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a b s t r a c t

In this paper, we present a variant of Jarratt method with order of convergence six for
solving non-linear equations. Per iteration the method requires two evaluations of the
function and two of its first derivatives. The new multistep iteration scheme, based on the
new method, is developed and numerical tests verifying the theory are also given.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Solving non-linear equations is a common and important problem in science and engineering. In this paper, we consider
iterative methods to find a simple root of a non-linear equation f (x) = 0, where f : D ⊂ R→ R for an open interval D is a
scalar function.
Newton method for a single non-linear equation is written as

xn+1 = xn −
f (xn)
f ′(xn)

(1)

This is an important and basic method [1], which converges quadratically.
To improve the local order of convergence, many modified methods have been proposed. The Jarratt method [2], which

has fourth-order convergence, is defined by

xn+1 = xn − Jf (xn)
f (xn)
f ′(xn)

, (2)

where yn = xn − 2
3 f (xn)/f

′(xn) and

Jf (xn) =
3f ′(yn)+ f ′(xn)
6f ′(yn)− 2f ′(xn)

.

The Jarratt method is widely considered and applied for the local order of convergence four.
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Recently, a variant of Jarratt method with sixth-order convergence is developed in [3,4], which improves the local order
of convergence of Jarratt method by an additional evaluation of the function. The similar methods have also been studied
in [5–9] and the orders of convergence of many classical methods have been improved. From a practical point of view, it is
interesting to improve the order of convergence of the known methods.
In this paper,we present a newvariant of Jarrattmethod, based on the composition of Jarrattmethod andNewtonmethod

instead of two-step Newton method. This variant consists in adding the evaluation of the function at another point in the
procedure iterated by Jarratt method. As a consequence, the local order of convergence is improved from four for Jarratt
method to six for the newmethod. Per iteration the newmethod requires two evaluations of the function and two of its first
derivatives. The superiority of the new method is shown in numerical examples.

2. Main results

In this paper, we consider the following iteration scheme

zn = xn − Jf (xn)
f (xn)
f ′(xn)

,

xn+1 = zn −
f (zn)
f ′(zn)

, (3)

where yn = xn − 2
3 f (xn)/f

′(xn). This iteration scheme consists of a Jarratt iterate to get zn from xn, followed by a Newton
iterate to calculate xn+1 from the new point zn. However, this method may not require the first derivative at the point zn.
We can use various approximations of f ′(zn) in (3) as

f ′(zn) ≈ ψ(zn). (4)

where ψ(zn) may be computed without any new evaluation of the function or its first derivative. So we want to find such
schemes as

xn+1 = zn −
f (zn)
ψ(zn)

, (5)

where yn = xn− 23 f (xn)/f
′(xn). Nowwe consider the constructions ofψ(zn) and then obtainmany efficient methods, which

are displayed in the following.
(1) ψ(x)may be considered as the linear interpolation function using two points (xn, f ′(xn)) and (yn, f ′(yn)), namely

ψ(x) =
x− xn
yn − xn

f ′(xn)+
x− yn
xn − yn

f ′(yn). (6)

Then one approximation of f ′(zn) can be obtained

ψ(zn) =
3
2
Jf (xn)f ′(yn)+

(
1−

3
2
Jf (xn)

)
f ′(xn), (7)

so the variant of Jarratt’s method, which has sixth-order convergence, is obtained

xn+1 = zn −
f (zn)

3
2 Jf (xn)f

′(yn)+
(
1− 3

2 Jf (xn)
)
f ′(xn)

. (8)

This is the method presented in [3].
(2) Ref. [4] presents the approximation

ψ(x) = ax2 + bx+ c (9)

which agrees with f ′ at two points (xn, f ′(xn)) and (yn, f ′(yn)). Since the points (xn, f ′(xn)) and (yn, f ′(yn)) are on the graph
of h, then it is easy to see that the constants b, c are determined by

b =
xn − yn

f ′(xn)− f ′(yn)
− a(xn + yn), (10)

c = f ′(xn)+ axnyn − xn
xn − yn

f ′(xn)− f ′(yn)
, (11)

so the approximation of f ′(zn) is

ψ(zn) = a(zn − xn)(zn − yn)+
3
2
Jf (xn)f ′(yn)+

(
1−

3
2
Jf (xn)

)
f ′(xn), (12)
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and the scheme is given by

xn+1 = zn −
f (zn)

a(zn − xn)(zn − yn)+ 3
2 Jf (xn)f

′(yn)+
(
1− 3

2 Jf (xn)
)
f ′(xn)

. (13)

where a ∈ R. Note that the method of Kou et al. defined by (9) is just a special case of the presented family (15) when a = 0.
(3) Here, we can use a new approximation of f ′(zn) in (3) as

ψ(zn) =
1

θ
f ′(yn)
+

1−θ
f ′(xn)

. (14)

The parameter θ is determined from the following convergence theorem.

Theorem 1. Assume that the function f : D ⊂ R → R for an open interval D has a simple root x∗ ∈ D. If f (x) is sufficiently
smooth in the neighborhood of the root x∗, then the method defined by (3), in which f ′(zn) is approximated by (14), is of order six
if θ = 3/2.

Proof. Using Taylor expansion and taking into account f (x∗) = 0, we have

f (xn) = f ′(x∗)
[
en + c2e2n + c3e

3
n + c4e

4
n + O(e

5
n)

]
(15)

where en = xn − x∗ and ck = (1/k!)f (k)(x∗)/f ′(x∗), k ≥ 2. Furthermore, we have

f ′(xn) = f ′(x∗)
[
1+ 2c2en + 3c3e2n + 4c4e

3
n + O(e

4
n)

]
. (16)

Dividing (15) by (16) gives us

f (xn)
f ′(xn)

= en − c2e2n + 2
(
c22 − c3

)
e3n +

(
7c2c3 − 4c32 − 3c4

)
e4n + O(e

5
n), (17)

and hence, we have

yn − x∗ =
1
3
en +

2
3

[
c2e2n − 2

(
c22 − c3

)
e3n −

(
7c2c3 − 4c32 − 3c4

)
e4n

]
+ O(e5n). (18)

Expanding f ′(yn) about x∗ and from (18), we have

f ′(yn) = f ′(x∗)
[
1+

2
3
c2en +

1
3

(
4c22 + c3

)
e2n −

(
8
3
c32 − 4c2c3 −

4
27
c4

)
e3n + O(e

4
n)

]
. (19)

From (16) and (19), we have

−
3
4
(f ′(yn)− f ′(xn)) = f ′(x∗)

[
c2en −

(
c22 − 2c3

)
e2n +

(
2c32 − 3c2c3 +

26
9
c4

)
e3n + O(e

4
n)

]
, (20)

3
2
f ′(yn)−

1
2
f ′(xn) = f ′(x∗)

[
1+

(
2c22 − c3

)
e2n + O(e

3
n)

]
. (21)

Dividing (20) by (21) gives us

−
3
2
f ′(yn)− f ′(xn)
3f ′(yn)− f ′(xn)

= c2en −
(
c22 − 2c3

)
e2n − 2

(
c2c3 −

13
9
c4

)
e3n + O(e

4
n). (22)

From (17) and (22), we have

−
3
2
f ′(yn)− f ′(xn)
3f ′(yn)− f ′(xn)

f (xn)
f ′(xn)

= c2e2n − 2
(
c22 − c3

)
e3n +

(
3c32 − 6c2c3 +

26
9
c4

)
e4n + O(e

5
n). (23)

Thus from (17) and (23), we have

zn − x∗ = en −
(
1−

3
2
f ′(yn)− f ′(xn)
3f ′(yn)− f ′(xn)

)
f (xn)
f ′(xn)

=

(
c32 − c2c3 +

1
9
c4

)
e4n + O(e

5
n). (24)

Again expanding f (zn) about x∗, we have

f (zn) = f ′(x∗)
[
(zn − x∗)+ O

(
(zn − x∗)2

)]
. (25)
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Table 1
|f (xn)| for Example 1.

n Newton Jarratt KM CM1 CM2 Present method

1 3.57 3.07 8.76 82.65 5.87 1.40
2 0.23 4.26e−3 7.60e−2 19.35 1.68e−2 3.39e−5
3 4.27e−3 4.22e−14 2.17e−13 1.41 0 0
4 1.46e−6 0 0 1.82e−5
5 1.71e−13 0
6 0

Table 2
|f (xn)| for Example 2.

n Newton Jarratt KM CM1 CM2 Present method

1 0.16 1.69e−4 2.93e−6 1.65e−5 2.81e−5 2.07e−6
2 5.00e−4 0 0 0 0 0
3 4.68e−9
4 4.44e−16
5 0

From (16) and (19), we have

θ

f ′(yn)
+
1− θ
f ′(xn)

=
1

f ′(x∗)

{
1+

(
4
3
θ − 2

)
c2en +

[
(4c22 − 3c3)−

(
44
9
c22 −

8
3
c3

)
θ

]
e2n + O(e

3
n)

}
(26)

Since from (3) and (14), we have

en+1 = zn − x∗ − f (zn)
[

θ

f ′(yn)
+
1− θ
f ′(xn)

]
,

from (24)–(26), we have

en+1 =
{(
2−

4
3
θ

)
c2en −

[
(4c22 − 3c3)−

(
44
9
c22 −

8
3
c3

)
θ

]
e2n

}
(zn − x∗)+ O(e7n)

=

{(
2−

4
3
θ

)
c2 −

[
(4c22 − 3c3)−

(
44
9
c22 −

8
3
c3

)
θ

]
en

} (
c32 − c2c3 +

1
9
c4

)
e5n + O(e

7
n). (27)

This means that the method defined by (3), in which f ′(zn) is approximated by (14), is at least of fifth-order for any θ ∈ R.
Furthermore, when we take θ = 3/2, the order of convergence is six and from (27), we have the error equation

en+1 =
(
10
3
c22 − c3

) (
c32 − c2c3 +

1
9
c4

)
e6n + O(e

7
n). (28)

This ends the proof. �

If we use the approximation (14) in (3) and take θ = 3/2, we can obtain a new sixth-order method

xn+1 = zn −
[

3
2f ′(yn)

−
1

2f ′(xn)

]
f (zn), (29)

where yn = xn − 2
3 f (xn)/f

′(xn) and zn = xn − Jf (xn)f ′(xn)−1f (xn).
Thus the present scheme (29) improves the local order of convergence of its classical predecessor, Jarratt method, by an

additional evaluation of the function at another point iterated by Jarratt method.

3. Numerical examples

Now, we employ the present method defined by (29) to solve some non-linear equations and compare it with Newton
method and Jarratt method, Kou et al.’s method defined by (8) (KM), and the methods (13) with a = 1 (CM1) and a = −1
(CM2) introduced in [4]. All computations are carried out with double arithmetic precision. All problems are solved taking
a given initial value x0. Displayed in Tables 1–3 are the absolute values of f (xn) computed by various methods.
The numerical results show that the present method improves the local order of convergence of Jarratt method and

therefore it requires less iterations.
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Table 3
|f (xn)| for Example 3.

n Newton Jarratt KM CM1 CM2 Present method

1 0.31 3.47e−2 1.76e−2 2.68e−2 4.62e−2 3.21e−3
2 1.39e−2 7.40e−9 7.99e−15 3.09e−12 8.95e−11 0
3 2.09e−5 0 0 0 0
4 4.63e−11
5 2.22e−16
6 0

Example 1.

f (x) = x2 − (2− x)3 = 0, x0 = 3, x∗ = 1.

The results of this problem are displayed in Table 1.

Example 2.

f (x) = 3x− e−x − 2 = 0, x0 = 2.0, x∗ = 0.8143143142996808 · · ·

The results of this problem are displayed in Table 2.

Example 3.

f (x) = e−x sin(x)+ ln(x2 + 1)− 2 = 0, x0 = 0.5, x∗ = 2.4477482864524247 · · ·

The results of this problem are displayed in Table 3.

4. Conclusions

We have obtained a new variant of Jarratt method. The improvement of the local order goes from four for the Jarratt
method to six for the new method. The high-order convergence is also corroborated by numerical tests. Finally, we note
that the present methods can be directly extended to the systems of equations.
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