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1. Introduction

If M and N are subspaces of a Banach space X, then ([14] IV (2.8), (2.9); [12])
the gap between M and N is defined by

gap(M, N) = max(δ(M, N), δ(N, M)),

where

δ(M, N) = ‖KNJM‖ = sup{dist(x, N) : x ∈ M, ‖x‖ � 1}.
Here JM : M → X and KN : X → X/N are the natural injection and the quotient
map induced by M and N . Dually [13]

γ (M, N) = γ (KMJN) = inf{‖x‖M : dist(x, N) � 1}
is the conorm or “reduced minimum modulus” of the operator KMJN . Evidently
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γ (M, N) � 1;
we say that M is orthogonal to N when this holds with equality. In the following
we focus on the range and the null space of an operator.

Definition. If T : X → Y and S : Y → Z are bounded linear operators between
Banach spaces, and k > 0, we shall say that (S, T ) has a k-gap, and write S−1(0) ⊥k

T X, provided

y ∈ S−1(0) �⇒ ‖y‖ � k dist(y, T (X)). (1)

If we let M = cl T (X) and N = S−1(0), then implication (1) says that the operator
KMJN is bounded below. The presence of such a gap in the pair (S, T ) is sandwiched
between various kinds of “skew exactness” [11,13]. If we call (S, T ) left skew exact
when

S−1(0) ∩ T (X) = {0}, (2)

strongly left skew exact if there is k > 0 for which

‖T (.)‖ � k‖ST (.)‖ on X (3)

and splitting left skew exact when there is a bounded linear R : Z → Y for which

T = RST, (4)

then there is implication

(4) �⇒ (3) �⇒ (1) �⇒ (2). (5)

If we go on to call (S, T ) linearly left skew exact when

S−1(0) ∩ cl T (X) = {0}, (6)

then also

(1) �⇒ (6) �⇒ (2). (7)

If for example the operator S has a bounded left inverse R then the condition (4)
holds, hence also (1). If we let Y = Z, then a sufficient condition for this to hold
is ‖I − S‖ < 1. This compares with, but does not correspond to (see [13]), a result
of Turnšek [21, Theorem 1.1] who notices that if X = Y = Z = A is a Banach
algebra, S = I − φ and φ : A → A is a linear transformation such that ‖φ‖ � 1,
then S−1(0) ⊥1 SA. More generally if φ : A → A is power bounded ( i.e., there
exists a number k > 0 such that supn ‖φn‖ � k), S = I − φ and T = φ − φ2, then
S−1(0) ⊥k TA. This follows from the argument below upon letting n → ∞. If y ∈
(I − φ)−1(0) and x ∈ A, then(

φ − φn+1
)

(x) =
n∑

i=1

φi{(I − φ)x + y} − ny

�⇒ ‖y‖ �
(

2k

n

)
‖x‖ + k‖T x + y‖.
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Let B(H) denote the algebra of operators (= bounded linear transformations) on
a separable complex infinite dimensional Hilbert space H , and let I denote B(H)

(with its usual operator norm ‖·‖) or one of the von Neumann–Schatten p-classes
Cp, 1 � p < ∞ (with norm ‖·‖p). Particularly interesting examples of the operator
φ, φ not necessarily a contraction, which have attracted a lot of attention are the ele-
mentary operator �ab : B(H) → I, �ab(x) = a1xb1 − a2xb2, where a = (a1, a2)

and b = (b1, b2) are pairs of mutually commuting normal operators in B(H), and
the generalized derivation δab : B(H) → I, δab(x) = ax − xb, where a, b ∈ B(H)

are normal operators (see [1,4,8–10,15,21–23] for further references). In this paper
we consider the elementary operator �ab for the case in which the operators a1,
b∗

1 are hyponormal, the operators a2, b2 are normal, a1 commutes with a2 and b1
commutes with b2. It will be shown that (�ab, �ab) has a k-gap (so that (�ab, �ab)

is both left skew exact and linearly left skew exact).

2. Results

Recall that an element h ∈ B(X), X a Banach space, is said to be hermitian if the
spatial numerical range W(h) = {f (hx) : x ∈ X, f ∈ X′, ‖x‖ = ‖f ‖ = f (x) = 1}
of h is a subset of the reals, and the operator a = h + ig ∈ B(X), h and g hermitian,
is said to be normal if the commutator [h, g] = hg − gh is 0. Recall also that if the
operator φ : X → X is normal, then φ−1(0) ⊥1 φX [10, Theorem A]. The normality
of a, b ∈ B(H) guarantees the normality of δab. (Indeed, the condition is both nec-
essary and sufficient; see [20, Theorem 2.2].) Also, if I is the Hilbert–Schmidt class
C2 with its Hilbert space structure and a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn)

are n-tuples of mutually commuting normal operators, then Eab(x) = ∑n
i=1 aixbi

is a normal operator on I → I such that E∗
ab(x) = Ea∗b∗(x) and ‖Eab(x) + y‖2

2 =
‖Eab(x)‖2

2 + ‖y‖2
2 for every y ∈ E−1

ab (0) ∩ C2 and x ∈ C2 [9]. More generally, if
Eab (or δab): I → I is normal, then (Eab,Eab) (resp., (δab, δab)) has a 1-gap (see
[10, Theorem A]). We remark here that the normality of ai and bi in the mutually
commuting n-tuples a and b is not enough to warrantee the normality of Eab.

Example 2.1. Recall from [22, Theorem 2.4] that if a, b ∈ B(H) are commuting
normal operators and φ : B(H) → B(H) is defined by φ(x) = axa∗ − bxb∗, then

‖φ(x) + y‖I � ‖y‖I (8)

for every y ∈ φ−1(0) ∩ I and all x ∈ B(H) such that φ(x) ∈ I if and only if
a−1(0) ∩ b−1(0) = {0}. Thus if we choose the normal a and b to be such that
a−1(0) ∩ b−1(0) /= {0}, then φ cannot be normal (for if it were then we would
have by [10, Theorem A] that (8) holds). Now choose the operator b in φ(x) =
axa∗ − bxb∗ to be the identity operator and let the normal a be such that a−1(0) /=
{0}. Then a−1(0) ∩ b−1(0) = {0} and if φ−1(0) /= {0} then 1 is an eigenvalue of φ.
Suppose that φ is normal. Then �a , �a(x) = φ(x) + x = axa∗, is normal. Hence
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‖�a(x) + y‖I � ‖y‖I, I /= C2, for every y ∈ �−1
a (0) ∩ I and all x ∈ B(H) such

that �a(x) ∈ I. This however contradicts [22, Proposition 2.1]. Hence φ is not
normal.

Example 2.1 shows that the normality of the commuting pair of operators a and b

is not sufficient for the subspaces φ−1(0) ∩ I and cl φI, I /= C2, to have a 1-gap: It
is however sufficient for the said subspaces to have a k-gap for some k � 1 (see [15,
Theorem 2]). The normality of a and b is not a necessary condition for φ−1(0) ∩ I
and cl φI, I /= C2, to have a 1-gap. Thus if φ is such that 0 is not in the interior of
the numerical range of φ ∈ B(B(H)), then ‖x + φy‖ � ‖x| − √

8‖φ(x)‖‖y‖ for all
x, y ∈ B(H) [4, Theorem 6, p. 20]. In particular, if 0 is an eigen-value which is not in
the interior of the numerical range of φ, then φ−1(0) ⊥1 φ(B(H)). (We remark here
that this is precisely the situation when S : A → A, A a unital Banach algebra, is a
contraction and φ = I − S.) Our main result, Theorem 2.7, shows that the hypothesis
a and b are commuting normal operators can be replaced by the hypothesis that a is
a hyponormal operator which commutes with the normal operator b. (We note here
that a better result holds in the case in which I = C2, see Remark 2.6 below.) The
following complementary lemmas will be required in the proof of our main result.

Lemma 2.2. Let t have the block matrix representation t = (tij ), 1 � i, j � n.

(i) If t ∈ B(H), then

n−2
∑
i,j

‖tij‖2 � ‖t‖2 �
∑
i,j

‖tij‖2.

(ii) If t ∈ Cp, 1 � p < ∞, then

n2−p‖t‖p
p �

∑
i,j

‖tij‖p
p � ‖t‖p

p

if 2 � p < ∞, and

‖t‖p
p �

∑
i,j

‖tij‖p
p � n2−p‖t‖p

p

if 1 � p � 2.

Proof. See [3], Theorems 1 and 2. �

Lemma 2.3. Suppose that the eigen-space corresponding to the eigen-value 0 of
a ∈ B(H) is reducing. If �a : B(H) → B(H) is defined by �a(x) = axa∗, then
(y ∈ �−1

a (0) implies a∗ya = 0 and) there exists a constant k such that (�−1
a (0) ∩

I) ⊥k (�a(B(H)) ∩ I).
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Proof. The inequality being trivially true if a−1(0) = {0}, we assume that a−1(0) /=
{0}. Then, with respect to the decomposition H = ker⊥ a ⊕ ker a, a has a direct sum
decomposition a = a1 ⊕ 0, where a1 = a|ker⊥ a is an injection. A simple calculation

shows that if y ∈ �−1
a (0), then y has a matrix representation y =

[
0 y1
y2 y3

]
, where

the operators yi are arbitrary. (Clearly, a∗ya = 0.) Letting x ∈ B(H) have the matrix
representation x = [xij ]2

i,j=1, it follows that

�a(x) + y =
[
a1x11a

∗
1 y1

y2 y3

]
.

We consider the cases �(x) + y ∈ B(H) and �(x) + y ∈ Cp separately.
The operator norm case. Applying Lemma 2.2(i),

‖�a(x) + y‖2 � 1

4

{
‖a1x11a

∗
1‖2 +

3∑
i=1

‖yi‖2

}

� 1

4

3∑
i=1

‖yi‖2 � 1

4
‖y‖2,

and we may choose k to be 2.

1 � p � 2. Applying Lemma 2.2(ii),

‖�a(x) + y‖p
p � 2p−2

{
‖a1x11a

∗
1‖p

p +
3∑

i=1

‖yi‖p
p

}

� 2p−2
3∑

i=1

‖yi‖p
p � 2p−2‖y‖p

p,

and we may choose k to be 22/p−1.

2 < p < ∞. Again applying Lemma 2.2(ii),

‖�a(x) + y‖p
p � ‖a1x11a

∗
1‖p

p +
3∑

i=1

‖yi‖p
p

�
3∑

i=1

‖yi‖p
p � 22−p‖y‖p

p,

and we may choose k to be 21−2/p. �

Recall that the eigen-spaces of a hyponormal operator are reducing. Let a, b∗ be
hyponormal operators such that ayb = 0. Define a1 and t (∈ B(H ⊕ H)) by a1 =
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a ⊕ b∗ and t =
[

0 y

0 0

]
. Then a1ta

∗
1 = 0, and it follows from Lemma 2.3 that there

exists a constant k such that ‖t‖ � k‖a1xa∗
1 + t‖ for all x ∈ B(H ⊕ H) satisfying

a1xa∗
1 ∈ I. In particular, there exists a constant k, k � 1, such that k‖axb + y‖I �

‖y‖I for every y ∈ I satisfying ayb = 0 and all x ∈ B(H) satisfying axb ∈ I.
In the following the (elementary) operator �a,b : B(H) → B(H) shall be defined

by �a,b(x) = axb − x. (Thus, if a and b are the pairs a = (a, I ) and b = (b, I ), then
�a,b(x) = �ab(x).)

Lemma 2.4. Let a, b ∈ B(H) and 1 � p < ∞. Then:

(i) y ∈ {�−1
a,b(0) ∩ �−1

a∗,b∗(0)} ∩ Cp and x ∈ Cp �⇒
‖y‖p � ‖�a,b(x) + y‖p.

(ii) �−1
a,b(0) ⊆ �−1

a∗,b∗(0) �⇒ ‖y‖I � ‖�a,b(x) + y‖I,

for all y ∈ �−1
a,b(0) and x ∈ B(H) such that �a,b(x) ∈ I.

Proof. (i) If y ∈ {�−1
a,b(0) ∩ �−1

a∗,b∗(0)} ∩ Cp and 1 < p < ∞, then a proof of (i)

follows from an application of [8, Theorem 3.6]. Thus let p = 1. For y ∈ �−1
a,b(0) ∩

�−1
a∗,b∗(0), let H1 = ker⊥ y, H2 = rany, and let the quasi-affinity y1 : H1 → H2 be

defined by setting y1h = yh for each h ∈ H1. Let a1 = a|H2 and b1 = b|H1 . Then
�a1,b1(y1) = 0 = �a∗

1 ,b∗
1
(y1), and it follows from a consideration of the equations

b1y
∗
1�a1,b1(y1) = 0 = �a1,b1(y1)y

∗
1a1 that [a1, |y∗

1 |] = 0 = [b1, |y1|]. Let y1 have
the polar decomposition y1 = u1|y1|, u1 unitary. Then a1u1|y1|b1 = a1u1b1|y1| =
u1|y1|, which implies that a1u1b1 = u1, b1 is invertible and b−1

1 is unitarily equiva-
lent to a1. In particular, u1 ∈ �−1

a1,b1
(0) ∩ �−1

a∗
1 ,b∗

1
(0). Theorem 3.7 of [8] applies and

we conclude that

‖y1‖1 � ‖�a1,b1(z) + y1‖1

for all z ∈ C1(H1 → H2). Now let x ∈ C1. Then x : H1 ⊕ (H � H1) → H2 ⊕ (H �
H2) has a representation x = [xij ]2

i,j=1, where x11 = z. Letting a = a1 ⊕ a2 and
b = b1 ⊕ b2 we have:

‖y‖1 = ‖y1‖1 � ‖�a1,b1(x11) + y1‖1

�
∥∥∥∥[

�a1,b1(x11) + y1 �a1,b2(x12)

�a2,b1(x21) �a2,b2(x22)

]∥∥∥∥
1

= ‖�a,b(x) + y‖1.

This completes the proof of (i).
(ii) Let y ∈ �−1

ab (0) ⊆ �−1
a∗,b∗(0). Defining a1, b1 and y1 as in the proof of (i)

above it follows that a1 and b−1
1 are unitarily equivalent operators, and both y1 and
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a1y1 are in �−1
a1,b1

(0) ∩ �−1
a∗

1 ,b∗
1
(0). Hence �a∗

1 ,b∗
1
(a1y1) = 0 = a1�a∗

1 ,b∗
1
(y1), which

implies that a1 and b1 are normal operators. Thus

‖y1‖I � ‖�a1,b1(z) + y1‖I
for every y ∈ �−1

a,b(0) ∩ I and all z ∈ B(H1 → H2) such that �a1,b1(z) ∈ I. The
proof is now completed upon arguing as in the proof of (i) above. �

Remark 2.5. The hypothesis �−1
a,b(0) ⊆ �−1

a∗,b∗(0) is satisfied for a and b∗ belong-
ing to a number of the commonly considered classes of Hilbert space operators
(see [7,19]), amongst them the class of hyponormal operators. Thus Lemma 2.4(ii)
holds, in particular, for hyponormal a and b∗. Indeed more is true: The follow-
ing (Putnam–Fuglede type) commutativity result holds. If a ∈ B(H) is a hyponor-
mal operator which commutes with the normal operator b ∈ B(H), then φ−1(0) ⊆
φ∗−1(0), where (as before, φ(x) = axa∗ − bxb∗ and) φ∗(x) = a∗xa − b∗xb. This
is seen as follows. Recall from the Berberian extension theorem that given an a ∈
B(H) there exists a Hilbert space K ⊃ H and an isometric ∗-isomorphism a →
ao preserving order such that σ(a) = σ(ao) and σπ(a) = σπ(ao) = σp(ao) . (Here
σp(a) and σπ(a) denote the point spectrum and the approximate point spectrum,
respectively, of a.) Let y ∈ φ−1(0), and let ao = c, bo = d and yo = z; then czc∗ −
dzd∗ = 0, where the operator c is hyponormal, the operator d is normal and [c, d] =
0. Since ker(d) reduces d , d has a decomposition d = 0 ⊕ d22 (on K = ker(d) ⊕
ker⊥(d)). Letting c : ker(d) ⊕ ker⊥(d) → ker(d) ⊕ ker⊥(d) have the matrix repre-
sentation c = [cij ]2

i,j=1, it follows from the commutativity of c and d (combined with

the injectivity of d22) that c12 = c21 = 0. Now let z : ker(d) ⊕ ker⊥(d) → ker(d) ⊕
ker⊥(d) have the representation [zij ]2

i,j=1. Then 0 = c11z11c
∗
11 = c11z12c

∗
22 =

c22z21c
∗
11 and c22z22c

∗
22 − d22z22d

∗
22 = 0. The operators c11 and c22 being hyponor-

mal, it follows from an application of Lemma 2.3 that 0 = c∗
11z11c11 = c∗

11z12c22 =
c∗

22z21c11. The operator d22 is invertible and [d−1
22 , c22] = 0. Hence r = d−1

22 c22 =
c22d

−1
22 is hyponormal, and rz22r

∗ − z22 = 0. Recall now that if r is a hyponormal
operator and rt − tr∗ = 0 for some operator t ∈ B(K), then r∗t − tr = 0 [7,19].
This in view of [7, Theorem 2] implies that r∗z22r − z22 = 0, or, c∗

22z22c22 −
d∗

22z22d22 = 0. Combining, we now have that c∗zc − d∗zd = 0, which implies that
a∗ya − b∗yb = 0.

Remark 2.6. Choosing I to be the Hilbert space C2 with the inner product 〈x, y〉 =
tr(y∗x) it is seen that if the operators a and b are as in Remark 2.5, then adjoint of
φ : C2 → C2 is defined by φ∗(x) = a∗xa − b∗xb,

‖φ(x) + y‖2
2 = ‖φ(x)‖2

2 + ‖y‖2
2 + 2Re〈φ(x), y〉

= ‖φ(x)‖2
2 + ‖y‖2

2 + 2Re〈x, φ∗(y)〉
and

‖φ∗(x) + y‖2
2 = ‖φ∗(x)‖2

2 + ‖y‖2
2 + 2Re〈x, φ(y)〉.
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Hence (by the commutativity property proved in Remark 2.5)

‖φ(x) + y‖2
2 = ‖φ(x)‖2

2 + ‖y‖2
2

and

‖φ∗(x) + y‖2
2 = ‖φ∗(x)‖2

2 + ‖y‖2
2

for every y ∈ φ−1
ab (0) ∩ C2 and all x ∈ C2.

The following is our main result.

Theorem 2.7. Let �ab ∈ B(B(H)) be the elementary operator �ab(x) = a1xb1 −
a2xb2, where a1 and b∗

1 ∈ B(H) are hyponormal operators, a2 and b2 ∈ B(H) are
normal operators, a1 commutes with a2 and b1 commutes with b2. Then there exists
a constant k such that (�−1

ab (0) ∩ I) ⊥k (�ab(B(H)) ∩ I).

Proof. If we set Ĥ = H ⊕ H , and define the operators a, b, s, z ∈ B(Ĥ ) and the

operator φ ∈ B(B(H)) by a = a1 ⊕ b∗
1, b = a2 ⊕ b∗

2, s =
[

0 y

0 0

]
, z =

[
0 x

0 0

]
and φ(z) = aza∗ − bzb∗, then

φ(z) + s =
[

0 �ab(x) + y

0 0

]
, ‖s‖ = ‖y‖, ‖�ab(x) + y‖ = ‖φ(z) + s‖,

and

‖s‖p = ‖y‖p, ‖�ab(x) + y‖p = ‖φ(z) + s‖p

for every y ∈ Cp and all x such that �ab(x) ∈ Cp. Thus to prove the theorem it will
suffice to prove the following: If a ∈ B(H) is a hyponormal operator which com-
mutes with the normal operator b ∈ B(H), then there exists a constant k such that
(φ−1(0) ∩ I) ⊥k (φ(B(H)) ∩ I). We divide the proof into the cases: (i) b is injec-
tive; (ii) a−1(0) ∩ b−1(0) = {0}; (iii) a−1(0) = b−1(0); and (iv) a−1(0) /= b−1(0),
where cases (i) and (ii) will be used in proving cases (iii) and (iv).

Case (i). We start by noticing that if b is invertible, then r = ab−1 = b−1a is hypo-
normal and �−1

r,r∗(0) ⊆ �−1
r∗,r (0) (by Remark 2.5). Applying Lemma 2.4(ii) it follows

that

‖φ(x) + y‖I = ‖(ab−1)(bxb∗)(ab−1)∗ − (bxb∗) + y‖I
= ‖�r,r∗(bxb∗) + y‖I � ‖y‖I

for all y ∈ φ−1(0) ∩ I and x ∈ B(H) such that φ(x) ∈ I. Suppose now that
b−1(0) = {0}. Let δn denote the set of complex numbers λ such that |λ| � 1

n
for

some natural number n, and let Eb(δn) denote the corresponding spectral projection.
Set Pn = I − Eb(δn); then Pn converges strongly to I . Since [a, b] = 0 = [a, b∗],
PnH reduces both a and b. This, upon decomposing H by H = (I − Pn)H ⊕ PnH ,
implies that a and b have the direct sum decompositions a = a1(n) ⊕ a2(n) and b =
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b1(n) ⊕ b2(n), where ai(n), i = 1, 2, are hyponormal and b2(n) is invertible. Let y ∈
φ−1(0) ∩ I have the representation [yij ]2

i,j=1 and let x ∈ B(H) have the represen-

tation x = [xij ]2
i,j=1. Then, since

Pn(φ(x) + y)Pn = Pn(axa∗ − bxb∗ + y)Pn

= PnaPnxPna
∗Pn − PnbPnxPnb

∗Pn + PnyPn

= a2(n)PnxPna
∗
2(n) − b2(n)PnxPnb

∗
2(n) + PnyPn

and the operator b2(n) is invertible, we have that

‖φ(x) + y‖I =
∥∥∥∥[∗ ∗

∗ Pn(φ(x) + y)Pn

]∥∥∥∥
I

� ‖Pn(φ(x) + y)Pn‖I � ‖PnyPn‖I.

Thus

sup
n

‖PnyPn‖I � ‖φ(x) + y‖I < ∞

for all s ∈ φ−1(0) ∩ I and x ∈ B(H) such that φ(x) ∈ I. Since PnyPn → y weakly
(even strongly), it follows from an application of [15, Lemma 3] that

‖y‖I � sup
n

‖PnyPn‖I � ‖φ(x) + y‖I.

Case (ii). Decompose H by H = (ker(b) ⊕ ker(a)) ⊕ (ker⊥(b) � ker(a)). Then it
is seen (from a straightforward argument using the fact that [a, b] = 0 = [a, b∗]) that
a = a′ ⊕ a2 and b = b′ ⊕ b2, where a2, b2 are injective, b′ = 0 and a′ is injective
in the case in which ker(a) = {0}, and a′ = a1 ⊕ 0 and b′ = 0 ⊕ b1, with a1 and
b1 injective, in the case in which ker(a) /= {0}. Let y ∈ φ−1(0) ∩ I. Then (this is
easily seen) y = y′ ⊕ y33, where y′ = 0 in the case in which ker(a) = {0} and y′ =[

0 y22
y11 0

]
in the case in which ker(a) /= {0}. We consider the cases ker(a) /= {0}

and ker(a) = {0} separately. It is convenient at this point for us to define the operator
φrs by φrs(x) = rxr∗ − sxs∗.

Case ker(a) /= {0}. Let (0 /=)yii , i = 1, 2, have the polar decomposition uii |yii |,
and let x = [xij ]3

i,j=1 ∈ B(H) be such that φ(x) ∈ I. Define v ∈ B(H) by v =[
0 u∗

11
u∗

22 0

]
⊕ Iker⊥(b)�ker(a). Then

‖φ(x) + y‖I � ‖v(φ(x) + y)‖I =
∥∥∥∥∥∥
|y11| ∗ ∗

∗ |y22| ∗
∗ ∗ φa2b2(x33) + y33

∥∥∥∥∥∥
I

�
∥∥∥∥[

t 0
0 φa2b2(x33) + y33

]∥∥∥∥
I

,
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where t =
[|y11| 0

0 |y22|
]

. The normal operator b2 being injective, it follows from

Case (i) that ‖φa2b2(x33) + y33‖I � ‖y33‖I. Hence

‖φ(x) + y‖ � max{‖t‖, ‖y33‖} = ‖y‖
and

‖φ(x) + y‖p � (‖t‖p
p + ‖y33‖p

p)
1
p = ‖y‖p.

Case ker(a) = {0}. In this case if we let x, x ∈ B(ker(b) ⊕ ker⊥(b)) such that

φ(x) ∈ I, have the matrix representation

[
x0 x1
x2 x33

]
, then

‖φ(x) + y‖I =
∥∥∥∥[∗ ∗

∗ φa2b2(x33) + y33

]∥∥∥∥
I

� ‖y33‖I = ‖y‖I.

Case (iii). In the case in which a−1(0) = b−1(0), let H have the direct sum decom-
position H = ker⊥ b ⊕ ker b. Then a = a1 ⊕ 0, b = b1 ⊕ 0, a−1

1 (0) ∩ b−1
1 (0) = {0}

and every y ∈ φ−1(0) has the representation y = [yij ]2
i,j=1, where φa1b1(y11) = 0

and the other yij are arbitrary. Letting x = [xij ]2
i,j=1 ∈ B(H), it follows that

‖φ(x) + y‖2 =
∥∥∥∥[

φa1b1(x11) + y11 y12
y21 y22

]∥∥∥∥2

� 1

4

‖φa1b1(x11) + y11‖2 +
∑

i,j :i,j /=1

‖yij‖2


� 1

4

∑
i,j

‖yij‖2 � 1

4
‖y‖2

(where we use Case (ii) to conclude that ‖φa1b1(x11) + y11‖ � ‖y11‖). A similar
argument gives that

‖φ(x) + y‖p � k‖y‖p,

where k = 21−2/p if 1 � p < 2 and k = 22/p−1 if 2 < p < ∞.

Case (iv). As before, let φrs(x) = rxr∗ − sxs∗. Letting H have the direct sum
decomposition H = ker⊥ b ⊕ ker b, it follows from the commutativity of a and b

that b = b1 ⊕ 0 and a = a1 ⊕ a22, where b1 = b|ker⊥ b is injective. Now decompose
ker b by ker b = (ker b � ker a22) ⊕ ker a22. Then b = b1 ⊕ 0 ⊕ 0 and a = a1 ⊕ a2 ⊕
0, where a2 is injective. A simple calculation shows that if y ∈ φ−1(0), then (with
respect to the decomposition H = ker⊥ b ⊕ (ker b � ker a22) ⊕ ker a22 of H )

y =
y1 y2 y3

y4 0 y5
y6 y7 y8

 ,
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where φa1b1(y1) = 0, �a1a
∗
2
(y2) = 0 = �a2a

∗
1
(y3) and the remaining yi are arbitrary.

(Recall that �mt (z) = mzt and �m(z) = mzm∗.) Let x ∈ B(H) have the representa-
tion x = [xij ]3

i,j=1. Then

‖φ(x) + y‖2 =
∥∥∥∥∥∥
φa1b1(x11) + y1 �a1a

∗
2
(x12) + y2 y4

�a2a
∗
1
(x21) + y3 �a2(x22) y5

y6 y7 y8

∥∥∥∥∥∥
2

� 1

9

{
‖φa1b1(x11) + y1‖2 + ‖�a1a

∗
2
(x12) + y2‖2

+‖�a2a
∗
1
(x21) + y3‖2 + ‖�a2(x22)‖2 +

8∑
i=4

‖yi‖2

}

(by Lemma 2.2(i)). Applying Case (i) to the first entry, Lemma 2.3 to the second and
third entries, and ignoring the fourth entry in the sum above, it follows that

‖φ(x) + y‖2 � 1

9

{
‖y1‖2 + 1

4
(‖y2‖2 + ‖y3‖2) +

8∑
i=4

‖yi‖2

}

� 1

36

8∑
i=1

‖yi‖2 � 1

36
‖y‖2

for all x ∈ B(H). Arguing similarly it is seen that

‖φ(x) + y‖p � 61−2/p‖y‖p

if 1 � p < 2, and

‖φ(x) + y‖p � 62/p−1‖y‖p

if 2 < p < ∞, for every y ∈ φ−1(0) ∩ Cp and all x ∈ B(H) such that φ(x) ∈ Cp.
This completes the proof. �

The operator �ab of Theorem 2.7 has ascent �1. (The ascent of the Banach space
operator t , asc(t), is the least non-negative integer n such that t−n(0) = t−(n+1)(0).)
The constant k in Theorem 2.7 is in general greater than 1. The theorem fails if
k = 1: This is proved in [22] for the case in which a and b are normal. We do not
know if the hypotheses that a2 and b∗

2 are normal can be replaced by the hypothesis
that they are subnormal. The following corollary is immediate from Case (ii) of the
proof of Theorem 2.7.

Corollary 2.8. If a1 and b∗
1 ∈ B(H) are hyponormal operators, a2 and b2 ∈ B(H)

are normal operators, [a1, a2] = 0 = [b1, b2] and a−1
1 (0) ∩ a−1

2 (0) = {0} =
b∗−1

1 (0) ∩ b∗−1
2 (0), then (�−1

ab (0) ∩ I) ⊥1 (�ab(B(H)) ∩ I).
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Recall from Remark 2.5 that if a, b∗ are hyponormal operators, then �−1
a,b(0) ⊆

�−1
a∗,b∗(0). Let y ∈ �−1

a,b(0), and let a and b have the decompositions a = a1 ⊕ a2 and

b = b1 ⊕ b2 with respect to the decomposition H = ker⊥ y ⊕ ker y of H . Defining
the quasi-affinity y1 : ker⊥ y → rany by setting y1h = yh for each h ∈ ker⊥ y, it
then follows from the argument of the proof of Lemma 2.4(ii) that a1 and b1 are
normal operators. We have:

‖y‖I = ‖y1‖I � ‖�a∗
1 ,b∗

1
(x11) + y1‖I

�
∥∥∥∥[

�a∗
1 ,b∗

1
(x11) + y1 �a∗

1 ,b∗
2
(x12)

�a∗
2 ,b∗

1
(x21) �a∗

2 ,b∗
2
(x22)

]∥∥∥∥
I

= ‖�a∗,b∗(x) + y‖I

for each x = [xij ]2
i,j=1 such that �a,b(x) ∈ I. Using this version of Lemma 2.4(ii)

in the proof of Case (i) of the proof of Theorem 2.7 it is seen that the following holds.

Theorem 2.9. Let a be a hyponormal operator which commutes with the normal
operator b. If a−1(0) ∩ b−1(0) = {0} and φ∗ : B(H) → B(H) is defined by φ∗(x) =
a∗xa − b∗xb, then (φ−1(0) ∩ I) ⊥1 (φ∗(B(H)) ∩ I).

We end this paper with the following two remarks, stated below as propositions.
The first of these propositions concerns the operator �a,b, where a and b are Cρ-
contractions [18]. Then �−1

a,b(0) ⊥k �a,b(B(H)). By requiring more of the operators
a and b we prove that it is possible to choose k = 1. Our second proposition gives a
sufficient condition for the operator φ of Theorem 2.2 to be splitting left skew exact.

The operator a ∈ B(H) is said to be of the class Cρ , ρ > 0, if there exists a
Hilbert space K ⊃ H such that an = ρPH un|H , n = 1, 2, . . ., where PH denotes
the orthogonal projection of K onto H [18, p. 45]. Operators a ∈ Cρ are power
bounded; indeed, if a ∈ Cρ then there exists a positive invertible operator p and a
contraction c such that a = pcp−1 [18, p. 92]. Clearly, if a ∈ Cρ1 and b ∈ Cρ2 for
some ρ1, ρ2 > 0, then �ab satisfies Theorem 2.7: The following theorem says that if
y ∈ �−1

a,b(0) satisfies certain additional properties, then the constant k can be chosen

to be 1. (Recall that the implication φ−1(0) ⊥k φX �⇒ φ−1(0) ⊥1 φX is gener-
ally false.) We state the theorem for the case I = B(H); the minor modifications
required in the statement of the theorem for the case I = Cp is obvious.

Proposition 2.10. If a ∈ Cρ1 and b ∈ Cρ2 for some ρ1, ρ2 > 0, and if �a,b(y) = 0
for some compact quasi-affinity y ∈ B(H), then �−1

a,b(0) ⊥1 �a,b(B(H)).

Proof. We prove that a and b are unitary in such a case; this will then imply the
theorem.

If a ∈ Cρ1 and b ∈ Cρ2 , then there exist positive invertible operator p, q and con-
tractions c1, c2 such that a = p−1c1p and b = qc2q

−1. Set pyq = t ; then t is a
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compact quasi-affinity, �c1,c2(t) = 0, |t∗|2 � c1|t∗|2c∗
1 and |t |2 � c∗

2 |t |2c2. Apply-
ing [6, Theorem 8] to |t∗|2 � c1|t∗|2c∗

1 and |t |2 � c∗
2 |t |2c2 it follows that c1 and

c2 are unitaries. Since �a,b(y) = 0 implies �c1,b(py) = 0, �b∗,b(|py|2) = 0, where
|py| is a compact quasi-affinity. The equality �b∗,b(|py|2) = 0 when taken along-
with the invertibilty of b implies the existence of a unitary u such that u|py| = |py|b.
Applying [2, Theorem 2] to u|py| = |py|b to conclude that u is singular unitary
followed by an application of [2, Theorem 1(ii)] we conclude that b is unitary. The
equation �a,b(y) = 0 now implies that �a,a∗(|y∗|2) = 0, and hence that there exists
a unitary w such that w|y| = |y|a∗. The operator a∗ being Cρ1 , it follows (from an
application of [2, Theorem 2] followed by an application of [2, Theorem 1(ii)]) that
a is unitary. This completes the proof. �

The descent of a Banach space operator T ∈ B(X), dsc(T ), is defined to be the
least non-negative integer n such that T n(X) = T n+1(X) [11,16]. Recall that if both
asc(T ) and dsc(T ) are finite, then asc(T ) = dsc(T ) [16, Proposition 4.10.6]. In the
following we call the pair (S, T ), S and T ∈ B(X), splitting skew exact if there
exists a bounded linear R : X → X such that T = RST and ST R = S. The follow-
ing proposition says that a necessary and sufficient condition for the pair (φ, φ) to
be splitting skew exact is that dsc(φ) be finite.

Proposition 2.11. Let � be the operator �ab of the statement of Theorem 2.7. Then
� is splitting skew exact if and only if dsc(�) is finite.

Proof. It is clear from the implications

�−1(0) ⊥k �(B(H)) �⇒ �−1(0) ∩ cl �(B(H)) = {0}
�⇒ �−1(0) ∩ �(B(H)) = {0} ⇐⇒ asc(�) = 1

and the hypothesis dsc(�) < ∞ that asc(�) = dsc(�) = 1 and B(H) = �−1(0) ⊕
�(B(H)) [16, Proposition 4.10.6]. In particular, � is Drazin invertible [5,17]. Thus
there exists an operator �D ∈ B(B(H)) such that �D�� = � = ���D , which im-
plies that (�, �) is splitting skew exact. If, on the other hand, (�, �) is splitting skew
exact, then the existence of an operator r ∈ B(B(H)) such that ��r = � implies
that �−1(0) + �(B(H)) = B(H) [13, Theorem 2]. Hence � has finite descent. �
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