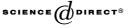


Available online at www.sciencedirect.com



LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 383 (2004) 93-106

www.elsevier.com/locate/laa

Subspace gaps and range-kernel orthogonality of an elementary operator

B.P. Duggal

Department of Mathematics, Faculty of Science, College of Science, UAEU, P.O. Box 17551, Al Ain, United Arab Emirates

Received 7 October 2003; accepted 9 November 2003

Submitted by R. Bhatia

Abstract

Range-kernel orthogonality is established for certain elementary operators. © 2003 Elsevier Inc. All rights reserved.

AMS classification: 47B47; 47B10

Keywords: Range-kernel orthogonality; *k*-gap; Exactness; Elementary operator; Hyponormal operator; Schatten *p*-classes

1. Introduction

If *M* and *N* are subspaces of a Banach space *X*, then ([14] IV (2.8), (2.9); [12]) the gap between *M* and *N* is defined by

 $gap(M, N) = max(\delta(M, N), \delta(N, M)),$

where

 $\delta(M, N) = ||K_N J_M|| = \sup\{\operatorname{dist}(x, N) : x \in M, ||x|| \leq 1\}.$

Here $J_M : M \to X$ and $K_N : X \to X/N$ are the *natural injection* and the *quotient map* induced by *M* and *N*. Dually [13]

 $\gamma(M, N) = \gamma(K_M J_N) = \inf\{\|x\|_M : \operatorname{dist}(x, N) \ge 1\}$

is the conorm or "reduced minimum modulus" of the operator $K_M J_N$. Evidently

E-mail address: bpduggal@uaeu.ac.ae (B.P. Duggal).

^{0024-3795/\$ -} see front matter $_{\odot}$ 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2003.11.006

 $\gamma(M, N) \ge 1;$

94

we say that M is orthogonal to N when this holds with equality. In the following we focus on the *range* and the *null space* of an operator.

Definition. If $T : X \to Y$ and $S : Y \to Z$ are bounded linear operators between Banach spaces, and k > 0, we shall say that (S, T) has a *k*-gap, and write $S^{-1}(0) \perp_k TX$, provided

$$y \in S^{-1}(0) \Longrightarrow ||y|| \le k \operatorname{dist}(y, T(X)).$$
(1)

If we let $M = \operatorname{cl} T(X)$ and $N = S^{-1}(0)$, then implication (1) says that the operator $K_M J_N$ is bounded below. The presence of such a gap in the pair (S, T) is sandwiched between various kinds of "skew exactness" [11,13]. If we call (S, T) *left skew exact* when

$$S^{-1}(0) \cap T(X) = \{0\},\tag{2}$$

strongly left skew exact if there is k > 0 for which

$$||T(.)|| \leq k||ST(.)|| \quad \text{on } X \tag{3}$$

and *splitting left skew exact* when there is a bounded linear $R : Z \to Y$ for which

$$T = RST, (4)$$

then there is implication

$$(4) \Longrightarrow (3) \Longrightarrow (1) \Longrightarrow (2). \tag{5}$$

If we go on to call (S, T) linearly left skew exact when

$$S^{-1}(0) \cap \operatorname{cl} T(X) = \{0\},\tag{6}$$

then also

$$(1) \Longrightarrow (6) \Longrightarrow (2). \tag{7}$$

If for example the operator *S* has a bounded left inverse *R* then the condition (4) holds, hence also (1). If we let Y = Z, then a sufficient condition for this to hold is ||I - S|| < 1. This compares with, but does not correspond to (see [13]), a result of Turnšek [21, Theorem 1.1] who notices that if $X = Y = Z = \mathcal{A}$ is a Banach algebra, $S = I - \phi$ and $\phi : \mathcal{A} \to \mathcal{A}$ is a linear transformation such that $||\phi|| \leq 1$, then $S^{-1}(0) \perp_1 S\mathcal{A}$. More generally if $\phi : \mathcal{A} \to \mathcal{A}$ is power bounded (i.e., there exists a number k > 0 such that $\sup_n ||\phi^n|| \leq k$), $S = I - \phi$ and $T = \phi - \phi^2$, then $S^{-1}(0) \perp_k T\mathcal{A}$. This follows from the argument below upon letting $n \to \infty$. If $y \in (I - \phi)^{-1}(0)$ and $x \in \mathcal{A}$, then

$$\left(\phi - \phi^{n+1}\right)(x) = \sum_{i=1}^{n} \phi^{i} \{(I - \phi)x + y\} - ny$$
$$\implies \|y\| \leqslant \left(\frac{2k}{n}\right) \|x\| + k\|Tx + y\|$$

n

Let B(H) denote the algebra of operators (= bounded linear transformations) on a separable complex infinite dimensional Hilbert space H, and let \mathscr{I} denote B(H)(with its usual operator norm $\|\cdot\|$) or one of the von Neumann–Schatten p-classes $\mathscr{C}_p, 1 \leq p < \infty$ (with norm $\|\cdot\|_p$). Particularly interesting examples of the operator ϕ, ϕ not necessarily a contraction, which have attracted a lot of attention are the elementary operator $\Delta_{ab} : B(H) \to \mathscr{I}, \Delta_{ab}(x) = a_1xb_1 - a_2xb_2$, where $\mathbf{a} = (a_1, a_2)$ and $\mathbf{b} = (b_1, b_2)$ are pairs of mutually commuting normal operators in B(H), and the generalized derivation $\delta_{ab} : B(H) \to \mathscr{I}, \delta_{ab}(x) = ax - xb$, where $a, b \in B(H)$ are normal operators (see [1,4,8–10,15,21–23] for further references). In this paper we consider the elementary operator Δ_{ab} for the case in which the operators a_1 , b_1^* are hyponormal, the operators a_2, b_2 are normal, a_1 commutes with a_2 and b_1 commutes with b_2 . It will be shown that (Δ_{ab}, Δ_{ab}) has a k-gap (so that (Δ_{ab}, Δ_{ab}) is both left skew exact and linearly left skew exact).

2. Results

Recall that an element $h \in B(X)$, X a Banach space, is said to be *hermitian* if the spatial numerical range $W(h) = \{f(hx) : x \in X, f \in X', ||x|| = ||f|| = f(x) = 1\}$ of h is a subset of the reals, and the operator $a = h + ig \in B(X)$, h and g hermitian, is said to be *normal* if the *commutator* [h, g] = hg - gh is 0. Recall also that if the operator $\phi : X \to X$ is normal, then $\phi^{-1}(0) \perp_1 \phi X$ [10, Theorem A]. The normality of $a, b \in B(H)$ guarantees the normality of δ_{ab} . (Indeed, the condition is both necessary and sufficient; see [20, Theorem 2.2].) Also, if \mathscr{I} is the Hilbert–Schmidt class \mathscr{C}_2 with its Hilbert space structure and $\mathbf{a} = (a_1, a_2, \ldots, a_n)$, $\mathbf{b} = (b_1, b_2, \ldots, b_n)$ are *n*-tuples of mutually commuting normal operators, then $\mathscr{E}_{ab}(x) = \sum_{i=1}^{n} a_i x b_i$ is a normal operator on $\mathscr{I} \to \mathscr{I}$ such that $\mathscr{E}_{ab}^*(x) = \mathscr{E}_{a^*b^*}(x)$ and $\|\mathscr{E}_{ab}(x) + y\|_2^2 = \|\mathscr{E}_{ab}(x)\|_2^2 + \|y\|_2^2$ for every $y \in \mathscr{E}_{ab}^{-1}(0) \cap \mathscr{C}_2$ and $x \in \mathscr{C}_2$ [9]. More generally, if \mathscr{E}_{ab} (or δ_{ab}): $\mathscr{I} \to \mathscr{I}$ is normal, then $(\mathscr{E}_{ab}, \mathscr{E}_{ab})$ (resp., $(\delta_{ab}, \delta_{ab})$) has a 1-gap (see [10, Theorem A]). We remark here that the normality of a_i and b_i in the mutually commuting *n*-tuples a and b is not enough to warrantee the normality of \mathscr{E}_{ab} .

Example 2.1. Recall from [22, Theorem 2.4] that if $a, b \in B(H)$ are commuting normal operators and $\phi : B(H) \rightarrow B(H)$ is defined by $\phi(x) = axa^* - bxb^*$, then

$$\|\phi(x) + y\|_{\mathscr{I}} \ge \|y\|_{\mathscr{I}} \tag{8}$$

for every $y \in \phi^{-1}(0) \cap \mathscr{I}$ and all $x \in B(H)$ such that $\phi(x) \in \mathscr{I}$ if and only if $a^{-1}(0) \cap b^{-1}(0) = \{0\}$. Thus if we choose the normal a and b to be such that $a^{-1}(0) \cap b^{-1}(0) \neq \{0\}$, then ϕ cannot be normal (for if it were then we would have by [10, Theorem A] that (8) holds). Now choose the operator b in $\phi(x) = axa^* - bxb^*$ to be the identity operator and let the normal a be such that $a^{-1}(0) \neq \{0\}$. Then $a^{-1}(0) \cap b^{-1}(0) = \{0\}$ and if $\phi^{-1}(0) \neq \{0\}$ then 1 is an eigenvalue of ϕ . Suppose that ϕ is normal. Then Φ_a , $\Phi_a(x) = \phi(x) + x = axa^*$, is normal. Hence

 $\|\Phi_a(x) + y\|_{\mathscr{I}} \ge \|y\|_{\mathscr{I}}, \mathscr{I} \ne \mathscr{C}_2$, for every $y \in \Phi_a^{-1}(0) \cap \mathscr{I}$ and all $x \in B(H)$ such that $\Phi_a(x) \in \mathscr{I}$. This however contradicts [22, Proposition 2.1]. Hence ϕ is not normal.

Example 2.1 shows that the normality of the commuting pair of operators *a* and *b* is not sufficient for the subspaces $\phi^{-1}(0) \cap \mathscr{I}$ and $\operatorname{cl} \phi \mathscr{I}, \mathscr{I} \neq \mathscr{C}_2$, to have a 1-gap: It is however sufficient for the said subspaces to have a *k*-gap for some $k \ge 1$ (see [15, Theorem 2]). The normality of *a* and *b* is not a necessary condition for $\phi^{-1}(0) \cap \mathscr{I}$ and $\operatorname{cl} \phi \mathscr{I}, \mathscr{I} \neq \mathscr{C}_2$, to have a 1-gap. Thus if ϕ is such that 0 is not in the interior of the numerical range of $\phi \in B(B(H))$, then $||x + \phi y|| \ge ||x|| - \sqrt{8||\phi(x)|||y||}$ for all $x, y \in B(H)$ [4, Theorem 6, p. 20]. In particular, if 0 is an eigen-value which is not in the interior of the numerical range of ϕ , then $\phi^{-1}(0) \perp_1 \phi(B(H))$. (We remark here that this is precisely the situation when $S : \mathscr{A} \to \mathscr{A}$, \mathscr{A} a unital Banach algebra, is a contraction and $\phi = I - S$.) Our main result, Theorem 2.7, shows that the hypothesis a and b are commuting normal operators can be replaced by the hypothesis that a is a hyponormal operator which commutes with the normal operator b. (We note here that a better result holds in the case in which $\mathscr{I} = \mathscr{C}_2$, see Remark 2.6 below.) The following complementary lemmas will be required in the proof of our main result.

Lemma 2.2. Let t have the block matrix representation $t = (t_{ij}), 1 \le i, j \le n$.

- (i) If $t \in B(H)$, then $n^{-2} \sum_{i,j} ||t_{ij}||^2 \leq ||t||^2 \leq \sum_{i,j} ||t_{ij}||^2$.
- (ii) If $t \in \mathscr{C}_p$, $1 \leq p < \infty$, then

96

$$n^{2-p} ||t||_p^p \leq \sum_{i,j} ||t_{ij}||_p^p \leq ||t||_p^p$$

if
$$2 \leq p < \infty$$
, and
 $\|t\|_p^p \leq \sum_{i,j} \|t_{ij}\|_p^p \leq n^{2-p} \|t\|_p^p$
if $1 \leq p \leq 2$.

Proof. See [3], Theorems 1 and 2. \Box

Lemma 2.3. Suppose that the eigen-space corresponding to the eigen-value 0 of $a \in B(H)$ is reducing. If $\Phi_a : B(H) \to B(H)$ is defined by $\Phi_a(x) = axa^*$, then $(y \in \Phi_a^{-1}(0) \text{ implies } a^*ya = 0 \text{ and})$ there exists a constant k such that $(\Phi_a^{-1}(0) \cap \mathscr{I}) \perp_k (\Phi_a(B(H)) \cap \mathscr{I}).$

97

Proof. The inequality being trivially true if $a^{-1}(0) = \{0\}$, we assume that $a^{-1}(0) \neq \{0\}$. Then, with respect to the decomposition $H = \ker^{\perp} a \oplus \ker a$, a has a direct sum decomposition $a = a_1 \oplus 0$, where $a_1 = a|_{\ker^{\perp} a}$ is an injection. A simple calculation shows that if $y \in \Phi_a^{-1}(0)$, then y has a matrix representation $y = \begin{bmatrix} 0 & y_1 \\ y_2 & y_3 \end{bmatrix}$, where the operators y_i are arbitrary. (Clearly, $a^*ya = 0$.) Letting $x \in B(H)$ have the matrix representation $x = [x_{ij}]_{i,j=1}^2$, it follows that

$$\Phi_a(x) + y = \begin{bmatrix} a_1 x_{11} a_1^* & y_1 \\ y_2 & y_3 \end{bmatrix}$$

We consider the cases $\Phi(x) + y \in B(H)$ and $\Phi(x) + y \in \mathscr{C}_p$ separately. *The operator norm case.* Applying Lemma 2.2(i),

$$\begin{split} \|\Phi_a(x) + y\|^2 &\ge \frac{1}{4} \left\{ \|a_1 x_{11} a_1^*\|^2 + \sum_{i=1}^3 \|y_i\|^2 \right\} \\ &\ge \frac{1}{4} \sum_{i=1}^3 \|y_i\|^2 \ge \frac{1}{4} \|y\|^2, \end{split}$$

and we may choose k to be 2.

 $1 \leq p \leq 2$. Applying Lemma 2.2(ii),

$$\begin{split} \|\Phi_{a}(x) + y\|_{p}^{p} &\geq 2^{p-2} \left\{ \|a_{1}x_{11}a_{1}^{*}\|_{p}^{p} + \sum_{i=1}^{3} \|y_{i}\|_{p}^{p} \right\} \\ &\geq 2^{p-2} \sum_{i=1}^{3} \|y_{i}\|_{p}^{p} \geq 2^{p-2} \|y\|_{p}^{p}, \end{split}$$

and we may choose *k* to be $2^{2/p-1}$.

2 . Again applying Lemma 2.2(ii),

$$\|\Phi_{a}(x) + y\|_{p}^{p} \ge \|a_{1}x_{11}a_{1}^{*}\|_{p}^{p} + \sum_{i=1}^{3} \|y_{i}\|_{p}^{p}$$
$$\ge \sum_{i=1}^{3} \|y_{i}\|_{p}^{p} \ge 2^{2-p} \|y\|_{p}^{p},$$

and we may choose *k* to be $2^{1-2/p}$. \Box

Recall that the eigen-spaces of a hyponormal operator are reducing. Let a, b^* be hyponormal operators such that ayb = 0. Define a_1 and $t (\in B(H \oplus H))$ by $a_1 =$

 $a \oplus b^*$ and $t = \begin{bmatrix} 0 & y \\ 0 & 0 \end{bmatrix}$. Then $a_1 t a_1^* = 0$, and it follows from Lemma 2.3 that there exists a constant k such that $||t|| \leq k ||a_1 x a_1^* + t||$ for all $x \in B(H \oplus H)$ satisfying $a_1xa_1^* \in \mathcal{I}$. In particular, there exists a constant $k, k \ge 1$, such that $k ||axb + y||_{\mathcal{I}} \ge 1$ $||y||_{\mathscr{I}}$ for every $y \in \mathscr{I}$ satisfying ayb = 0 and all $x \in B(H)$ satisfying $axb \in \mathscr{I}$.

In the following the (elementary) operator $\Delta_{a,b} : B(H) \to B(H)$ shall be defined by $\Delta_{a,b}(x) = axb - x$. (Thus, if **a** and **b** are the pairs **a** = (a, I) and **b** = (b, I), then $\Delta_{a,b}(x) = \Delta_{\mathbf{ab}}(x).$

Lemma 2.4. Let $a, b \in B(H)$ and $1 \leq p < \infty$. Then:

98

- (i) $y \in \{\Delta_{a,b}^{-1}(0) \cap \Delta_{a,b*}^{-1}(0)\} \cap \mathscr{C}_p \text{ and } x \in \mathscr{C}_p \Longrightarrow$ $\|y\|_p \leqslant \|\varDelta_{a,b}(x) + y\|_p.$
- (ii) $\Delta_{a,b}^{-1}(0) \subseteq \Delta_{a^*,b^*}^{-1}(0) \Longrightarrow \|y\|_{\mathscr{I}} \leqslant \|\Delta_{a,b}(x) + y\|_{\mathscr{I}},$ for all $y \in \Delta_{a,b}^{-1}(0)$ and $x \in B(H)$ such that $\Delta_{a,b}(x) \in \mathscr{I}.$

Proof. (i) If $y \in \{\Delta_{a,b}^{-1}(0) \cap \Delta_{a^*,b^*}^{-1}(0)\} \cap \mathscr{C}_p$ and 1 , then a proof of (i)follows from an application of [8, Theorem 3.6]. Thus let p = 1. For $y \in \Delta_{a,b}^{-1}(0) \cap$ $\Delta_{a^*,b^*}^{-1}(0)$, let $H_1 = \ker^{\perp} y$, $H_2 = \overline{\operatorname{rany}}$, and let the quasi-affinity $y_1 : H_1 \to H_2$ be defined by setting $y_1h = yh$ for each $h \in H_1$. Let $a_1 = a|_{H_2}$ and $b_1 = b|_{H_1}$. Then $\Delta_{a_1,b_1}(y_1) = 0 = \Delta_{a_1^*,b_1^*}(y_1)$, and it follows from a consideration of the equations $b_1 y_1^* \Delta_{a_1,b_1}(y_1) = 0 = \Delta_{a_1,b_1}(y_1) y_1^* a_1$ that $[a_1, |y_1^*|] = 0 = [b_1, |y_1|]$. Let y_1 have the polar decomposition $y_1 = u_1|y_1|$, u_1 unitary. Then $a_1u_1|y_1|b_1 = a_1u_1b_1|y_1| =$ $u_1|y_1|$, which implies that $a_1u_1b_1 = u_1$, b_1 is invertible and b_1^{-1} is unitarily equivalent to a_1 . In particular, $u_1 \in \Delta_{a_1,b_1}^{-1}(0) \cap \Delta_{a_1^*,b_1^*}^{-1}(0)$. Theorem 3.7 of [8] applies and we conclude that

 $||y_1||_1 \leq ||\Delta_{a_1,b_1}(z) + y_1||_1$

for all $z \in \mathscr{C}_1(H_1 \to H_2)$. Now let $x \in \mathscr{C}_1$. Then $x : H_1 \oplus (H \ominus H_1) \to H_2 \oplus (H \ominus H_2)$ H_2) has a representation $x = [x_{ij}]_{i,j=1}^2$, where $x_{11} = z$. Letting $a = a_1 \oplus a_2$ and $b = b_1 \oplus b_2$ we have:

$$\begin{aligned} \|y\|_{1} &= \|y_{1}\|_{1} \leq \|\varDelta_{a_{1},b_{1}}(x_{11}) + y_{1}\|_{1} \\ &\leq \left\| \begin{bmatrix} \varDelta_{a_{1},b_{1}}(x_{11}) + y_{1} & \varDelta_{a_{1},b_{2}}(x_{12}) \\ \varDelta_{a_{2},b_{1}}(x_{21}) & \varDelta_{a_{2},b_{2}}(x_{22}) \end{bmatrix} \right\|_{1} \\ &= \|\varDelta_{a,b}(x) + y\|_{1}. \end{aligned}$$

This completes the proof of (i). (ii) Let $y \in \Delta_{ab}^{-1}(0) \subseteq \Delta_{a^*,b^*}^{-1}(0)$. Defining a_1 , b_1 and y_1 as in the proof of (i) above it follows that a_1 and b_1^{-1} are unitarily equivalent operators, and both y_1 and

 a_1y_1 are in $\Delta_{a_1,b_1}^{-1}(0) \cap \Delta_{a_1^*,b_1^*}^{-1}(0)$. Hence $\Delta_{a_1^*,b_1^*}(a_1y_1) = 0 = a_1\Delta_{a_1^*,b_1^*}(y_1)$, which implies that a_1 and b_1 are normal operators. Thus

 $\|y_1\|_{\mathscr{I}} \leq \|\varDelta_{a_1,b_1}(z) + y_1\|_{\mathscr{I}}$

for every $y \in \Delta_{a,b}^{-1}(0) \cap \mathscr{I}$ and all $z \in B(H_1 \to H_2)$ such that $\Delta_{a_1,b_1}(z) \in \mathscr{I}$. The proof is now completed upon arguing as in the proof of (i) above. \Box

Remark 2.5. The hypothesis $\Delta_{a,b}^{-1}(0) \subseteq \Delta_{a^*,b^*}^{-1}(0)$ is satisfied for *a* and *b*^{*} belonging to a number of the commonly considered classes of Hilbert space operators (see [7,19]), amongst them the class of hyponormal operators. Thus Lemma 2.4(ii) holds, in particular, for hyponormal a and b^* . Indeed more is true: The following (Putnam–Fuglede type) commutativity result holds. If $a \in B(H)$ is a hyponormal operator which commutes with the normal operator $b \in B(H)$, then $\phi^{-1}(0) \subseteq$ $\phi^{*-1}(0)$, where (as before, $\phi(x) = axa^* - bxb^*$ and) $\phi^*(x) = a^*xa - b^*xb$. This is seen as follows. Recall from the Berberian extension theorem that given an $a \in$ B(H) there exists a Hilbert space $K \supset H$ and an isometric *-isomorphism $a \rightarrow$ a^{o} preserving order such that $\sigma(a) = \sigma(a^{o})$ and $\sigma_{\pi}(a) = \sigma_{\pi}(a^{o}) = \sigma_{p}(a^{o})$. (Here $\sigma_p(a)$ and $\sigma_{\pi}(a)$ denote the point spectrum and the approximate point spectrum, respectively, of a.) Let $y \in \phi^{-1}(0)$, and let $a^o = c$, $b^o = d$ and $y^o = z$; then $czc^* - czc^* = d$ $dzd^* = 0$, where the operator c is hyponormal, the operator d is normal and [c, d] =0. Since ker(d) reduces d, d has a decomposition $d = 0 \oplus d_{22}$ (on $K = \text{ker}(d) \oplus d_{22}$ $\ker^{\perp}(d)$). Letting $c : \ker(d) \oplus \ker^{\perp}(d) \to \ker(d) \oplus \ker^{\perp}(d)$ have the matrix representation $c = [c_{ij}]_{i,j=1}^2$, it follows from the commutativity of c and d (combined with the injectivity of d_{22}) that $c_{12} = c_{21} = 0$. Now let $z : \ker(d) \oplus \ker^{\perp}(d) \to \ker(d) \oplus$ ker^{\perp}(d) have the representation $[z_{ij}]_{i,j=1}^2$. Then $0 = c_{11}z_{11}c_{11}^* = c_{11}z_{12}c_{22}^* = c_{22}z_{21}c_{11}^*$ and $c_{22}z_{22}c_{22}^* - d_{22}z_{22}d_{22}^* = 0$. The operators c_{11} and c_{22} being hyponormal, it follows from an application of Lemma 2.3 that $0 = c_{11}^* z_{11} c_{11} = c_{11}^* z_{12} c_{22} =$ $c_{22}^* z_{21} c_{11}$. The operator d_{22} is invertible and $[d_{22}^{-1}, c_{22}] = 0$. Hence $r = d_{22}^{-1} c_{22} =$ $c_{22}d_{22}^{-1}$ is hyponormal, and $rz_{22}r^* - z_{22} = 0$. Recall now that if r is a hyponormal operator and $rt - tr^* = 0$ for some operator $t \in B(K)$, then $r^*t - tr = 0$ [7,19]. This in view of [7, Theorem 2] implies that $r^*z_{22}r - z_{22} = 0$, or, $c_{22}^*z_{22}c_{22} - d_{22}^*z_{22}d_{22} = 0$. Combining, we now have that $c^*zc - d^*zd = 0$, which implies that $a^{\overline{*}}ya - b^*yb = 0.$

Remark 2.6. Choosing \mathscr{I} to be the Hilbert space \mathscr{C}_2 with the inner product $\langle x, y \rangle = tr(y^*x)$ it is seen that if the operators *a* and *b* are as in Remark 2.5, then adjoint of $\phi : \mathscr{C}_2 \to \mathscr{C}_2$ is defined by $\phi^*(x) = a^*xa - b^*xb$,

$$\|\phi(x) + y\|_2^2 = \|\phi(x)\|_2^2 + \|y\|_2^2 + 2\operatorname{Re}\langle\phi(x), y\rangle$$

= $\|\phi(x)\|_2^2 + \|y\|_2^2 + 2\operatorname{Re}\langle x, \phi^*(y)\rangle$

and

$$\|\phi^*(x) + y\|_2^2 = \|\phi^*(x)\|_2^2 + \|y\|_2^2 + 2\operatorname{Re}\langle x, \phi(y) \rangle.$$

Hence (by the commutativity property proved in Remark 2.5)

$$\|\phi(x) + y\|_2^2 = \|\phi(x)\|_2^2 + \|y\|_2^2$$

and

$$\|\phi^*(x) + y\|_2^2 = \|\phi^*(x)\|_2^2 + \|y\|_2^2$$

for every $y \in \phi_{ab}^{-1}(0) \cap \mathscr{C}_2$ and all $x \in \mathscr{C}_2$. The following is our main result.

Theorem 2.7. Let $\Delta_{ab} \in B(B(H))$ be the elementary operator $\Delta_{ab}(x) = a_1xb_1 - a_2xb_2$, where a_1 and $b_1^* \in B(H)$ are hyponormal operators, a_2 and $b_2 \in B(H)$ are normal operators, a_1 commutes with a_2 and b_1 commutes with b_2 . Then there exists a constant k such that $(\Delta_{ab}^{-1}(0) \cap \mathscr{I}) \perp_k (\Delta_{ab}(B(H)) \cap \mathscr{I})$.

Proof. If we set $\widehat{H} = H \oplus H$, and define the operators $a, b, s, z \in B(\widehat{H})$ and the operator $\phi \in B(B(H))$ by $a = a_1 \oplus b_1^*$, $b = a_2 \oplus b_2^*$, $s = \begin{bmatrix} 0 & y \\ 0 & 0 \end{bmatrix}$, $z = \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix}$ and $\phi(z) = aza^* - bzb^*$, then

$$\phi(z) + s = \begin{bmatrix} 0 & \Delta_{\mathbf{ab}}(x) + y \\ 0 & 0 \end{bmatrix}, \quad \|s\| = \|y\|, \quad \|\Delta_{\mathbf{ab}}(x) + y\| = \|\phi(z) + s\|.$$

and

$$||s||_p = ||y||_p, ||\Delta_{\mathbf{ab}}(x) + y||_p = ||\phi(z) + s||_p$$

for every $y \in \mathcal{C}_p$ and all x such that $\Delta_{ab}(x) \in \mathcal{C}_p$. Thus to prove the theorem it will suffice to prove the following: If $a \in B(H)$ is a hyponormal operator which commutes with the normal operator $b \in B(H)$, then there exists a constant k such that $(\phi^{-1}(0) \cap \mathcal{I}) \perp_k (\phi(B(H)) \cap \mathcal{I})$. We divide the proof into the cases: (i) b is injective; (ii) $a^{-1}(0) \cap b^{-1}(0) = \{0\}$; (iii) $a^{-1}(0) = b^{-1}(0)$; and (iv) $a^{-1}(0) \neq b^{-1}(0)$, where cases (i) and (ii) will be used in proving cases (iii) and (iv).

Case (i). We start by noticing that if *b* is invertible, then $r = ab^{-1} = b^{-1}a$ is hyponormal and $\Delta_{r,r^*}^{-1}(0) \subseteq \Delta_{r^*,r}^{-1}(0)$ (by Remark 2.5). Applying Lemma 2.4(ii) it follows that

$$\|\phi(x) + y\|_{\mathscr{I}} = \|(ab^{-1})(bxb^*)(ab^{-1})^* - (bxb^*) + y\|_{\mathscr{I}}$$
$$= \|\varDelta_{r,r^*}(bxb^*) + y\|_{\mathscr{I}} \ge \|y\|_{\mathscr{I}}$$

for all $y \in \phi^{-1}(0) \cap \mathscr{I}$ and $x \in B(H)$ such that $\phi(x) \in \mathscr{I}$. Suppose now that $b^{-1}(0) = \{0\}$. Let δ_n denote the set of complex numbers λ such that $|\lambda| \leq \frac{1}{n}$ for some natural number n, and let $E_b(\delta_n)$ denote the corresponding spectral projection. Set $P_n = I - E_b(\delta_n)$; then P_n converges strongly to I. Since $[a, b] = 0 = [a, b^*]$, $P_n H$ reduces both a and b. This, upon decomposing H by $H = (I - P_n)H \oplus P_n H$, implies that a and b have the direct sum decompositions $a = a_{1(n)} \oplus a_{2(n)}$ and $b = a_{1(n)} \oplus a_{2(n)}$.

 $b_{1(n)} \oplus b_{2(n)}$, where $a_{i(n)}$, i = 1, 2, are hyponormal and $b_{2(n)}$ is invertible. Let $y \in \phi^{-1}(0) \cap \mathscr{I}$ have the representation $[y_{ij}]_{i,j=1}^2$ and let $x \in B(H)$ have the representation $x = [x_{ij}]_{i,j=1}^2$. Then, since

$$P_{n}(\phi(x) + y)P_{n} = P_{n}(axa^{*} - bxb^{*} + y)P_{n}$$

= $P_{n}aP_{n}xP_{n}a^{*}P_{n} - P_{n}bP_{n}xP_{n}b^{*}P_{n} + P_{n}yP_{n}$
= $a_{2(n)}P_{n}xP_{n}a^{*}_{2(n)} - b_{2(n)}P_{n}xP_{n}b^{*}_{2(n)} + P_{n}yP_{n}$

and the operator $b_{2(n)}$ is invertible, we have that

$$\|\phi(x) + y\|_{\mathscr{I}} = \left\| \begin{bmatrix} * & * \\ * & P_n(\phi(x) + y)P_n \end{bmatrix} \right\|_{\mathscr{I}}$$
$$\geq \|P_n(\phi(x) + y)P_n\|_{\mathscr{I}} \geq \|P_nyP_n\|_{\mathscr{I}}.$$

Thus

$$\sup_{n} \|P_{n}yP_{n}\|_{\mathscr{I}} \leq \|\phi(x) + y\|_{\mathscr{I}} < \infty$$

for all $s \in \phi^{-1}(0) \cap \mathscr{I}$ and $x \in B(H)$ such that $\phi(x) \in \mathscr{I}$. Since $P_n y P_n \to y$ weakly (even strongly), it follows from an application of [15, Lemma 3] that

$$\|y\|_{\mathscr{I}} \leq \sup_{n} \|P_{n}yP_{n}\|_{\mathscr{I}} \leq \|\phi(x) + y\|_{\mathscr{I}}.$$

Case (ii). Decompose *H* by $H = (\ker(b) \oplus \ker(a)) \oplus (\ker^{\perp}(b) \oplus \ker(a))$. Then it is seen (from a straightforward argument using the fact that $[a, b] = 0 = [a, b^*]$) that $a = a' \oplus a_2$ and $b = b' \oplus b_2$, where a_2 , b_2 are injective, b' = 0 and a' is injective in the case in which $\ker(a) = \{0\}$, and $a' = a_1 \oplus 0$ and $b' = 0 \oplus b_1$, with a_1 and b_1 injective, in the case in which $\ker(a) \neq \{0\}$. Let $y \in \phi^{-1}(0) \cap \mathcal{I}$. Then (this is easily seen) $y = y' \oplus y_{33}$, where y' = 0 in the case in which $\ker(a) = \{0\}$ and $y' = \begin{bmatrix} 0 & y_{22} \\ y_{11} & 0 \end{bmatrix}$ in the case in which $\ker(a) \neq \{0\}$. We consider the cases $\ker(a) \neq \{0\}$ and $\ker(a) = \{0\}$ separately. It is convenient at this point for us to define the operator

 ϕ_{rs} by $\phi_{rs}(x) = rxr^* - sxs^*$.

Case ker(*a*) \neq {0}. Let $(0 \neq)y_{ii}$, i = 1, 2, have the polar decomposition $u_{ii}|y_{ii}|$, and let $x = [x_{ij}]_{i,j=1}^3 \in B(H)$ be such that $\phi(x) \in \mathscr{I}$. Define $v \in B(H)$ by $v = \begin{bmatrix} 0 & u_{11}^* \\ u_{22}^* & 0 \end{bmatrix} \oplus I_{\text{ker}^{\perp}(b) \oplus \text{ker}(a)}$. Then

$$\begin{split} \|\phi(x) + y\|_{\mathscr{I}} &\ge \|v(\phi(x) + y)\|_{\mathscr{I}} = \left\| \begin{bmatrix} |y_{11}| & * & * \\ * & |y_{22}| & * \\ * & * & \phi_{a_2b_2}(x_{33}) + y_{33} \end{bmatrix} \right\|_{\mathscr{I}}, \\ &\ge \left\| \begin{bmatrix} t & 0 \\ 0 & \phi_{a_2b_2}(x_{33}) + y_{33} \end{bmatrix} \right\|_{\mathscr{I}}, \end{split}$$

where $t = \begin{bmatrix} |y_{11}| & 0 \\ 0 & |y_{22}| \end{bmatrix}$. The normal operator b_2 being injective, it follows from Case (i) that $\|\phi_{a_2b_2}(x_{33}) + y_{33}\|_{\mathscr{I}} \ge \|y_{33}\|_{\mathscr{I}}$. Hence

 $\|\phi(x) + y\| \ge \max\{\|t\|, \|y_{33}\|\} = \|y\|$

and

$$\|\phi(x) + y\|_p \ge (\|t\|_p^p + \|y_{33}\|_p^p)^{\frac{1}{p}} = \|y\|_p.$$

Case ker(*a*) = {0}. In this case if we let $x, x \in B(\text{ker}(b) \oplus \text{ker}^{\perp}(b))$ such that $\phi(x) \in \mathcal{I}$, have the matrix representation $\begin{bmatrix} x_0 & x_1 \\ x_2 & x_{33} \end{bmatrix}$, then

$$\|\phi(x) + y\|_{\mathscr{I}} = \left\| \begin{bmatrix} * & * \\ * & \phi_{a_2b_2}(x_{33}) + y_{33} \end{bmatrix} \right\|_{\mathscr{I}} \ge \|y_{33}\|_{\mathscr{I}} = \|y\|_{\mathscr{I}}.$$

Case (iii). In the case in which $a^{-1}(0) = b^{-1}(0)$, let *H* have the direct sum decomposition $H = \ker^{\perp} b \oplus \ker b$. Then $a = a_1 \oplus 0$, $b = b_1 \oplus 0$, $a_1^{-1}(0) \cap b_1^{-1}(0) = \{0\}$ and every $y \in \phi^{-1}(0)$ has the representation $y = [y_{ij}]_{i,j=1}^2$, where $\phi_{a_1b_1}(y_{11}) = 0$ and the other y_{ij} are arbitrary. Letting $x = [x_{ij}]_{i,j=1}^2 \in B(H)$, it follows that

$$\|\phi(x) + y\|^{2} = \left\| \begin{bmatrix} \phi_{a_{1}b_{1}}(x_{11}) + y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \right\|^{2}$$
$$\geqslant \frac{1}{4} \left\{ \|\phi_{a_{1}b_{1}}(x_{11}) + y_{11}\|^{2} + \sum_{i,j:i,j\neq 1} \|y_{ij}\|^{2} \right\}$$
$$\geqslant \frac{1}{4} \sum_{i,j} \|y_{ij}\|^{2} \geqslant \frac{1}{4} \|y\|^{2}$$

(where we use Case (ii) to conclude that $\|\phi_{a_1b_1}(x_{11}) + y_{11}\| \ge \|y_{11}\|$). A similar argument gives that

 $\|\phi(x) + y\|_p \ge k \|y\|_p,$

where
$$k = 2^{1-2/p}$$
 if $1 \le p < 2$ and $k = 2^{2/p-1}$ if $2 .$

Case (iv). As before, let $\phi_{rs}(x) = rxr^* - sxs^*$. Letting *H* have the direct sum decomposition $H = \ker^{\perp} b \oplus \ker b$, it follows from the commutativity of *a* and *b* that $b = b_1 \oplus 0$ and $a = a_1 \oplus a_{22}$, where $b_1 = b|_{\ker^{\perp} b}$ is injective. Now decompose ker *b* by ker $b = (\ker b \ominus \ker a_{22}) \oplus \ker a_{22}$. Then $b = b_1 \oplus 0 \oplus 0$ and $a = a_1 \oplus a_2 \oplus 0$, where a_2 is injective. A simple calculation shows that if $y \in \phi^{-1}(0)$, then (with respect to the decomposition $H = \ker^{\perp} b \oplus (\ker b \ominus \ker a_{22}) \oplus \ker a_{22}$ of H)

$$y = \begin{bmatrix} y_1 & y_2 & y_3 \\ y_4 & 0 & y_5 \\ y_6 & y_7 & y_8 \end{bmatrix},$$

where $\phi_{a_1b_1}(y_1) = 0$, $\Phi_{a_1a_2^*}(y_2) = 0 = \Phi_{a_2a_1^*}(y_3)$ and the remaining y_i are arbitrary. (Recall that $\Phi_{mt}(z) = mzt$ and $\Phi_m(z) = mzm^*$.) Let $x \in B(H)$ have the representation $x = [x_{ij}]_{i,i=1}^3$. Then

$$\|\phi(x) + y\|^{2} = \left\| \begin{bmatrix} \phi_{a_{1}b_{1}}(x_{11}) + y_{1} & \Phi_{a_{1}a_{2}^{*}}(x_{12}) + y_{2} & y_{4} \\ \Phi_{a_{2}a_{1}^{*}}(x_{21}) + y_{3} & \Phi_{a_{2}}(x_{22}) & y_{5} \\ y_{6} & y_{7} & y_{8} \end{bmatrix} \right\|^{2}$$
$$\geq \frac{1}{9} \left\{ \|\phi_{a_{1}b_{1}}(x_{11}) + y_{1}\|^{2} + \|\Phi_{a_{1}a_{2}^{*}}(x_{12}) + y_{2}\|^{2} + \|\Phi_{a_{2}a_{1}^{*}}(x_{21}) + y_{3}\|^{2} + \|\Phi_{a_{2}}(x_{22})\|^{2} + \sum_{i=4}^{8} \|y_{i}\|^{2} \right\}$$

(by Lemma 2.2(i)). Applying Case (i) to the first entry, Lemma 2.3 to the second and third entries, and ignoring the fourth entry in the sum above, it follows that

$$\|\phi(x) + y\|^{2} \ge \frac{1}{9} \left\{ \|y_{1}\|^{2} + \frac{1}{4}(\|y_{2}\|^{2} + \|y_{3}\|^{2}) + \sum_{i=4}^{8} \|y_{i}\|^{2} \right\}$$
$$\ge \frac{1}{36} \sum_{i=1}^{8} \|y_{i}\|^{2} \ge \frac{1}{36} \|y\|^{2}$$

for all $x \in B(H)$. Arguing similarly it is seen that

$$\|\phi(x) + y\|_p \ge 6^{1-2/p} \|y\|_p$$

if
$$1 \leq p < 2$$
, and

$$\|\phi(x) + y\|_p \ge 6^{2/p-1} \|y\|_p$$

if $2 , for every <math>y \in \phi^{-1}(0) \cap \mathscr{C}_p$ and all $x \in B(H)$ such that $\phi(x) \in \mathscr{C}_p$. This completes the proof. \Box

The operator Δ_{ab} of Theorem 2.7 has ascent ≤ 1 . (The ascent of the Banach space operator t, $\operatorname{asc}(t)$, is the least non-negative integer n such that $t^{-n}(0) = t^{-(n+1)}(0)$.) The constant k in Theorem 2.7 is in general greater than 1. The theorem fails if k = 1: This is proved in [22] for the case in which a and b are normal. We do not know if the hypotheses that a_2 and b_2^* are normal can be replaced by the hypothesis that they are subnormal. The following corollary is immediate from Case (ii) of the proof of Theorem 2.7.

Corollary 2.8. If a_1 and $b_1^* \in B(H)$ are hyponormal operators, a_2 and $b_2 \in B(H)$ are normal operators, $[a_1, a_2] = 0 = [b_1, b_2]$ and $a_1^{-1}(0) \cap a_2^{-1}(0) = \{0\} = b_1^{*-1}(0) \cap b_2^{*-1}(0)$, then $(\varDelta_{ab}^{-1}(0) \cap \mathscr{I}) \perp_1 (\varDelta_{ab}(B(H)) \cap \mathscr{I})$.

Recall from Remark 2.5 that if a, b^* are hyponormal operators, then $\Delta_{a,b}^{-1}(0) \subseteq \Delta_{a^*,b^*}^{-1}(0)$. Let $y \in \Delta_{a,b}^{-1}(0)$, and let a and b have the decompositions $a = a_1 \oplus a_2$ and $b = b_1 \oplus b_2$ with respect to the decomposition $H = \ker^{\perp} y \oplus \ker y$ of H. Defining the quasi-affinity y_1 : $\ker^{\perp} y \to \overline{\operatorname{rany}}$ by setting $y_1h = yh$ for each $h \in \ker^{\perp} y$, it then follows from the argument of the proof of Lemma 2.4(ii) that a_1 and b_1 are normal operators. We have:

$$\begin{aligned} \|y\|_{\mathscr{I}} &= \|y_1\|_{\mathscr{I}} \leqslant \|\mathcal{A}_{a_1^*, b_1^*}(x_{11}) + y_1\|_{\mathscr{I}} \\ &\leqslant \left\| \begin{bmatrix} \mathcal{A}_{a_1^*, b_1^*}(x_{11}) + y_1 & \mathcal{A}_{a_1^*, b_2^*}(x_{12}) \\ \mathcal{A}_{a_2^*, b_1^*}(x_{21}) & \mathcal{A}_{a_2^*, b_2^*}(x_{22}) \end{bmatrix} \right\|_{\mathscr{I}} &= \|\mathcal{A}_{a^*, b^*}(x) + y\|_{\mathscr{I}} \end{aligned}$$

for each $x = [x_{ij}]_{i,j=1}^2$ such that $\Delta_{a,b}(x) \in \mathscr{I}$. Using this version of Lemma 2.4(ii) in the proof of Case (i) of the proof of Theorem 2.7 it is seen that the following holds.

Theorem 2.9. Let a be a hyponormal operator which commutes with the normal operator b. If $a^{-1}(0) \cap b^{-1}(0) = \{0\}$ and $\phi^* : B(H) \to B(H)$ is defined by $\phi^*(x) = a^*xa - b^*xb$, then $(\phi^{-1}(0) \cap \mathscr{I}) \perp_1 (\phi^*(B(H)) \cap \mathscr{I})$.

We end this paper with the following two remarks, stated below as propositions. The first of these propositions concerns the operator $\Delta_{a,b}$, where *a* and *b* are C_{ρ} contractions [18]. Then $\Delta_{a,b}^{-1}(0) \perp_k \Delta_{a,b}(B(H))$. By requiring more of the operators *a* and *b* we prove that it is possible to choose k = 1. Our second proposition gives a sufficient condition for the operator ϕ of Theorem 2.2 to be splitting left skew exact.

The operator $a \in B(H)$ is said to be of the class \mathbb{C}_{ρ} , $\rho > 0$, if there exists a Hilbert space $K \supset H$ such that $a^n = \rho P_H u^n |_H$, n = 1, 2, ..., where P_H denotes the orthogonal projection of K onto H [18, p. 45]. Operators $a \in \mathbb{C}_{\rho}$ are power bounded; indeed, if $a \in \mathbb{C}_{\rho}$ then there exists a positive invertible operator p and a contraction c such that $a = pcp^{-1}$ [18, p. 92]. Clearly, if $a \in \mathbb{C}_{\rho_1}$ and $b \in \mathbb{C}_{\rho_2}$ for some $\rho_1, \rho_2 > 0$, then Δ_{ab} satisfies Theorem 2.7: The following theorem says that if $y \in \Delta_{a,b}^{-1}(0)$ satisfies certain additional properties, then the constant k can be chosen to be 1. (Recall that the implication $\phi^{-1}(0) \perp_k \phi X \Longrightarrow \phi^{-1}(0) \perp_1 \phi X$ is generally false.) We state the theorem for the case $\mathscr{I} = B(H)$; the minor modifications required in the statement of the theorem for the case $\mathscr{I} = \mathscr{C}_p$ is obvious.

Proposition 2.10. If $a \in \mathbf{C}_{\rho_1}$ and $b \in \mathbf{C}_{\rho_2}$ for some $\rho_1, \rho_2 > 0$, and if $\Delta_{a,b}(y) = 0$ for some compact quasi-affinity $y \in B(H)$, then $\Delta_{a,b}^{-1}(0) \perp_1 \Delta_{a,b}(B(H))$.

Proof. We prove that *a* and *b* are unitary in such a case; this will then imply the theorem.

If $a \in \mathbb{C}_{\rho_1}$ and $b \in \mathbb{C}_{\rho_2}$, then there exist positive invertible operator p, q and contractions c_1, c_2 such that $a = p^{-1}c_1p$ and $b = qc_2q^{-1}$. Set pyq = t; then t is a

compact quasi-affinity, $\Delta_{c_1,c_2}(t) = 0$, $|t^*|^2 \leq c_1|t^*|^2 c_1^*$ and $|t|^2 \leq c_2^*|t|^2 c_2$. Applying [6, Theorem 8] to $|t^*|^2 \leq c_1|t^*|^2 c_1^*$ and $|t|^2 \leq c_2^*|t|^2 c_2$ it follows that c_1 and c_2 are unitaries. Since $\Delta_{a,b}(y) = 0$ implies $\Delta_{c_1,b}(py) = 0$, $\Delta_{b^*,b}(|py|^2) = 0$, where |py| is a compact quasi-affinity. The equality $\Delta_{b^*,b}(|py|^2) = 0$ when taken alongwith the invertibility of *b* implies the existence of a unitary *u* such that u|py| = |py|b. Applying [2, Theorem 2] to u|py| = |py|b to conclude that *u* is singular unitary followed by an application of [2, Theorem 1(ii)] we conclude that *b* is unitary. The equation $\Delta_{a,b}(y) = 0$ now implies that $\Delta_{a,a^*}(|y^*|^2) = 0$, and hence that there exists a unitary *w* such that $w|y| = |y|a^*$. The operator a^* being \mathbf{C}_{ρ_1} , it follows (from an application of [2, Theorem 2] followed by an application of [2, Theorem 1(ii)]) that *a* is unitary. This completes the proof. \Box

The *descent* of a Banach space operator $T \in B(X)$, dsc(T), is defined to be the least non-negative integer *n* such that $T^n(X) = T^{n+1}(X)$ [11,16]. Recall that if both asc(T) and dsc(T) are finite, then asc(T) = dsc(T) [16, Proposition 4.10.6]. In the following we call the pair (S, T), *S* and $T \in B(X)$, *splitting skew exact* if there exists a bounded linear $R : X \to X$ such that T = RST and STR = S. The following proposition says that a necessary and sufficient condition for the pair (ϕ, ϕ) to be splitting skew exact is that $dsc(\phi)$ be finite.

Proposition 2.11. Let Δ be the operator Δ_{ab} of the statement of Theorem 2.7. Then Δ is splitting skew exact if and only if dsc(Δ) is finite.

Proof. It is clear from the implications

$$\Delta^{-1}(0) \perp_k \Delta(B(H)) \Longrightarrow \Delta^{-1}(0) \cap \operatorname{cl} \Delta(B(H)) = \{0\}$$
$$\Longrightarrow \Delta^{-1}(0) \cap \Delta(B(H)) = \{0\} \Longleftrightarrow \operatorname{asc}(\Delta) = 1$$

and the hypothesis $dsc(\Delta) < \infty$ that $asc(\Delta) = dsc(\Delta) = 1$ and $B(H) = \Delta^{-1}(0) \oplus \Delta(B(H))$ [16, Proposition 4.10.6]. In particular, Δ is Drazin invertible [5,17]. Thus there exists an operator $\Delta^D \in B(B(H))$ such that $\Delta^D \Delta \Delta = \Delta = \Delta \Delta \Delta^D$, which implies that (Δ, Δ) is splitting skew exact. If, on the other hand, (Δ, Δ) is splitting skew exact, then the existence of an operator $r \in B(B(H))$ such that $\Delta \Delta r = \Delta$ implies that $\Delta^{-1}(0) + \Delta(B(H)) = B(H)$ [13, Theorem 2]. Hence Δ has finite descent.

Acknowledgements

It is my great pleasure to thank Prof. Robin E. Harte for his numerous suggestions, which have added greatly to this paper. My thanks are also due to a referee for his thorough reading of the manuscript.

References

- [1] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973) 136-140.
- [2] T. Ando, K. Takahashi, On operators with unitary ρ-dilations, Annales Polonici Math. LXVI (1997) 11–14.
- [3] R. Bhatia, F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287 (1990) 719–726.
- [4] F.F. Bonsall, J. Duncan, Numerical ranges II, Lond. Math. Soc. Lecture Notes Series, 10, 1973.
- [5] S.R. Caradus, Generalized inverses and operator theory, Queen's papers in Pure and Appl. Math., 50, Queen's University, Kingston, Ontario, 1978.
- [6] R.G. Douglas, On the operator equation $S^*XT = X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969) 19–32.
- [7] B.P. Duggal, A remark on generalised Putnam–Fuglede theorems, Proc. Amer. Math. Soc. 129 (2000) 83–87.
- [8] B.P. Duggal, Putnam–Fuglede theorem and the range-kernel orthogonality of derivations, Int. J. Math. Math. Sci. 27 (2001) 573–582.
- [9] B.P. Duggal, Range-kernel orthogonality of the elementary operator $X \longrightarrow \sum_{i=1}^{n} A_i X B_i X$, Linear Algebra Appl. 337 (2001) 79–86.
- [10] C.-K. Fong, Normal operators on Banach spaces, Glasgow Math. J. 20 (1979) 163-168.
- [11] R.E. Harte, Invertibility and Singularity, Marcel Dekker, 1988.
- [12] R.E. Harte, Eine Kleine Gapmusik, Pan. Amer. J. 2 (1992) 101-102.
- [13] R.E. Harte, D.R. Larson, Skew exactness perturbation, Proc. Amer. Math. Soc.
- [14] K.T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
- [15] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000) 3369–3377.
- [16] K.B. Laursen, M.M. Neumann, An Introduction to Local Spectral Theory, Lond. Math. Soc. Monographs (N.S.), Oxford University Press, 2000.
- [17] D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970) 197– 214.
- [18] B. sz-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- [19] M. Radjabalipour, An extension of Putnam–Fuglede theorem for hyponormal operators, Math. Z. 194 (1987) 117–120.
- [20] S.-Y. Shaw, On numerical ranges of generalized derivations and related properties, J. Austral. Math. Soc. (Ser. A) 36 (1984) 134–142.
- [21] A. Turnšek, Elementary operators and orthogonality, Linear Algebra Appl. 317 (2000) 207-216.
- [22] A. Turnšek, Generalized Anderson's inequality, J. Math. Anal. Appl. 263 (2001) 121-134.
- [23] A. Turnšek, Orthogonality in \mathscr{C}_p classes, Mh. Math. 132 (2001) 349–354.