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A Normal Form Problem for Unlabeled Boundary
NLC Graph Languages

KoicHI YAMAZAKI

Department of Information Sciences, Tokyo Denki University, Hatoyama-Machi, Hiki-Gun, Saitama 350-03, Japan

We consider an existential problem of a Chomsky-type normal form
for unlabeled boundary NLC graph languages. Let G be a boundary
NLC graph grammar, maxr{ G) be the maximum for the sizes of graphs
which are the start graph (axiom) and the right-hand sides of produc-
tion rules in G, and und(L{G)) is the set of underlying unlabeled
graphs which are obtained from graphs in the generated language L(G)
by removing the labels. Then it is an open question (Rozenberg and
Welzl, 1986, Inform. and Control 69, 136-167 ) whether there exists a
positive integer k, such that there is a boundary NLC graph grammar G
with maxr{G) <k, and L = und{L(G)) for every unlabeled boundary
NLC graph language L. We will show that there is an infinite hierarchy
in the class of the underlying unlabeled boundary NLC graph languages
with respect to the sizes of the graphs appearing in the production rules
of the boundary NLC graph grammars that generate the underlying
unlabeled boundary NLC graph languages. Finally, we will show that
there is no integer k, satisfying the above conditions, using a pumping
lemma for boundary NLC graph languages. €' 1995 Academic Press, Inc.

1. INTRODUCTION

NLC (node-label-controlled) graph grammars were
introduced by Janssens and Rozenberg (1980) as a
framework for mathematical investigation of graph gram-
mars.

Since then, NLC graph grammars have been intensively
investigated by several authors, Ehrenfeucht ez al. (1984)
and Janssens et al. (1986), among others. Boundary Node
Label Controlled (BNLC) graph grammars were intro-
duced and investigated in (Rozenberg and Welzl, 1986a, b).
The BNLC graph grammars are NLC graph grammars
such that no two nonterminal nodes of any graph in
the production rules and the start graph are adjacent. The
BNLC graph languages are an interesting subfamily of the
NLC graph languages, because the BNLC graph grammars
have attractive properties such as the Church-Rosser
property, a neighborhood-preserving normal form, and for
connected graphs of bounded degree the membership
problem for BNLC graph languages is solvable in polyno-
mial time (see Rozenberg and Welzl, 1986a). In (Rozenberg
and Welzl, 1986a), the Chomsky-type normal form problem
for BNLC graph grammars was investigated and it was
shown that there exists no Chomsky-type normal form for
BNLC graph grammars. An unlabeled BNLC (u-BNLC)

graph language L is the set of underlying unlabeled graphs
which are obtained from the graphs in a BNLC graph
language L by taking off the labels.

In this paper, we will consider the Chomsky-type normal
form problem for the u-BNLC graph languages. In
(Rozenberg and Welzl, 1986a), it remains an open question
whether there is the Chomsky-type normal form for
unlabeled BNLC graph languages, i.e., “whether there is a
positive integer k,, such that for every unlabeled BNLC
graph language L there is a BNLC graph grammar G with
maxr(G) <k, and L =und(L(G)),” where und(L(G)) is the
set of underlying unlabeled graphs of L(G). It will be proved
here that there exists no positive integer &, for this normal
form problem.

As a result, we provide an infinite hierarchy in the class of
the underlying unlabeled BNLC graph languages, that is,
% G Z o1 (k2 1), where %, 1s the class of unlabeled BNLC
graph languages that are generated by BNLC graph gram-
mars G with maxr(G) < k. Accordingly, we show that there
exists no Chomsky-type normal form for unlabeled BNLC
graph languages.

This paper is organized as follows. In Section 2, we intro-
duce definitions, basic notions, and a pumping lemma for
BNLC graph grammars. In Section 3, we provide a proof
for a hierarchy theorem, that is, % & % ., (k> 1), using
the pumping lemma reviewed in Section 2, and we provide
the negative solution to the Chomsky-type normal form for
unlabeled BNLC graph languages as a corollary to the
hierarchy theorem.

2. PRELIMINARIES

We start with basic notations concerning graphs, graph
grammars, concrete derivations, and a pumping lemma
for BNLC graph languages. We assume familiarity with
elementary graph theory (Harary, 1969) and formal
language theory (Hopcroft and Ullman, 1979).

2.1. Graphs

We consider finite undirected node labeled graphs without
loops and multiple edges.
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DeriNtTiON 2.1 For a set of labels X, a graph X (over X))
is specified by V., E, and ¢, where

s U, s a finite nonempty set of nodes,
o EycVyxVyisa set of edges, and

e ¢, 1s a function from V into X, called the labeling
Sfunction.

Let £ and @ be sets of labels. The set of all graphs over 2
is denoted by G,. The graph X — x is the subgraph of X
induced by V,—{x}. The neighbor of x in X is the set
{veVy|{x, y} €Ey}. A graph X’ is isomorphic to X, if
there is a bijection from V. to V', which preserves labeling
and adjacency. The size of X, denoted by #JX, is the number
of the nodes in X.

2.2. BNLC Graph Grammars

DEFINITION 2.2. A boundary node label controlled
(BNLC) graph grammar is a system G= (X, 4, P, conn,
Z,.), where

« X is a finite nonempty set of labels,
e A is a nonempty subset of X (the set of terminals),

e Pis a finite set of pairs (d, Y) where d'is in £ — 4 and
Yis a graph over X such that no two nodes in Y labeled by
elements of X — 4 are adjacent (the set of productions),

e conn is a function from X into 2% (the connection
function), and

e Z. is a graph over X such that no two nodes in Z
labeled by elements of 2 — 4 are adjacent (the axiom).

The set 2 — 4 is referred to as the set of nonterminals. A
node x is a terminal (respectively nonterminal) node, if x is
labeled by elements of 4 (respectively ~ — 4). A production
(A, Y)e P is called a chain-rule if V,,={y} and y is a non-
terminal node. A production (4, Y) e P is called an empty-
rule if Y is empty graph. A BNLC graph grammar G is
called proper if G has no chain-rule and no empty-rule.
Without loss of generality, we can assume that BNLC graph
grammars which are considered in this paper are proper
(1e., an arbitrary BNLC graph grammar can be trans-
formed into a proper BNLC graph language with
preserving L(G) and maxr(G); see Rozenberg and Welzl,
1986a).

Let G=(2Z, 4, P, conn, Z,,) be a BNLC grammar, (d, W)
be a production in P, X and Y be graphs over X such that
Ven ¥Vy= and Y be isomorphic to W, and x be a node
labeled by din graph X. Then graph Z is derived from graph
X by the production (d, Y) in the following way:

Step I:  Delete the node x (and the edges which are inci-
dent with x) from the graph X. (Note that x is labeled by d.)

Step 2:  Replace x with Y. (Note that Y is a copy of W.)
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Step 3:  Connect a node y in Y to the neighbor x’ of x by
an edge if and only if ¢ »(x") € conn(¢ ,( y)) holds.

Consequently, the graph Z is obtained, where V,=
Vy_«wVy, Ez=Ey OE,U{{x', y} | x"is a neighbor
of x, ye Vy, ¢ x(x")econn{¢,(y))}, and
@x_ ) if ueV,_ ,,and
@ Au)= { A

@ y(u) if uel,.
Then we say that “X concretely derives Z (in G, replacing x
by Y),” denoted by X=, , Z or simply by XY=, , Z.

The language generated by G, denoted by L(G), is the set
{XeG,| Z., % X}, where the relation X=_Z means
that there is a graph Z’ which is isomorphic to Z such that
X concretely derives Z' in G, and %>, denotes the reflexive
and transitive closure of = . A set L of graphs is a BNLC
language 1if there i1s a BNLC graph grammar G such that
L=L(G).

2.3. Concrete Derivations

In this paper, we need the notion of concrete derivation
which are introduced in (Rozenberg and Welzl, 1986a) to
handle a “concrete” derivation (“concrete” means that the
node x; which is replaced in the graph X, and the graph
Y, . which substitute the node x, are written expressly in
the derivation). Let G=(Z, 4, P, conn, Z,,) be a BNLC
graph grammar. If a graph X concretely derives a graph Z
in G, replacing a node x by a graph Y, then we refer to the
construct X = . y, Z as a concrete derivation step in G ( from
X to Z). A sequence of successive concrete derivation steps
inG

D: XOE(X(% Y1) Xl 51»\'\, Yo . v Xn

where n> 1, is referred to as a concrete derivation in G
(from X, to X,). For derivations, the set of nodes and the
function ¢ are extended, that is, Vp=Vy U, <icn Fy,
@p(x) =@y (x), if xe Vy, for some i (1 <i<n). The exten-
sion is useful when we refer a node of a derivation.
Let

D Xo= o ) X120 v R0 v Xn
be a concrete derivation. Let ¢, which we call the origin of
D, be a distinguished element not in V. The predecessor
mapping pred,, of D is a function from Vj, into V,u {Op}
such that for xe V',

G, if xeVy and,

dp(x) =
predp(x) {x,. if xeV,  foran0<i<n—1

Hence pred, maps every node x in V', to the node from
which x is directly derived (or to (7, if x already exists in X,,).
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The history hist p(x) of a node x €V, in D is the sequence
(Fos Vis e Yog)y 21, v, eV for all i (1<i<m), such
that y,=0Cp, y,=x, and y,=predp(y,;,,) for all i
(0<ig<m—~1). Let (yy. ¥,, ... ¥,,) be a sequence such that
hist (X)) =(y4. ¥1s - V), and let 0<i<j<m Then we
denote the sequence (y,, y,. 1, ... ¥;) by histp(y,, y;). Note
that we can define hist 5(x, ) only when x is an ancestor of
». We denote by targ p(x) the set {y eV, | x€histp(y)}.
We denote by C, the set {x,, x, .., x,,_,} of rewritten non-
terminal nodes in the concrete derivation D. We call the
graph X, the result of the concrete derivation D and denote

it by result( D).

24. Pumping Lemma for BNLC Graph Languages

We need the notation on iteration of a derivation in order
to prove the Chomsky-type normal form in unlabeled
boundary NLC graph languages. We will explain the nota-
tion by means of an example to lightly grasp the notation
(for strict discussion, see Yamazaki and Yaku, to appear).

Graph X, Graph X, Graph X,

Derivation D

We consider a derivation D which has nodes x,.x,
(x,#x,)eCp such that x,ehistp(x,) and ¢p(x,)=
@ p(x,). Let 7 be the derivation tree of D, ¢, be the tree which
1s obtained by taking away the subtree of 1 at x, from ¢, 7,
be the subtree of ¢ at x,, and ¢, be the tree which is obtained
by taking away 5 from the subtree of 7 at x,. Then we can
construct a derivation D’ which has following property by
rearrangement of derivation steps in D:x,=x}, x,=x],
result(D) = result(D'), and D' can be divided into three sub-
derivations, the first, the middle, and the last subderivation,
corresponding to !, f,, and f,, respectively. We call D’
rearranged derivation for D with respect to x, and x,. We
construct a “pumped” derivation by iterating the middle
subderivation in the rearranged derivation D’ with respect
to x, = x} and x, = x;. We denote m times pumped deriva-

tion by pump(D’, x/,, x|, m).

Let

ExAMPLE (An Iteration of Derivation D).

& rearrangement

Graph X', Graph X,

- It

< It

first derivation

middle derivation

/ Derivation D’

Pt . X'y
xly=x,y @ x P
.

@ X, copy
3
=
- ¥ N
Graph X0, Graph X7, Graph X%,
copy

FIG. 2.1.

xly=x

N xl4 }
hd = =
yl‘ ‘%’ yls
Graph x'3 Graph xl‘ Graph xl5
2=l
3=Xg 2,
* = =
7,
Graph X?, Graph X2,

The derivations D and D'.
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be a derivation such that x,#x;, x, €histp(x;), and constructs ,, and the “last subderivation”
@ p(x,) =@ p(x3). Then we can cite the following derivation
as a rearranged derivation D’ with respect to x, and x,: Xi2 vp X2 vy X5

. (l ! 1 .
D Xo=2 i vip X120, v D vy X7 constructs 7, (see Fig. 2.2).

Let
Here xi=x4, X} =Xx,, Xb=Xx4, X3=x,, X, =Xg, X5=X3,
Xo=x5, Yi=Y,, Yi=Y,, Yi=Y,, Yi=1,, Yi=7Y, ot o Xlo s eyl
t=Y,, Y,=7Y, (see Figs. 2.1 and 2.2). The “first sub- 3G V) T 4T xg, Y 2 50
ivation” 2 ) 2 . . V2
derivation X3z X3z, Vi X2

Xo=2 o v, X120 vy X020 1), X - . . . .
070k Y B YR 2T, Yy 3 be derivations which are isomorphic to the subderiva-

constructs #,, the “middle subderivation™ tion

’ ' ' 0 0 0
3 9“5, Yy X4 9(,‘;, Yo Xs X3 Eug, Yy X4 9(:(‘4. Ys) XS’

Application of the first
derivation

Graph X, Graph X, Graph X°; Graph X,

Application of a copy of
the middle derivation

Application of a copy of
the middie derivation

Application of the last
derivation

Graph X"g Graph X"y

FIG. 2.2. The derivation tree of X?.
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O :terminal node
® : nonterminal node

Graph X, Derivation tree of X’

FIG. 2.3. The derivation D"

where X9, X1, X2 are graphs such that Vyo={x4}, =l vh Xe 23 v X7
- 1 N 2 1 _ 1 2
V{i ={x, 'VX} = ,{“\ s and Xp=X5, X =X Then, (application of a copy of the middle derivation)
D" =pump(D', x4, x5, 2) is the following derivation (see
Figs. 2.3 and 2.4} = vy X520 vy X5

_— , (application of the last derivation).
D . X() B(x(',. y'l, s 5}(.‘-'2' Y,}) X3

{application of the first derivation) ProposiTiON 2.1 (Yamazaki and Yaku, 1993). Ler G
¥ ¥ be a BNLC grammar and D be a derivation which has
d oy A Fgovp As nodes x,,x, (x,#x,)€Cp such that x, € histn(x,), and

(application of a copy of the middle derivation) @ p(x,)=@p(x,). Let D' be the rearranged derivation for D

Graph X" Derivation tree of X"g

FIG. 24. The derivation tree of X3.
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v ) ) . A R
with respect to x, and x,. and x,=x,, x,=x, If

result( D) e L(G), then result( pump(D', X, X', m))e L(G)
for each non-negative integer m.

3. A HIERARCHY IN THE u-BNLC GRAPH LANGUAGES

In this section, the following theorem is shown.

THEOREM 3.1. Let ¥, be the class of u-BNLC graph
languages derived from BNLC graph grammars with
maxr(GY< k (1 <k). Then 4, 5 % -

To demonstrate this, we will show that there exists
a u-BNLC graph language L, in % ,, such that for
every BNLC graph grammar G with maxr(G) <k, L, #
und(L(G)). An L, such as above is constructed by the
following method: For each integer k (1 <k), we consider
a BNLC graph grammar G, =(2;, 4., P,.conn,, Z, ),
where X, = {a,, a,, .., a,, s}, 4, ={a,, ay, .., a,}, conn,(a;)
=a,foralli (1 <i<k), conn(s)=4d,, Z,,, 1s a single node
with label s, P, = {(s, Y|}, (s, Yo )}, where Y, is the com-
plete graph with set of nodes {u,, uy, .., u;, t, .}, where
oy lu)=a,for all i (1<i<k), @y, (up,,)=s Y, is the
complete graph with set of nodes {v,,v,, .. v,}, where
@y (v)=a; for all i (1<i<k). We define an unlabeled
graph language L, by L, = und(L(G,)).

ProrosiTiON 3.2. Let H, be an underlying unlabeled
graph in L. If H has size k - e for some integer e, then,
(1)

(2) Every node in H, is included in exactly two maximal
cliques, one has order k and the other has order e,

(3) Every edge {x,y} in H, is included in a unique
maximal cligue.

Proof. Straightforward. |

Every maximal clique of H, has order k or e,

DEerINITION 3.3. Let k, e be integers such that 1 <k <e
and let H, be an underlying unlabeled graph with & - e nodes
in L,. Then DL ( Different Label) group denotes every maxi-
mal clique of order k in H, and SL (Same Label) group
denotes every maximal clique of order e in H,, (see Fig. 3.1).

CoroLLARY 34. Let H, be an underlying unlabeled
graph with more than k*(1 <k) nodes in L,, and let F be a
complete subgraph with more than k nodes in H ,. Then for all
nodes x and y in F, x and y belong to the same SL group.

Proof. Straightforward. |

Let G be a BNLC graph grammar such that
und(L(G)) = L,. Then we consider a pumped derivation D"
which is obtained from a derivation D in G. In the rest of
this section, such a grammar G and derivation D, D" are
fixed. Let

D X2 v X1 D v D1 v X

SL group

DL group

FI1G. 3.1.

An unlabeled graphin L,.

be a concrete derivation with following properties: (1)
und(result(D)) e L,; (2) D has nodes x,., x, (x,#x,)eC,
such that x, € hist ,(x,) and @ ,(x,) = @ p{x,). Let

’. ' ’ !
D Xo=2q vy X120 m D v X

be the rearranged derivation for D with respect to x,, and x,,.
Let s and ¢ be integers such that x, = x|, x, = x/.
For1 €j<2, let
DI X2 vy, D, vln X

i42) Ts+2
J J
Do v X 2ol X
be the derivations which are isomorphic to the middle
derivation,
X'\ 5(:«';, Y

Te1)

’ 13
Xoor 20 X

and h; be an isomorphism from the middle derivation to
D" (For convenience, DS°F is the middle derivation, i.e.,
x)=xj;and Y=Y, foralli(s<i<t).) Then

D" X2 vy X 20 v X

(xgs
" "
Sy Xiir 2 h X
~ N " L 5 ”
2 v Xiru-n 2, vh X

2y, o Xrr1v20-9" D v Xnvios
is pumped derivation D" = pump(D’, x|, x, 2).
For the derivation D”, the following lemmas hold.
4

LemMa 3.5. For each nonterminal node y € hist . (x), x}),
if a graph X in the derivation D' has the node y, then y and
all terminal nodes of the graph X are adjacent.

Proof. In order to prove this lemma, it suffices to show
that x} and every terminal node in X7, _, are adjacent in
the graph X7, _,,- Suppose, to the contrary, that there
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exists a node w in X%, _,, such that x, and w are not
adjacent in the graph X7, , _,,. Then, there exists no node
u€ targ p-(x,) such that » and w belong to the same SL
group. For the reason that the graph X, and X7, , _,, have
exactly one nonterminal node, x! and x| (see Yamazaki and
Yaku, 1993), this means that the cardinality of the SL
group to which w belongs is not influenced by pumping of
the derivation D’ in a pumped graph (see Fig. 3.2).
However, this contradicts the structure of graphs in L, (ie.,
SL groups of a graph in L, have same size one another). As

a result, x} and every terminal node in X7, _,, are adjacent
in the graph X7, .. 1

LEMMA 3.6. Let y be a terminal node such that x\e
histp-(y) and X\,¢ hist () and z be a node such that
hy(y)=1z. And, let S be the SL group in result(D") such that
yeS. Then, if $(Vy, 0 V) is greater than k, z belongs also to
the SL group S in result(D").

Proof. 1fasubgraph H in result(D") is a complete graph
and $V,, > k, then H is a subgraph of an SL group, since for
every DL group, its size 1s &. Thus, if the subgraph whose
node set is (Vy nVy)u {z} is a complete graph, then z
belongs also to S in resu/t(D”) by Lemma 3.4 (see Fig. 3.3).
Hence, in order to prove this lemma, it suffices to show that
the subgraph whose node set is (Vy.nVg)u{z} is a
complete subgraph in result(D").

SL group

-

SL group

SL group /
SL group

X ”.H»(l-:)

SL group

SL group

SL group

SL group

A pumped graph

FIG. 3.2. The graph X7, _,, and a pumped graph.

VNV,
////———\\\\
7 \\\
/ \
|
|
\ /
\ /
N 7
~ 7
- _
y Z

F1G. 3.3. The relation between y and -

Let (ugy, vy, .., u,,) and (vy, vy, ..., v,,) be the sequences
hist (X, ¥) and hist . (X}, 2), respectively (see Fig. 3.4).
From Lemma 3.5, each node v in V. n V¢ and x} are adja-
cent in the graph X7, ., _,,. Since u and y are adjacent,
@p(u) € conn(@ p-(u;)) for all i (1 <i<m). Thus, @, (u) e
conn{ @ p-(v,)) for all i (1 <i<m). Hence = and u are adja-
cent in the graph X7 ,, ., _,,. As a result, the subgraph
whose node set is (Fy. n V) U {z} is a complete subgraph
in result(D"). | '

Op

FIG. 3.4. The derivation tree of D",
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Remark 3.7. We can assume that there exists a deriva-
tion D such that for every SL group S in result(D"),
#(Vx. v V) is greater than &, because, if initially D is not
such a derivation, then we can obtain such a derivation
using the change D, x,, and x, as pump(D', x, x,, m).
h,(x.), and h,(x}), respectively, for large enough m (see
Fig. 3.5). Hence, without loss of generality, we can assume
that y and = belong to the same SL group in result(D”) for
a terminal node y such that x’, € Aist . ( y) and x| ¢ hist 5. (y),
and z be the terminal node such that 4,(y)= . Moreover,
Lemma 3.6 holds for £,,(y) =z, m = 2. However, the case of
m =2 suffices to solve the Chomsky-type normal form
problem for u-BNLC graph languages.

LemMa 3.8. For the BNLC graph grammar G which
derives D", k < maxr(G).

Graph X's

Xp Xq

Initial derivation

e _Graph X's . )

hm(x ’s) hm(x ’1)

New derivation

FIG. 3.5. A construction a derivation satisfied the assumption.

Proof.  Suppose maxr(G) < k, then we will show the con-
trary that und(result{D")) ¢ L,.. Note that und(result(D")) e
L, by Proposition 2.1, Let x be a terminal node such that
predp. (x)=x (since G is proper, there exists such a ter-
minal node x), and let F be a DL group such that xe Fin
result{ D"). Since maxr(G) <k and the fact that x' yield at
least one nonterminal node in D", it is impossible to derive
k terminal nodes by one derivation step. Hence at least
two derivation steps are necessary to derive & terminal
nodes in D”. Thus there exists some node ye F such that
predp. (X)) # predp.(y). We consider the following three
cases into which the time for yielding node y in D" is
categorized:

Case 1: x,¢histp.(y)
Case 2: xlehisty.(y)and x', ¢ hist 5. ( y).
Case 3: x| ehist, ().

Case | means that y is yielded earlier than x’ in D", or y and
x, i1s yielded at the same time in D" (ie., pred,.(y)=
pred . (x,)). Case 2 means that y is yielded after x', is yielded
and y is yielded earlier than x} in D", or y is yielded after x’,
1s yielded and x} and y are yielded at the same time in D".
Case 3 means that y is yielded after x| is yielded in D". There
exists no case outside the above three cases.

The principle of the proof is to show that there exists u, v,
and we V. p- such that:

{pl) u. v, and w are pairwise adjacent;

(p2) wuand v belong to the same SL group in result(D");
and

(p3) u and w don’t belong to the same SL group in
result(D").

The existence of such nodes contradicts Proposition 3.2,
thus showing und(result(D")) ¢ L,

Case 1. Let z e D5°™ be a node such that 4,(x) =z (see
Fig. 3.6). Then, x| = pred,,.(z) holds.

By hypothesis, x and y are adjacent in result(D"). By
Lemma 3.6 and Remark 3.7, without loss of generality, we
can assume that x and z belong to the same SL group. Thus
x and r are adjacent. By Lemma 3.5, x|, = pred-(z) and all
terminal nodes are adjacent in the graph X7, _,,. Hence,
as x, = pred . (z), pred,-{z) and y are adjacent. Since x and
y are adjacent in result(D"), ¢ p-(y) € conn(gp ,-(x}). Thus
@p-(y)econn(@p-(z)). Therefore y and z are adjacent.
Accordingly, x, y, and z are pairwise adjacent.

Since x and y belong to the same DL group in result(D"),
they cannot belong to the same SL group in result(D"). As
we have seen, we show that there exist such nodes u, v, and
w as x, z, and y, respectively.



NORMAL FORM PROBLEM FOR UNLABELED BNLC LANGUAGES 9

Op

FIG. 3.6. The derivation tree of D" in Case 1.

Case 2. Let z€ D5™ be the node such that A)(y)=:
and let us denote  histp.(x,, y), histp.(x),z) by
(Ug, Uy, o Uyy)s (Ugs Uy, . U,,)  respectively (Note that
hy{u,)= v, for all i (0 < i< m)) (see Fig. 3.7).

By hypothesis, x and y are adjacent in result(D"). By
Lemma 3.6 and Remark 3.7, y and z belong to the same SL
group. Thus, y and - are adjacent. By Lemma 3.5, x, and x
are adjacent. Since x and y are adjacent in result(D"),
@ p(x) € conn(@ p-(u;)) for all i (2 <i<m). (Note that it is
possible to hold ¢, (x) ¢ conn(¢@ (1)) and x and u, are
adjacent in the graph Y!, ) @p-(x)€conn(@p (u,)) is
guaranteed from adjacency between x and x2in X7 ,,_,).
(It is not difficult to see that x and x? are adjacent
in X!, ,,_5-) Thus ¢p(x)econn(pp (vi)) for all i
(1 <i<m) Hence x and :z are adjacent in result(D").
Accordingly, x, y, and - are pairwise adjacent.

In the same way as in Case 1, it is shown that x and y (or
z) do not belong to the same SL group in result(D"). As we
have seen, we show that there are exist such nodes u, v, and
w as y, z, and x, respectively.

Case 3. Let ze DS"™ be a node such that 4,(x) =z (see
Fig. 3.8). By Lemma 3.6 and Remark 3.7, x and = belong to

Op

FIG. 3.7. The derivation tree of D" in Case 2.

the same SL group. Thus, x and z are adjacent. The fact that
x and y adjacent in result(D") guarantees that x and z are
adjacent to y in result(D"). Accordingly, x, y, and z are
pairwise adjacent. In the same way as in Case 1, it is shown
that y and x (or z) do not belong to the same SL group in
result{ D"). As we have seen, we show that there are exist
such nodes u, v, and w as x, z, and y, respectively.

As a result, und(result(D")) ¢ L, in all cases. |

The proof of Theorem 3.1 is clear from the above lemmas.
Hence, we have shown that there exists no Chomsky-type
normal form for the underlying unlabeled BNLC graph
languages.

COROLLARY 3.10. There is no fixed positive integer k
such that for an arbitrary underlying unlabeled BNLC graph
language L, there is a BNLC graph grammar G with
maxr(G) <k and L =und(L(G)).
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FIG. 3.8. The derivation tree of D” in Case 3.
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