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1. Introduction

If M and N are subspaces of a Banach space X, then ([14] IV (2.8), (2.9); [12])
the gap between M and N is defined by

gap(M, N) = max(8(M, N), §(N, M),
where
8(M,N) = ||KyJuy| = sup{dist(x, N) : x € M, ||x]|| < 1}.

Here Jyy : M — X and Ky : X — X/N are the natural injection and the quotient
map induced by M and N. Dually [13]

y(M, N) =y (KyJy) = inf{|x|ly : dist(x, N) > 1}

is the conorm or “reduced minimum modulus” of the operator K, Jy . Evidently
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y(M,N) > 1;

we say that M is orthogonal to N when this holds with equality. In the following
we focus on the range and the null space of an operator.

Definition. If 7: X — Y and S : Y — Z are bounded linear operators between
Banach spaces, and k > 0, we shall say that (S, T') has a k-gap, and write S~L0) Ly
T X, provided

y e STH0) = |yl < kdist(y, T(X)). (1)

If welet M =clT(X) and N = S~1(0), then implication (1) says that the operator
Ky Jy is bounded below. The presence of such a gap in the pair (S, T') is sandwiched
between various kinds of “skew exactness” [11,13]. If we call (S, T') left skew exact
when

SHONTX) = {0}, 2)
strongly left skew exact if there is k > 0 for which

ITOI < ANISTOI on X 3)
and splitting left skew exact when there is a bounded linear R : Z — Y for which

T = RST, 4)
then there is implication

4) = Q)= 1) = 2. 5)
If we go on to call (S, T') linearly left skew exact when

S7H0) Nel T(X) = {0}, (6)
then also

(1) = (6) = (2). (7)

If for example the operator S has a bounded left inverse R then the condition (4)
holds, hence also (1). If we let Y = Z, then a sufficient condition for this to hold
is || — S| < 1. This compares with, but does not correspond to (see [13]), a result
of TurnsSek [21, Theorem 1.1] who notices that if X =Y = Z = &/ is a Banach
algebra, S =1 — ¢ and ¢ : ./ — ./ is a linear transformation such that ||¢| < 1,
then S~1(0) L, S.«Z. More generally if ¢ : .o/ — o/ is power bounded ( i.e., there
exists a number k > O such that sup, [|¢"|| < k),S=I1—-¢and T = ¢ — ¢?, then
S71(0) L T.oZ. This follows from the argument below upon letting n — oo. If y €
(I —¢)~'(0) and x € .«Z, then

(¢ =¢"") =D ¢"U —@)x +y)—ny
i=1

2k
= Iyl < (7> Xl +&lITx + y.
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Let B(H) denote the algebra of operators (= bounded linear transformations) on
a separable complex infinite dimensional Hilbert space H, and let .# denote B(H)
(with its usual operator norm ||-||) or one of the von Neumann—Schatten p-classes
%p, 1 < p < oo (withnorm ||-]|,). Particularly interesting examples of the operator
¢, ¢ not necessarily a contraction, which have attracted a lot of attention are the ele-
mentary operator Aup : B(H) — 4, Aap(x) = a1xby — axxby, where a = (ay, a)
and b = (b1, by) are pairs of mutually commuting normal operators in B(H ), and
the generalized derivation 8,5 : B(H) — 4, 8,5(x) = ax — xb, where a, b € B(H)
are normal operators (see [1,4,8—10,15,21-23] for further references). In this paper
we consider the elementary operator Ay, for the case in which the operators ay,
bT are hyponormal, the operators a», by are normal, a; commutes with a, and b
commutes with by. It will be shown that (4ap, 4ap) has a k-gap (so that (4ap, 4ap)
is both left skew exact and linearly left skew exact).

2. Results

Recall that an element 4 € B(X), X a Banach space, is said to be hermitian if the
spatial numerical range W(h) = {f(hx) :x € X, f e X, x| = | f]l = f(x) =1}
of h is a subset of the reals, and the operator a = h + ig € B(X), h and g hermitian,
is said to be normal if the commutator [h, g] = hg — gh is 0. Recall also that if the
operator ¢ : X — X is normal, then ¢~ 1(0) L; ¢ X [10, Theorem A]. The normality
of a, b € B(H) guarantees the normality of §,;. (Indeed, the condition is both nec-
essary and sufficient; see [20, Theorem 2.2].) Also, if .# is the Hilbert—Schmidt class
%, with its Hilbert space structure and a = (ay, az,...,a,), b= (b1,ba,...,by)
are n-tuples of mutually commuting normal operators, then &ap(x) = > i a;jxb;
is a normal operator on .# — .# such that gzb(x) = Earp+(x) and ||Eap (x) + y||% =
||(§’ab(x)||% + ||y||% for every y € @@;bl(O) N %> and x € 6> [9]. More generally, if
Eab (Or 84p): S — . is normal, then (&ap, Eap) (resp., (Sap, Sap)) has a 1-gap (see
[10, Theorem A]). We remark here that the normality of @; and b; in the mutually
commuting n-tuples a and b is not enough to warrantee the normality of & p.

Example 2.1. Recall from [22, Theorem 2.4] that if a, b € B(H) are commuting
normal operators and ¢ : B(H) — B(H) is defined by ¢(x) = axa* — bxb™, then

¢ ) +yls = llylls ®)

for every y € ¢~1(0)N.# and all x € B(H) such that ¢(x) € .7 if and only if
a~1(0)Nb~1(0) = {0}. Thus if we choose the normal a¢ and b to be such that
a='(0)Nb~1(0) # {0}, then ¢ cannot be normal (for if it were then we would
have by [10, Theorem A] that (8) holds). Now choose the operator b in ¢(x) =
axa* — bxb* to be the identity operator and let the normal a be such that a~!(0) #
{0}. Then a—1(0) N 5~1(0) = {0} and if ' (0) {0} then 1 is an eigenvalue of ¢.
Suppose that ¢ is normal. Then @, ®,(x) = ¢(x) + x = axa*, is normal. Hence
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1Py (x) + ylls = Iylls, I # 6, forevery y € @;1(0) N.# and all x € B(H) such
that @,(x) € #. This however contradicts [22, Proposition 2.1]. Hence ¢ is not
normal.

Example 2.1 shows that the normality of the commuting pair of operators a and b
is not sufficient for the subspaces ¢~ (0) N.# and cl ¢.7, .# + %, to have a 1-gap: It
is however sufficient for the said subspaces to have a k-gap for some k > 1 (see [15,
Theorem 2]). The normality of @ and b is not a necessary condition for ¢~!(0) N .#
and cl¢.#, 4 + €», to have a 1-gap. Thus if ¢ is such that O is not in the interior of

the numerical range of ¢ € B(B(H)), then ||x + ¢y|| = [Ix| — /8@ ) [y] for all
x,y € B(H) [4, Theorem 6, p. 20]. In particular, if 0 is an eigen-value which is not in
the interior of the numerical range of ¢, then ¢_1 ) L1 ¢(B(H)). (We remark here
that this is precisely the situation when S : ./ — o7, .o/ a unital Banach algebra, is a
contraction and ¢ = I — S.) Our main result, Theorem 2.7, shows that the hypothesis
a and b are commuting normal operators can be replaced by the hypothesis that a is
a hyponormal operator which commutes with the normal operator . (We note here
that a better result holds in the case in which .# = %5, see Remark 2.6 below.) The
following complementary lemmas will be required in the proof of our main result.

Lemma 2.2. Let t have the block matrix representation t = (t;;), 1 <i, j < n.
(i) Ift € B(H), then
n2 Y P < el < N1
ij i,j
(ii) Ift € ), 1 < p < 00, then

2—
n PNy < Y gl < el
iJ

if2 < p < oo, and
el < >Nl < n® =P el
iJ
flr<p<2.
Proof. See [3], Theorems 1 and 2. [
Lemma 2.3. Suppose that the eigen-space corresponding to the eigen-value 0 of
a € B(H) is reducing. If ®, : B(H) — B(H) is defined by ®,(x) = axa*, then

(v e @;1 (0) implies a*ya = 0 and) there exists a constant k such that (@;1 O)n
J) Li (Pa(B(H)) N.I).
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Proof. The inequality being trivially true if ¢~ (0) = {0}, we assume that a~'(0) #
{0}. Then, with respect to the decomposition H = ker" a & ker a, a has a direct sum
decomposition a = a; @ 0, where a; = a1, is an injection. A simple calculation

shows thatif y € @;1 (0), then y has a matrix representation y = [0 Y 1i|, where

y2 )3
the operators y; are arbitrary. (Clearly, a*ya = 0.) Letting x € B(H) have the matrix
representation x = [x; j]?’ =10 it follows that
aixpay
D, (x)+y= 1 .
a®+y [ y2 y3]

We consider the cases @(x) +y € B(H) and $(x) + y € %, separately.
The operator norm case. Applying Lemma 2.2(i),

3
{ua]xnai‘u? +y ||yi||2}

i=1

= 1
DIl = 2y,

i=1

@y (x) + yI* =

B

P

ENE

and we may choose k to be 2.

1 < p < 2. Applying Lemma 2.2(ii),

3
1P (x) + ylij > 2P72 {na]xnai‘ni +y ||yi||‘;}

i=1

3
> 20723 "yl = 2772yl
i=1
and we may choose k to be 2%/P~1

2 < p < 00. Again applying Lemma 2.2(ii),

3
1Pa ) + yII5 > larxnai b+ lvillh
i=1

2—
=yl = 2277y,

i=1

and we may choose k to be 2!=%/7. [

Recall that the eigen-spaces of a hyponormal operator are reducing. Let a, b* be
hyponormal operators such that ayb = 0. Define a; and ¢ (¢ B(H @ H)) by a; =
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a®b*andr = . Then ajta* 1 = 0, and it follows from Lemma 2.3 that there

0 O
exists a constant k such that [|¢]| < k|lajxa] +¢t| for all x € B(H @& H) satisfying
alxaT € 4. In particular, there exists a constant k, k > 1, such that k|jaxb + y|» >
lylls for every y € .# satisfying ayb = 0 and all x € B(H) satisfying axb € 4.

In the following the (elementary) operator 4,5, : B(H) — B(H) shall be defined
by 4, p(x) = axb — x. (Thus, if a and b are the pairsa = (a, I) and b = (b, I), then
Aqp(x) = Aap(x).)

Lemma 2.4. Leta,b € B(H)and1 < p < oo. Then:

(1) ye {Aa b(O)ﬂAu* pwOINE,and x € 6, =
Iyllp < 1 dap(x) + ¥l p-

(i) 4, »(0) S A;* »(0) = lIylls < 1 da,p(x) + ¥,
forall y € Aayb(O) and x € B(H) such that A, p(x) € J.

Proof. (i) If y € {4, b(O) N Aa* (0} N%)pand 1 < p < oo, then a proof of (i)
follows from an application of [8, Theorem 3.6]. Thus let p = 1. For y € A;})(O) N

a* p(0), let Hy = kert y, Hy = rany, and let the quasi-affinity y; : H; — H> be
defined by setting y1h = yh for each h € Hy. Let a; = a|y, and by = b|y,. Then
Aay by (1) =0= A“TvbT (y1), and it follows from a consideration of the equations
b1y{day.b, (1) =0 = 4g, 5, (y1)yyar that [a1, [y{|] =0 = [b1, [y1]]. Let y; have
the polar decomposition y; = uy|y|, 1 unitary. Then ajui|y1|by = aju1b1|y1| =
u1|y1], which implies that a1u1b1 = u1, by is invertible and bfl is unitarily equiva-
lent to a;. In particular, u; € Aa by )N A;T{ bt (0). Theorem 3.7 of [8] applies and
we conclude that

Iyl < 1y, (@) + yill

forallz € ¢1(Hy — Hy).Nowletx € ¢,.Thenx : HH ® (HS H)) > Hy ® (H S
H>) has a representation x = [x; ]] where x1; = z. Letting a = a; @ a» and
b = by @ by we have:

i,j=0°

Iyl = lyillt < a6, (x11) + 1l
H[ arby (X11) + y1 al,bz(x12)i|

Ay by (X21) Aay by (X22)
= [[da,p(x) + yl1.

This completes the proof of (i).
(i) Let y € 4,/(0) € 4_,!,.(0). Defining ay, by and y; as in the proof of (i)

above it follows that a; and bfl are unitarily equivalent operators, and both y; and
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ary are in 4;', (0)N Aa}"b,f (0). Hence Agx p:(ary1) =0 = a1 4 (1), which
implies that a; and by are normal operators. Thus
Iyills < 11dayp, (@) + yills

for every y € A;}j(O) N and all z € B(Hy — H») such that 4,4, p,(z) € 4. The
proof is now completed upon arguing as in the proof of (i) above. [

Remark 2.5. The hypothesis A;}](O) - A;*l’ p+(0) is satisfied for @ and b* belong-
ing to a number of the commonly considered classes of Hilbert space operators
(see [7,19]), amongst them the class of hyponormal operators. Thus Lemma 2.4(ii)
holds, in particular, for hyponormal a and b*. Indeed more is true: The follow-
ing (Putnam-Fuglede type) commutativity result holds. If a € B(H) is a hyponor-
mal operator which commutes with the normal operator b € B(H), then ¢~ (0) C
»*~1(0), where (as before, ¢ (x) = axa* — bxb* and) ¢p*(x) = a*xa — b*xb. This
is seen as follows. Recall from the Berberian extension theorem that given an a €
B(H) there exists a Hilbert space K D H and an isometric *-isomorphism a —
a’ preserving order such that o (a) = o (a’) and 0 (a) = 07 (a°) = 0,(a®) . (Here
op(a) and o (a) denote the point spectrum and the approximate point spectrum,
respectively, of a.) Let y € d)‘l (0), and let a® = ¢, b° = d and y° = z; then czc™ —
dzd* = 0, where the operator ¢ is hyponormal, the operator d is normal and [c, d] =
0. Since ker(d) reduces d, d has a decomposition d = 0 @ dyy (on K = ker(d) &
ker(d)). Letting ¢ : ker(d) & ker(d) — ker(d) ® ker’(d) have the matrix repre-
sentation ¢ = [¢; j]i =1 it follows from the commutativity of ¢ and d (combined with
the injectivity of dpp) that cj2 = ¢21 = 0. Now let z : ker(d) & ker(d) — ker(d) ®
kerL(d) have the representation [Zij],%j=1- Then 0 = cy1z11c]; = cnizi2¢3, =
cnz21¢]; and ¢22222¢5, — dxz22d5, = 0. The operators ¢ and ¢z, being hyponor-
mal, it follows from an application of Lemma 2.3 that 0 = c’l‘lz“c“ = c’flzlzczz =
6;2221C11. The operator d»; is invertible and [d2_21, c2»] = 0. Hence r = dz_zl ) =
czzd{zl is hyponormal, and rzoor* — z2o = 0. Recall now that if r is a hyponormal
operator and rt — tr* = 0 for some operator t € B(K), then r*t —tr = 0 [7,19].
This in view of [7, Theorem 2] implies that r*zzor —z22 =0, or, ¢3,222022 —
d3,722dy = 0. Combining, we now have that ¢*zc — d*zd = 0, which implies that
a*ya — b*yb = 0.

Remark 2.6. Choosing .# to be the Hilbert space %> with the inner product (x, y) =
tr(y*x) it is seen that if the operators a and b are as in Remark 2.5, then adjoint of
¢ : €2 — %, is defined by ¢*(x) = a*xa — b*xb,
I6C0) + 113 = 6 (0113 + 17113 + 2Re(p (x). y)
= )13 + Iy13 + 2Refx, ¢* (1)

and
l* (x) + ylI3 = 1¢* ()13 + 113 + 2Re(x, p(»)).
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Hence (by the commutativity property proved in Remark 2.5)
o () + ¥1I5 = )13 + 1113

and

lg*(x) + yII3 = llg* @13 + IylI3

forevery y € ¢a_bl (0) N %, and all x € €>.
The following is our main result.

Theorem 2.7. Let Aay, € B(B(H)) be the elementary operator Aap(x) = ajxby —
arxby, where ay and b}" € B(H) are hyponormal operators, a; and b, € B(H) are
normal operators, ay commutes with ay and by commutes with by. Then there exists
a constant k such that (Aa_bl O)yN.7) Ly (dap(B(H)) N 7).

Proof. If weset H = H @ H, and define the operators a, b, s, 7 € B(ﬁ) and the
operator ¢ € B(B(H)) by a =a; @b}, b=a, ® b}, s = |:8 3], 7= |:8 )(C)j|
and ¢ (z) = aza™ — bzb*, then

¢(z)+S=[g "a"(f)”y] sl =yl a0 + ¥l = 19) + sl

and

sy = lyllp,  dap(x) + yll, = 9 +5lp

for every y € %), and all x such that A,45(x) € % ,. Thus to prove the theorem it will
suffice to prove the following: If a € B(H) is a hyponormal operator which com-
mutes with the normal operator b € B(H), then there exists a constant k such that
((j)‘1 O)NI) Lr (¢(B(H)) N F). We divide the proof into the cases: (i) b is injec-
tive; (ii) a—1(0) N H~1(0) = {0}; (iii) a—1(0) = b~1(0); and (iv) a~1(0) # b~1(0),
where cases (i) and (ii) will be used in proving cases (iii) and (iv).

Case (i). We start by noticing that if b is invertible, then r = ab~' = b~ !a is hypo-
normal and 47, (0) € 4! (0) (by Remark 2.5). Applying Lemma 2.4(ii) it follows
that

6 (x) + ylls = @b~ ") (bxb*)(ab™")* — (bxb*) + y|.»
= |4, (bxb*) + ylls = Iylls

for all y € ¢~1(0)N.# and x € B(H) such that ¢(x) € .#. Suppose now that
b~1(0) = {0}. Let 8, denote the set of complex numbers A such that [A] < % for
some natural number 7, and let Ej (8, ) denote the corresponding spectral projection.
Set P, =1 — E»(8,); then P, converges strongly to I. Since [a, b] = 0 = [a, b*],
P, H reduces both a and b. This, upon decomposing H by H = (I — P,)H ® P, H,
implies that @ and b have the direct sum decompositions a = aj(,) @ az) and b =
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b1y ® ba(ny, Where a;(,y, i = 1,2, are hyponormal and by, is invertible. Let y €
¢_1 (0) N # have the representation [y; j]1'2 =1 and let x € B(H) have the represen-

tation x = [x,-j]l.zjzl. Then, since

Py(op(x) +y) Py = Py(axa™ — bxb* + V) Py
= P,aP,xP,a*P, — P,bP,x P,b*P, + P,y P,
= axn) anPna;‘(n) - bz(n)an P"bi(n) + P,yP,

and the operator by, is invertible, we have that

* *
1@+l = ’ [* Pn<¢(x>+y)Pn} ,
> 1P () + Y Pulls > | Pay Pall .

Thus
sup ([ Pyy Pully < llp(x) + ylls <00
n

foralls € ¢_1(0) N andx € B(H) suchthat¢(x) € .. Since P,y P, — y weakly
(even strongly), it follows from an application of [15, Lemma 3] that

ylly < sup [[PoyPully < ll¢(x) + il
n

Case (ii). Decompose H by H = (ker(b) @ ker(a)) @ (ker*(b) & ker(a)). Then it
is seen (from a straightforward argument using the fact that [a, b] = 0 = [a, b*]) that
a=a @®ay and b = b’ @ by, where ay, by are injective, b’ = 0 and d’ is injective
in the case in which ker(a) = {0}, and '’ = a; ® 0 and b’ = 0 @ by, with a; and
b1 injective, in the case in which ker(a) # {0}. Let y € ¢_1 (0) N .#. Then (this is
easily seen) y = y’ @ ys3, where y’ = 0 in the case in which ker(a) = {0} and y' =
y(l)l Y 82 in the case in which ker(a) # {0}. We consider the cases ker(a) # {0}
and ker(a) = {0} separately. It is convenient at this point for us to define the operator
Grs BY Qs (x) = rxr® — sxs*.
Case ker(a) # {0}. Let (0 #)y;i, i = 1,2, have the polar decomposition u;;|y;i|,
and let x = [)c,-j]?’j:1 € B(H) be such that ¢ (x) € .#. Define v € B(H) by v =

0 uj
0 D Ikeri(b)eker(a)' Then

)
lyul  * *
o)+ ylls = llv(@(x) + s = * [yl *
* *  Qaby (X33) + 33 ||,

=

t 0
0 Gaypy (x33) + 33|,
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[yvitl 0
. 0 |yl
Case (i) that ||¢a,p, (x33) + ¥331l.s = |ly33ll.s. Hence

ll¢(x) + yll = max{l|z]l, ly33ll} = [yl

where t = |: . The normal operator b, being injective, it follows from

and

1
lp )+ yllp = el + 33l ? = Iyllp-

Case ker(a) = {0}. In this case if we let x, x € B(ker(b) & ker™ (b)) such that

0

. . X X
¢(x) € ., have the matrix representation |:x + ! :|, then
2 33

Z ly3slls = llylls-
s

% k
I¢@) +ylls = ‘ [* Dayby (X33) + )’33]

Case (iii). In the case in which a~!(0) = b=1(0), let H have the direct sum decom-
position H = ker' b @ kerb. Thena = a; @ 0,b = by & 0, a; ' (0) N b, (0) = {0}
and every y € ¢_1(0) has the representation y = [yij]zl.zl, where ¢4, (y11) =0
and the other y;; are arbitrary. Letting x = [x; j]ﬁ j=1 € B(H), it follows that

2
Darb (X11) + Y11 y12:|

y21 y22

lp(x) + ylI* = H[

Z 7 Iparby x11) + yiull* + Z Iy 112
iji, j#1
> ! 2> Loz
> ZZnyijn ELEL
i,]

(where we use Case (ii) to conclude that ||¢q,p, (x11) + Y111l = ly11l]). A similar
argument gives that

o)+ yllp = kliyllp,
where k =2'72/7if | < p <2andk =277 1if2 < p < oo.

Case (iv). As before, let ¢5(x) = rxr* — sxs*. Letting H have the direct sum
decomposition H = ker™ b @ ker b, it follows from the commutativity of @ and b
that b = by ® 0 and a = a; @ ax, where by = bl ,, is injective. Now decompose
kerbbykerb = (kerb © kerazy) @ kerazy. Thenb =b; @ 0@ 0anda =a; Par @
0, where a> is injective. A simple calculation shows that if y € ¢—1(0), then (with
respect to the decomposition H = kerl b ® (kerb © kerany) @ keray, of H)

Y1 2 y3
y=|ys 0 ys|,
Yo Y1 )8
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where ¢4, (y1) =0, ‘Da.a; (»n)=0= @azaf(yg) and the remaining y; are arbitrary.
(Recall that @mt(z) = mzt and @,,(z) = mzm™.) Let x € B(H) have the representa-

tion x = [x,j]l =1 Then

barpy (x11) +y1 - Pajaz(X12) + 32 ¥4

lp(X) + y1* = || | Payar (x21) + 3 By, (x22) ys
Y6 y1 8

1
Z3 { paron G11) + Y117 + 1 Paya; (x12) + 327

8
Hl Payar (x21) + y3 117 + [ @ay 2 17+ D N1yl }
i=4

(by Lemma 2.2(i)). Applying Case (i) to the first entry, Lemma 2.3 to the second and
third entries, and ignoring the fourth entry in the sum above, it follows that

8
1 1
lee) + 12> 5 {”)’1 12+ 22l + sl + 3 ||y,~||2}

=4
8
1 2 1 2
36 ;21 llyill 36||y||

for all x € B(H). Arguing similarly it is seen that

lp(x) + yllp = 6""2Pllyll,
if 1 < p <2, and

lpx) + ¥l = 6*P iyl

if 2 < p < oo, forevery y € o~ 10)N %), and all x € B(H) such that ¢(x) € €.
This completes the proof. [

The operator A,y of Theorem 2.7 has ascent <1. (The ascent of the Banach space
operator £, asc(t), is the least non-negative integer n such that 1= (0) = t~"+1D(0).)
The constant k£ in Theorem 2.7 is in general greater than 1. The theorem fails if
k = 1: This is proved in [22] for the case in which a and b are normal. We do not
know if the hypotheses that a; and b} are normal can be replaced by the hypothesis
that they are subnormal. The following corollary is immediate from Case (ii) of the
proof of Theorem 2.7.

Corollary 2.8. Ifa) and b{ € B(H) are hyponormal operators a and by € B(H)
are normal operators, |ai,a2] =0=1[by,b2] and a| (O) Na, (O) ={0} =
b1 (0) Nb31(0), then (4,1 (0) N .7) L1 (Aap(B(H)) N f).
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Recall from Remark 2.5 that if a, b* are hyponormal operators, then A;}](O) -
A;*l’ p(0). Lety € A;})(O), and let @ and b have the decompositions @ = a; @ ap and
b = by @ by with respect to the decomposition H = ker’ y @ ker y of H. Defining
the quasi-affinity y; : ker™ y — tany by setting yjh = yh for each h € ker" y, it
then follows from the argument of the proof of Lemma 2.4(ii) that a; and b; are
normal operators. We have:

Iyl = Iyl < Idaxpr (1) + yills

< H I:Aaj“,bf(xll) + 1 Aa}*,b;(xm]

- A * Lk (X +
Agrpr (1) Agz i (x22) [ dax b+ (x) + ylls

g

for each x = [x; j]ﬁ i=1 such that 4, (x) € .#. Using this version of Lemma 2.4(ii)
in the proof of Case (i) of the proof of Theorem 2.7 it is seen that the following holds.

Theorem 2.9. Let a be a hyponormal operator which commutes with the normal
operatorb. Ifa='(0) N b~1(0) = {0} and ¢* : B(H) — B(H) is defined by ¢*(x) =
a*xa — b*xb, then (p~1(0) N 7)) L, (¢*(B(H)) N ¥).

We end this paper with the following two remarks, stated below as propositions.
The first of these propositions concerns the operator 4, 5, where a and b are Cp-
contractions [18]. Then A;L(O) Li 44.5(B(H)). By requiring more of the operators
a and b we prove that it is possible to choose k = 1. Our second proposition gives a
sufficient condition for the operator ¢ of Theorem 2.2 to be splitting left skew exact.

The operator a € B(H) is said to be of the class C,, p > 0, if there exists a
Hilbert space K D H such that a” = pPgu”|g, n = 1,2, ..., where Py denotes
the orthogonal projection of K onto H [18, p. 45]. Operators a € C, are power
bounded; indeed, if a € C, then there exists a positive invertible operator p and a
contraction ¢ such that a = pep~! [18, p. 92]. Clearly, if @ € C,, and b € C,, for
some p1, p2 > 0, then 4, satisfies Theorem 2.7: The following theorem says that if
y € A;’;,(O) satisfies certain additional properties, then the constant k& can be chosen
to be 1. (Recall that the implication ¢10) Ly pX = ¢71(0) Ly ¢X is gener-
ally false.) We state the theorem for the case .# = B(H); the minor modifications
required in the statement of the theorem for the case .# = %, is obvious.

Proposition 2.10. Ifa € C,, and b € C,, for some p1, po > 0, and if Ay »(y) =0
for some compact quasi-affinity y € B(H), then A;L(O) 11 44 5(B(H)).

Proof. We prove that a and b are unitary in such a case; this will then imply the
theorem.

Ifa € C,, and b € C,,, then there exist positive invertible operator p, ¢ and con-
tractions ¢y, ¢ such that a = p~lcip and b = gcag™'. Set pyg =1t; then ¢ is a
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compact quasi-affinity, 4., , () =0, %12 < c1|t*|2cT and |£]? < c§|t|202. Apply-
ing [6, Theorem 8] to [r*|? < c1|t*|2c’f and |t]? < c§|t|2cz it follows that ¢; and
¢ are unitaries. Since 4, ,(y) = 0 implies 4., ,(py) =0, Ab*,b(|py|2) = 0, where
|py| is a compact quasi-affinity. The equality 4, ,(|py|>) =0 when taken along-
with the invertibilty of b implies the existence of a unitary u such that u|py| = | py|b.
Applying [2, Theorem 2] to u|py| = |py|b to conclude that u is singular unitary
followed by an application of [2, Theorem 1(ii)] we conclude that b is unitary. The
equation 4, 5 (y) = 0 now implies that 4, ,+(|y*|>) = 0, and hence that there exists
a unitary w such that w|y| = |y|a*. The operator a* being C,,, it follows (from an
application of [2, Theorem 2] followed by an application of [2, Theorem 1(ii)]) that
a is unitary. This completes the proof. [

The descent of a Banach space operator T € B(X), dsc(T), is defined to be the
least non-negative integer n such that 7" (X) = T"t1(X) [11,16]. Recall that if both
asc(T) and dsc(T) are finite, then asc(7T) = dsc(T) [16, Proposition 4.10.6]. In the
following we call the pair (S, 7T), S and T € B(X), splitting skew exact if there
exists a bounded linear R : X — X suchthat T = RST and ST R = S. The follow-
ing proposition says that a necessary and sufficient condition for the pair (¢, ¢) to
be splitting skew exact is that dsc(¢) be finite.

Proposition 2.11. Let A be the operator Agy of the statement of Theorem 2.7. Then
A is splitting skew exact if and only if dsc(A) is finite.

Proof. It is clear from the implications

A710) Ly A(B(H)) = A~1(0) Ncl A(B(H)) = {0}
— A710) N A(B(H)) = {0} &= asc(4) = 1

and the hypothesis dsc(4) < oo that asc(4) = dsc(4) =1 and B(H) = A_I(O) ®
A(B(H)) [16, Proposition 4.10.6]. In particular, 4 is Drazin invertible [5,17]. Thus
there exists an operator AP e B(B(H)) such that A? A4 = A = AAAP, which im-
plies that (4, A) is splitting skew exact. If, on the other hand, (4, 4) is splitting skew
exact, then the existence of an operator » € B(B(H)) such that A4r = A implies
that A_I(O) + A(B(H)) = B(H) [13, Theorem 2]. Hence 4 has finite descent. [
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