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To elucidate a possible role of membrane-bound aldehyde dehydrogenase in the detoxication of aldehydic 
products of lipd peroxidation, the substrate specificity of the highly purified microsomal enzyme was investi- 
gated. The aldehyde dehydrogenase was active with different aliphatic aldehydes including 4-hydroxyalke- 
nals, but did not react with malonic dialdehyde. When Fe/ADP-ascorbate-induced lipid peroxidation of 
arachidonic acid was carried out in an in vitro system, the formation of products which react with micro- 

somal aldehyde dehydrogenase was observed parallel with malonic dialdehyde accumulation. 
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1. INTRODUCTION 

Lipid peroxidation in cellular membranes is ac- 
companied by accumulation of  various aldehydic 
products which include, apart from the well- 
known malonic dialdehyde, a number of  aliphatic 
aldehydes with chain lengths from 3 to 10 carbon 
atoms [1]. Among them the most toxic contain a 
double bond and an OH group such as 
4-hydroxyhexenal and 4-hydroxynonenal. There is 
increasing evidence indicating the important role 
of  4-hydroxyalkenals in the deteriorative action of  
lipid peroxidation on cell structure and function 
[2,3]. Recently, it has been demonstrated that cer- 
tain isozymes of  glutathione S-transferase catalyze 
the reaction of  4-hydroxyalkenals with reduced 
glutathione [4,5]. Moreover, the toxic aldehydes 
can be readily reduced to the corresponding 
alcohols by liver alcohol dehydrogenase [6]. It is 

suggested that these reactions are responsible for 
intracellular detoxication of  4-hydroxyalkenals 
and some other aldehydes. Nevertheless, it should 
be emphasized that both processes are catalyzed by 
soluble cytosolic enzymes. At the same time, 
molecules of  the majority of  aliphatic aldehydes 
derived from lipid peroxidation possess 
hydrophobic properties and may accumulate in the 
lipid bilayers of membranes [2,3]. We have sug- 
gested previously that membrane-bound micro- 
somal and peroxisomal aldehyde dehydrogenases 
may be implicated in the metabolism of  4-hydroxy- 
alkenals and other lipid-soluble aldehydes [7,8]. 
Here, we report on the substrate specificity of  
highly purified aldehyde dehydrogenase from rat 
liver microsomes using some aldehydes previously 
identified as products of lipid peroxidation [1]. 

2. MATERIALS AND METHODS 

Correspondence address: V.D. Antonenkov, All-Union 
Research Center for Medico-Biological Problems of 
Narcology, Kropotkinsky per. 23, Moscow 119034, 
USSR 

Aliphatic and aromatic aldehydes were obtained 
from Aldrich or Sigma. The 4-hydroxyalkenals 
were generously provided by Dr H. Esterbauer (In- 
stitut fiir Biochemie, Universit/it Graz, Graz, 
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Austria). Acetaldehyde and propionaldehyde were 
redistilled before use. The sources of  all other 
reagents were as given in [7,8]. 

Adult male Wistar rats (200-250 g) were in- 
jected i.p. with clofibrate at a dose of  400 mg/kg  
daily for 10 days. Animals were anesthetized and 
killed by decapitation after 16-18 h starvation. 
Livers were perfused with saline to wash out 
erythrocytes, homogenized and the microsomal 
fraction isolated as in [7]. The microsomal suspen- 
sion was resedimented in 50 mM Tris-HCl (pH 
7.5) containing 0 . 1 5 M  KC1. Aldehyde de- 
hydrogenase was purified f rom microsomes as 
described by Lindahl and Evces [9]. Elec- 
trophoresis in the presence of  SDS was performed 
according to Weber and Osborn [10] using 10°70 
polyacrylamide gels. Aldehyde dehydrogenase ac- 
tivity was determined by following NAD ÷ reduc- 
tion, spectrophotometrically (37°C) or fluori- 
metrically (25°C) [7]. Some aldehydes were 

prepared as stock solutions (final added volume 
5/zl) in methanol which was without effect on the 
microsomal aldehyde dehydrogenase. Kinetic con- 
stants (Km and Vmax) were measured in 50 mM 
pyrophosphate  buffer (pH 8.6), containing 
0.5 mM NAD ÷ and 0.2% Triton X-100. The reac- 
tion was initiated by the addition of  aldehydes. 
Data  were analyzed on Lineweaver-Burk plots. 
Peroxidation of  arachidonic acid (Sigma) was per- 
formed in 50 mM Tris-HCl (pH 7.5) containing 
0.15 M KCI. The suspension (final arachidonic 
acid concentration 13 mM) was treated by using an 
ultrasonic disintegrator. Immediately after sonica- 
tion the suspension was incubated for 30 min at 
37°C in the presence of  lipid peroxidation in- 
itiators (35/zM FeSO4, 1.5 mM ADP,  0.1 mM 
ascorbic acid). In some cases the reaction was stop- 
ped by addition of  0.01°70 butylated hydroxy- 
toluene. Malondialdehyde format ion was mea- 
sured by means of  the thiobarbituric acid assay at 

Table 1 

Kinetic constants of microsomal aldehyde dehydrogenase for various 
aldehydes 

Aldehydes Km Vmax Kcat/Km 
(,uM) (/zmol.min -1 (s-1./~M -l) 

• mg protein- ~) 

Aliphatic aldehydes 
Acetaldehyde (C2) 1700 2.4 0.004 
Propionaldehyde (C3) 1380 3.5 0.008 
Butyraldehyde (C4) 600 5.4 0.028 
Hexanal (C6) 24 9.7 1.26 
Heptanal (C7) 6.0 9.3 4.83 
Octanal (Ca) 6.5 9.3 4.45 
Nonanal (C9) 4.4 9.8 6.94 
Decanal (Clo) 2.6 9.9 11.82 
Undecanal (Ctl) 2.5 9.7 12.10 

Alkenals 
4-Hydroxynonenal 70 2.3 0.104 
4-Hydroxyhexenal 2520 2.4 0.003 

Aromatic and other 
aldehydes 
Phenylacetaldehyde 500 3.9 0.024 
Benzaldehyde 730 2.0 0.008 
Glutaraldehyde 1130 3.1 0.009 

Michaelis constants (Km) and maximal velocities (Vmax) were determined 
from Lineweaver-Burk plots. The K~at values were calculated on the basis 

of Mr= 190000 
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535-570 nm [11]. Protein was determined by the 
method of  Lowry et al. [12]. 

3. RESULTS 

Microsomal aldehyde dehydrogenase was 
purified from the livers of rats treated with the 
hypolipidaemic drug clofibrate. Previously we 
have shown a 1.5-2.0-fold increase in the en- 
zyme's specific activity in liver microsomes under 
the action of this drug [7]. After the affinity 
chromatography step the specific activity of  
aldehyde dehydrogenase increased 50-fold com- 
pared to that in the microsomes. SDS elec- 
trophoresis of  the final enzyme preparation 
revealed one major band which constituted about 
95 °7o of the total protein content in the 
polyacrylamide gel. Attempts at additional 
purification of aldehyde dehydrogenase by gel 
filtration on Sephadex G-200 led to significant en- 
zyme inactivation and served only for molecular 
mass estimates. According to our present data 

microsomal aldehyde dehydrogenase has a 
molecular mass of  190 kDa. 

Table 1 lists data on the substrate specificity of  
microsomal aldehyde dehydrogenase. It is 
noteworthy that with aliphatic aldehydes as 
substrates the increase in size of  their molecules is 
accompanied by a decrease in the Km values and a 
rise in Vmax. The differences were far more discer- 
nible when the catalytic efficiency (gcat/Kra) was 
calculated. This parameter gradually increases 
3000-fold in the row from acetaldehyde (C2) to 
undecanal (Cn). The introduction of  an ce~- 
unsaturated bond and a 4-OH group into the 
molecules of aliphatic aldehydes remarkably 
lowers the values of  the catalytic efficiency obtain- 
ed with microsomal aldehyde dehydrogenase. The 
gcat/Km value for 4-hydroxynon-2-enal 
(0.1 s-t . /zM -1) is about 70-fold lower than that 
obtained for nonanal. These data can be explained 
by a decrease in the 4-hydroxyalkenals' 
hydrophobicity compared to the corresponding 
alkenals. It should be emphasized that 
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Fig.1. Enzymatic reduction of NAD ÷ in the presence of peroxidized arachidonic acid. (A) Assay mixture (1 ml) 
contained 50 mM pyrophosphate buffer (pH 8.6), 0.5 mM NAD ÷, 0.2°70 Triton X-100 and 4 mM arachidonic acid. The 
reaction was started by the addition of 5/tg purified microsomal aldehyde dehydrogenase (indicated by the arrow). (B) 
Relationship between the level of NAD ÷ reduction and concentration of peroxidized arachidonic acid. (1) Arachidonic 

acid before peroxidation, (2) peroxidized arachidonic acid. 
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4-hydroxynonenal and 4-hydroxyhexenal in the 
concentration ranges below 1.0 and 4.5 mM, 
respectively, did not exert inhibitory effects on the 
purified microsomal enzyme. Apart from the 
medium-chain aliphatic aldehydes the enzyme also 
reacts with aromatic aldehydes and glutaric 
dialdehyde, but the gcat/gm values for these 
substrates are very low (table 1). Microsomal 
aldehyde dehydrogenase was inactive with for- 
maldehyde, glyceraldehyde and malonic di- 
aldehyde. 

In in vitro studies we have attempted to elucidate 
a possible role for aldehyde dehydrogenase in the 
metabolism of  aldehydic products generated in the 
process of  arachidonic acid (C20:4) peroxidation 
(fig.l). The concentration of  malonic dialdehyde 
in the suspension of arachidonic acid rose from 4.7 
to 18.9/zM after 30min  incubation with lipid 
peroxidation initiators (see section 2). At the same 
time when accumulation of  NADH originating 
from the aldehyde dehydrogenase reaction was 
traced to assess the content of  aldehydic products, 
the levels registered were 1.3 and 18.5/zM, respec- 
tively. Denaturation of the enzyme by heat treat- 
ment (100°C, 5 min) prevented reduction of  
NAD ÷. Based on the present results the supposi- 
tion can be put forward that in vitro microsomal 
aldehyde dehydrogenase is capable of  effective ox- 
idation of aldehydes which, together with malonic 
dialdehyde, are formed during peroxidation of  
arachidonic acid. 

4. DISCUSSION 

The present results suggest that membrane- 
bound aldehyde dehydrogenases are involved in 
the metabolism of  aldehydic products derived 
from lipid peroxidation. It is remarkable that 
aldehydes with apparent hydrophobic properties 
are the best substrates for the rat liver microsomal 
enzyme. At the same time, water-soluble aldehydic 
products of lipid peroxidation, such as pro- 
pionaldehyde and 4-hydroxyhexenal, are oxidized 
by microsomal aldehyde dehydrogenase with 
relatively low catalytic efficiency. The enzyme is 
also inactive towards malonic dialdehyde. Recent- 
ly, it has been reported that these aldehydes may be 
primarily metabolized by the soluble cytosolic and 

mitochondrial enzymes [13-15]. On the other 
hand, the known tendency of  the lipid-soluble 
aldehydes to accumulate in the membrane lipid 
bilayer [2] may render them unavailable for en- 
zymes located in the cytosol. Thus, a certain degree 
of  specialization for the soluble and membrane- 
bound enzymes in dealing with the metabolism of  
aliphatic aldehydes can be supposed. 

ACKNOWLEDGEMENT 

We thank Dr H. Esterbauer (Institut fiir 
Biochemie, Universit~it Graz, Graz, Austria) for 
his generous gift of  4-hydroxyalkenals. 

REFERENCES 

[1] Poll, G., Dianzani, M.U., Cheeseman, K.H., 
Slater, T.F., Lang, J. and Esterbauer, H. (1985) 
Biochem. J. 227, 629-638. 

[2] Esterbauer, H. (1985) in: Free Radicals in Liver 
Injury (Poli, G. et al. eds) pp.29-47, IRL, Oxford. 

[3] Comporti, M. (1985) Lab. Invest. 53, 599-623. 
[4] Alin, P., Danielson, U.H. and Mannervik, B. 

(1985) FEBS Lett. 179, 267-270. 
[5] Jensson, H., Gutenberg, C., Alin, P. and 

Mannervik, B. (1986) FEBS Lett. 203, 207-210. 
[6] Esterbauer, H., Zollner, H. and Lang, J. (1985) 

Biochem. J. 228, 363-373. 
[7] Panchenko, L.F., Pirozhkov, S.V. and 

Antonenkov, V.D. (1985) Biochem. Pharmacol. 
34, 471-479. 

[8] Antonenkov, V.D., Pirozhkov, S.V. and 
Panchenko, L.F. (1985) Eur. J. Biochem. 149, 
159-167. 

[9] Lindahl, R. and Evces, S. (1984) J. Biol. Chem. 
259, 11986-11990. 

[10] Weber, K. and Osborn, M. (1969) J. Biol. Chem. 
244, 4406-4409. 

[11] Ernster, L. and Nordenbrand, K. (1967) Methods 
Enzymol. 10, 574-575. 

[12] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and 
Randall, R.J. (1951) J. Biol. Chem. 193,265-275. 

[13] Hjelle, J.J. and Petersen, D.R. (1983) Toxicol. 
Appl. Pharmacol. 70, 57-66. 

[14] Lame, M.W. and Segall, H.J. (1986) Toxicol. 
Appl. Pharmacol. 82, 94-103. 

[15] Mitchell, D.V. and Petersen, D.R. (1987) Toxicol. 
Appl. Pharmacol. 87, 403-411. 

360 


