tor explicitly. Note that the effective current–current interactions
in the Sumino model induce �N F = 2 interactions, while those in
the present model do not induce such �N F = 2 interactions. In
the present model, however, since the family number is defined
in a diagonal basis of the charged lepton mass matrix, in general,
quark mixings appear, so that family number violating modes will
be observed through Uu 
= 1 and Ud 
= 1, where Uq (q = u,d) is de-

fined by U †
Lq MqU Rq = Dq (Dq is a diagonal matrix). For example,

family currents in the down-quark sector are given by

(
J (d)
μ

)i
j = (

d̄0i
L γμd0

L j

) + (
d̄0i

R γμd0
R j

)
= (

U †
Ld

)i
k(U Ld)

l
j

(
d̄k

LγμdLl
) + (L → R), (4.3)

so that the effective Hamiltonians for semileptonic modes and
nonleptonic modes, H S L and HN L , are given by

Heff
S L =

∑
i, j,k,l

Gi j√
2

(
U †

d

)i
k(Ud)

l
j

(
d̄kγμdl

)(
ē jγ μei

)
, (4.4)

Heff
N L =

∑
i, j,k,l,m,n

Gij√
2

(
U †

d

)i
k(Ud)

l
j

(
U †

d

) j
m(Ud)

n
i

(
d̄kγμdl

)(
d̄mγ μdn

)
,

(4.5)

respectively, where Gij/
√

2 = g2
F /2M2

i j � z2
j /2v2

Ψ , and, for simplic-
ity, we have put U Ld = U Rd ≡ Ud . In this section, we investigate
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possible phenomenology of the flavor violating modes, and discuss
the scale of the gauge bosons.

Usually, the most strict constraint comes from the observed K 0-
K̄ 0 mixing. However, this �N F = 2 transition occurs only via the
down-quark mixing Ud 
= 1, so that the constraint is highly depen-
dent on the quark mass matrix model. In this Letter, we do not
discuss a model about the quark mixing. Only modes that are in-
dependent of the quark mixing structures are pure leptonic decays
ei → e j + ν̄ j + νi . Therefore, first, let us investigate these pure lep-
tonic decays based on the present model. The effective interactions
via the family gauge boson exchanges are given by

Gij√
2
(ν̄iγμν j)

(
ē jγ

μei
)
, (4.6)

against the conventional weak interactions

G F√
2

(
ē jγμ(1 − γ5)ν j

)(
ν̄iγ

μ(1 − γ5)ei
)
, (4.7)

where G F /
√

2 = g2
W /8M2

W = 1/2v2
W (vW = 246 GeV). By using

the Fierz transformation, we obtain effective coupling constants
(for the definitions, see [10]) in the current–current interactions

gV
LL = 1 + ε j, gV

R R = 0, g S
LR = −2ε j, g S

RL = 0, (4.8)

where ε j � (1/4)z2
j (vW /vΨ )2, and we have considered a case that

the observed neutrinos are Majorana types. The result (4.8) gives
the decay parameters [10] η = 0, ρ = 3/4, δ = 3/4 and ξ � 1−2ε2

j .
Regrettably, the results for η, ρ and δ are identical with those in
the standard model (SM) and the deviation of ξ from ξ S M = 1 is
too small to observe. On the other hand, in relation to the branch-
ing ratios, we predict

Rτ ≡ 1 + εμ

1 + εe
=

[
B(τ− → μ−ν̄μντ )

B(τ− → e−ν̄eντ )

f (me/mτ )

f (mμ/mτ )

]1/2

, (4.9)

where f (x) has been defined by f (x) = 1 − 8x2 + 8x6 − x8 −
12x4 ln x2 and f (me/mτ )/ f (mμ/mτ ) = 1.028215. Since
εe � z2

1r2/4 = 6.8 × 10−5r2 and εμ � z2
2r2/4 = 1.4 × 10−2r2

[r ≡ vW /vΨ ], we expect a deviation �Rτ ≡ Rτ − 1 � εμ . Present
experimental values [5] B(τ− → μ−ν̄μντ ) = (17.39 ± 0.04)% and
B(τ− → e−ν̄eντ ) = (17.82 ± 0.04)% give

Rexp
τ = 1.0017 ± 0.0016, (4.10)

i.e. εμ � 0.0017±0.0016. This result seems to be in favor of the in-
verted gauge boson mass hierarchy although it is just at 1 σ level.
(If the gauge boson masses take a normal hierarchy, Rτ will show
Rτ < 1.) However, if we take the central value �Rτ ∼ 0.0017, it
means r ∼ 0.35. This value corresponds to vΨ ∼ 0.7 TeV which is
ruled out by Kaon rare decays as we will see next. At present, we
should not take the value (4.10) rigidly. If we speculate r ∼ 10−1

(vΨ of a few TeV), we may expect a sizable deviation �Rτ � εμ �
z2

2r2/4 ∼ 10−4 from the e–μ universality in the tau lepton decays.
We expect that the observation �Rτ � 10−4 will be accomplished
by a tau factory in the near future.

Next, we direct our attention to family number conserved
modes in the limit of no quark mixing. Predicted values for those
modes are insensitive to the explicit values of Ud and Uu as far
as they are not so large. In particular, we investigate rare decays of
pseudo-scalar mesons 0− → 0− + ei + ē j (i 
= j) with �N F = 0, e.g.
K + → π+μ+e− , B+ → K +τ+μ− , and so on. (Since our currents
are pure vectors, they cannot contribute to decays 0− → ei + ē j .)
When we neglect the C P violation effects and the electromagnetic
mass difference of pseudo-scalar mesons, we can predict the fol-
lowing branching ratios:
B
(

K + → π+μ+e−) � 2z4
1r4 1

2|V us|2 B
(

K + → π0μ+νμ

)

= 4.88 × 10−8r4, (4.11)

B
(

K 0 → π0μ+e−) � 1

2
z4

1r4 1

2|V us|2 B
(

K 0 → π−μ+νμ

)

= 9.82 × 10−8r4, (4.12)

B
(

D+ → π+μ−e+)

� z4
1r4 1

2|V cs|2 B
(

D+ → K̄ 0μ+νμ

) f (mπ/mD)

f (mK /mD)

= 5.83 × 10−9r4, (4.13)

B
(

D0 → π0μ−e+)

� 1

2
z4

1r4 1

2|V cs|2 B
(

D0 → K −μ+νμ

) f (mπ/mD)

f (mK /mD)

= 1.03 × 10−9r4, (4.14)

B
(

B+ → K +μ−τ+)

� z4
2r4 1

2|V cb|2 B
(

B+ → D̄0τ+ντ

) f (mK /mB)

f (mD/mB)

= 1.51 × 10−2r4, (4.15)

B
(

B0 → K 0μ−τ+)

� z4
2r4 1

2|V cb|2 B
(

B0 → D−τ+ντ

) f (mK /mB)

f (mD/mB)

= 2.37 × 10−2r4, (4.16)

where r and f (x) have been defined below Eq. (4.9). (For simplic-
ity, we have used approximate relation in the limit of massless
charged leptons. Therefore, the numerical results should not be
taken rigidly.) In Eq. (4.12), under the approximation of neglecting
C P violation, we read B(K 0 → π−μ+νμ) as B(KL → π±μ∓νμ) =
(1/2)B(K 0 → π−μ+νμ) + (1/2)B(K̄ 0 → π+μ−ν̄μ) = B(K 0 →
π−μ+νμ) = B(K̄ 0 → π+μ−ν̄μ) (and also B(K 0 → π0μ+e−) as
B(KL → π0μ±e∓)). In the numerical results in Eqs. (4.11)–(4.16),
we have used the observed values [5] B(K + → π0μ+νμ) =
3.353 × 10−2, B(KL → π∓μ±νμ) = 0.2704, B(D+ → K̄ 0μ+νμ) =
9.4×10−2, B(D0 → K −μ+νμ) = 3.31×10−2, B(B+ → D̄0τ+ντ ) =
7×10−3 and B(B0 → D−τ+ντ ) = 1.1×10−2. For reference, we list
the predicted values for vW /vΨ ∼ 10−1 (and present experimental
upper limits [5]) as follows:

B
(

K + → π+μ+e−) ∼ 5 × 10−12 (
< 1.3 × 10−11),

B
(

KL → π0μ±e∓) ∼ 1 × 10−11 (
< 7.6 × 10−11),

B
(

D+ → π+μ−e+) ∼ 6 × 10−13 (
< 3.4 × 10−5),

B
(

D0 → π0μ−e+) ∼ 1 × 10−13 (
< 8.6 × 10−5),

B
(

B+ → K +μ−τ+) ∼ 2 × 10−6 (
< 7.7 × 10−5),

B
(

B0 → K 0μ−τ+) ∼ 2 × 10−6 (no data). (4.17)

We also predict B(KL → π0νe ν̄μ) � B(KL → π0μe)/2. We show
the predicted branching ratios B(P → P ′ei ē j) versus v F ≡ vΨ in
Fig. 1. Therefore, if vΨ is a few TeV, observations of the lepton-
flavor violating K - and B-decays with �N F = 0 will be within our
reach.
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Fig. 1. Predicted branching ratios B(P → P ′e+
i e−

j ) versus the VEV value v F ≡ vΨ .
The marks • and the dashed lines denote present lower limits of the observed
branching ratios.

We may also expect to observe the lightest family gauge boson
A3

3 if its mass is a few TeV. For simplicity, we neglect the up- and
down-quark mixings, i.e. (u1, u2, u3) � (u, c, t) and (d1,d2,d3) �
(d, s,b). The observation is practically the same as that for Z ′ bo-
son (for a review, see Ref. [11]). Although in the conventional Z ′
model, Z ′ couples to the fermions of all flavors, while the A3

3 bo-
son couples only to τ+τ− , ντ ν̄τ , bb̄ and tt̄ , so that the branching
ratios are given by

B
(

A3
3 → τ+τ−) ∼ 2B

(
A3

3 → ντ ν̄τ

) ∼ 1

3
B
(

A3
3 → bb̄

)

∼ 1

3
B
(

A3
3 → tt̄

) ∼ 2

15
. (4.18)

We may expect to observe a peak of τ+τ− (but no peak in e+e−
and μ+μ−) in pp → gg X → A3

3 X → τ+τ− X at the LHC and
e+e− → Z∗/γ ∗ → A3

3 X → τ+τ− X at the ILC, although these cross
sections of the A3

3 productions are small compared with that of
the Z ′ production. Similar discussion can be applied to hadronic
jets instead of τ+τ− .

Finally, we would like to comment on a constraint from the ob-
served K 0–K̄ 0 mixing. As we stated previously, contributions from
exchanges of the U(3) family gauge bosons to the K 0–K̄ 0 mix-
ing depend on the magnitudes of the family mixing Ud in the
down-quark sector. At present, we know the observed values of
the CKM mixing V C K M = U †

u Ud , while we do not know the value
of Ud . Tentatively, let us assume that the CKM mixing is dom-
inantly given by the down-quark mixing, i.e. Ud � V C K M . Then,
the dominant contribution comes from the exchange of the fam-
ily gauge boson A2

2: (g2
F /2M2

22)(V ∗
us V cs)

2 = (z2
2/4v2

Ψ )(V ∗
us V cs)

2 =
(v2

Ψ )−1 × 6.76 × 10−4. In the present model, the C P violating ef-
fect in the dominant contribution is negligibly small. Since the
standard model gives �mS M

K � (7/6 − 5/6)�mexp
K [12] (�mexp

K =
(3.483 ± 0.006) × 10−12 MeV [5]), we consider that a contribu-
tion from new physics [13] is |�mNewPhys

K | < �mexp
K /6. If we as-

sume the vacuum-insertion approximation, we obtain a constraint
vΨ � O(105) GeV, which suggests that the lightest gauge boson
mass should also satisfy m(A3

3) � O(105) GeV. This result contra-
dicts our speculation r ∼ 10−1. If this speculation is confirmed in
future observations, we must build a quark mass matrix model
with Ud � 1 in the diagonal basis of the charged lepton mass
matrix Me , especially with (Ud)12 � 0. (This means that the down-
quark mass matrix Md takes a similar structure except for a unit
matrix term, i.e. Md � kd Me + m01.)

5. Concluding remarks

In conclusion, we have proposed a family gauge boson model
with inverted hierarchical masses. The model has been motivated
to give a SUSY scenario of Sumino’s cancellation mechanism be-
tween the radiative correction due to the photon and that due to
the family gauge bosons. As stated in the end of Section 1, the
present model has many characteristics compared with the Sum-
ino model: (i) It is easy to build a model that is anomaly free,
since the model takes the canonical assignments of the U(3) fam-
ily. (ii) The dangerous �N F = 2 interactions do not appear in the
limit of no quark mixing. (iii) The family gauge bosons with the
inverted hierarchical masses offer a new view for the low energy
phenomenology. (iv) Since our model is based on a SUSY scenario,
the VEV relations are kept (up to the SUSY breaking effects) al-
though in this Letter we did not discuss the derivations of the
relation (1.1) and so on.

If we take the mass relation (1.1) seriously and we want to ap-
ply the Sumino mechanism to a SUSY scenario, the present model
will be a promising model as an alternative one of the Sumino
model. Whether the gauge boson mass hierarchy is inverted or
normal will be confirmed by observing the direction of the de-
viation form the e–μ universality in the pure leptonic tau decays.
The present experimental result, Rτ = 1.0017 ± 0.0016, is in fa-
vor of the inverted mass hierarchy although the error is still large.
Since we speculate that the lightest gauge boson mass is a few
TeV, we expect the deviation �Rτ = Rτ − 1 ∼ 10−4. A tau factory
in the near future will confirm this deviation. In addition, some
lepton flavor violating K - and B-decays, e.g. K + → π+μ+e− and
B+ → K +τ+μ− , will be within our reach. We also expect a direct
observation of τ+τ−/bb̄/tt̄ decay modes while no excesses in the
e+e−/μ+μ− modes in the LHC and the ILC.
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