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Abstract

Multiresolution and wavelet-based search methods are suited to problems for which

acceptable solutions are in regions of high average local fitness. In this paper, two

different approaches are presented. In the Markov-based approach, the sampling res-

olution is chosen adaptively depending on the fitness of the last sample(s). The ad-

vantage of this method, behind its simplicity, is that it allows the computation of the

discovery probability of a target sample for quite large search spaces. This permits to

‘‘reverse-engineer’’ search-and-optimization problems. Starting from some prototypic

examples of fitness functions the discovery rate can be computed as a function of the

free parameters. The second approach is a wavelet-based multiresolution search using a

memory to store local average values of the fitness functions. The sampling density

probability is chosen per design proportional to a low-resolution approximation of the

fitness function. High average fitness regions are sampled more often, and at a higher

resolution, than low average fitness regions. If splines are used as scaling mother

functions, a fuzzy description of the search strategy can be given within the framework

of the Takagi–Sugeno model.
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1. Introduction

Humans (or in a broader sense, ‘‘nature’’) elaborate complex strategies to

gather and organize efficiently useful information based on experience,

knowledge, partial information, in-born capabilities or even intuition. In

search and learning problems, one of the main strategies used by nature is the

so-called ‘‘trial and error’’. Adaptive search methods represent a tentative to

apply in computation the trial and error approach. The basic idea behind an

adaptive search is to extract information from the previously sampled points

and to include that information, either implicitly or explicitly, in the search
strategy. In recent years, much interest has been concentrated on adaptive

search methods, in which the information is extracted implicitly. Many such

approaches have been inspired by nature. Genetic algorithms, multiresolution

search algorithms and simulated annealing are just some examples. A large

number of questions in optimization and search problems reduce to the fol-

lowing problem: consider an hyper surface in Rn (or in Zn). Assume that the

surface can be described by an expression of the form y ¼ f ðxÞ, with x 2 Rn�1

(or Zn�1), in which f ðxÞ is a measure of the fitness or goodness of a solution x,
taking typically values between zero and one. We want to find values of x for

which either f is maximal or at least within a small range of the maximal value.

Without preliminary knowledge, the optimal search method consists in

avoiding testing a possible solution twice. It is only possible to ‘‘beat brute

force’’ if some prior information on the fitness function is available. This fact

has been expressed under different forms that can be regrouped under the

general class of ‘‘no free lunch theorems’’ [1]. The mechanisms and assump-

tions behind adaptive search are far from being perfectly identified or under-
stood. Probably the most important general question is to identify what kind of

information permits to elaborate an efficient adaptive search strategy? Efficient

search strategies can be designed if some known relationships between good

solutions can be reasonably postulated. The relationships characterizing good

solutions in the search space cover a very large range of different possibilities.

Let us give here a few examples: good solutions are found in regions of high

average fitness; the problem is separable into several of its variables; a strong

correlation exists between several variables. The above statements have in
common, that they are all expressions in which the knowledge of a number of

sample points will permit to either exclude possibilities, to limit the range of

parameters or to lead the search algorithm in regions in which good solutions

are likely to be found. By doing so, the cumulative probability of sampling

good solutions increases beyond the level it would have if the search had been

totally random. A central question on the research agenda is therefore to de-

termine which information characterizes a certain type of search problems and

how to use that information to reduce the computing power necessary to
achieve one’s goal. Adaptive search methods are all based implicitly or
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explicitly on some assumption or model. Several variants of genetic algorithms

are based on the so-called building block hypothesis [2]. Local search methods,
such as hill climbing [3,6], assume the existence of a limited number of local

maxima. Ants search [4] can be regarded as a local search combining projec-

tions of good solutions on low-dimension spaces (the edges of a graph). Dy-

namic programming [5] uses the knowledge that the search space can be

reduced algorithmically or stated slightly differently that the search problem

can be decomposed into a sequence of decisions. The multiresolution search

methods that will be introduced below are based on a simple assumption: a

proximity relation is assumed between high-fitness samples. More precisely, the
assumption is that at some scale, target samples are found with a higher

probability in domains of high average fitness.

Some of the most successful approaches in search-and-optimization prob-

lems use some stochastic elements [2–10]. Genetic algorithms, multiresolution

search [7], gradient search, simulated annealing [9] are some examples. The

performances of these algorithms depend quite significantly on the choice of

some free parameters. Presently one relies much on ‘‘good practices’’ obtained

through numerical experiments on a number of typical problems to determine
these parameters. A quite disturbing fact is that even when the fitness function

is known, it is generally impossible to determine even a posteriori if the chosen

parameters were appropriate or even sometimes if the search is on average

better than a search with brute force. As an example, let us discuss succinctly

genetic algorithms. Even in the simple genetic algorithm [10], the computation

of the expected performances is limited to very small problems’ size. For large

problems, the transition matrix describing the stochastic process has about

Size2b elements (‘‘Size’’ is the number of elements in the search space and b the
number of elements being processed at each iteration). For instance, for a

problem with a search space containing 1000 elements, from which 10 are

processed at each iteration, the transition matrix of the Markov process of the

simple genetic algorithm contains about 1060 elements. In order to better

comprehend the performances of adaptive stochastic search, it is important to

develop methods for which the expected probability of discovering a target

sample can be computed for quite large search space from the knowledge of the

fitness surface. This permits to compare the search quality on different fitness
surfaces and to develop an understanding on how to choose the correct

parameters.

In Section 2, Markov-based multiresolution search algorithms are pre-

sented. Besides being easy to implement the Markov-based approach pos-

sesses an important feature. Contrarily to most stochastic methods, the

probability of discovering a target sample can be computed for quite large

search spaces. For that reason, multiresolution search models may be used as

prototypic models to study quantitatively the performance of adaptive search
models.
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Section 3 presents another approach to multiresolution and wavelet-based

search methods using elements of wavelet estimation theory [7]. This approach
represents a natural connection between search-and-optimization theory and

functional data analysis. Contrarily to the Markov approach, the transient

properties of the probability of discovering a target solution cannot be com-

puted easily. The sampling probability at equilibrium can only be calculated. If

splines are used as mother scaling functions a fuzzy interpretation of the results

can be given within the framework of the Takagi–Sugeno model.

2. Markov-based multiresolution search

The complementarity between multiresolution analysis and adaptive search

techniques has been recognized for already quite some time. Bethke [11] in-

troduced Walsh partition functions in the field of genetic algorithms. Impor-

tant insights on the building block hypothesis were gained using this approach.
Problems, that are intrinsically difficult for genetic algorithms, were designed

using the Walsh functions [12,13]. This line of research was pursued [7] with

Haar functions on a very simple genetic algorithm using binary coding of in-

tegers. In the limit of infinite sampling, the sampling probability can be related

to wavelet analysis and consequently to filter theory. Markov-based multi-

resolution search methods are new techniques [14] that were designed as a

generalization of the above-mentioned algorithm to both discrete and contin-

uous search spaces. They are suited to problems for which target samples are
found in regions of high average fitness values. In an adaptive multiresolution

search, high average fitness regions are sampled, on average, more often than

low average fitness ones by making the sampling range dependent on the fitness

of the last sample. If a high fitness element is found, the next sample is chosen

with a high probability within a short range of the previous one. On the

contrary, if a low fitness element is obtained, the next sample is chosen pref-

erentially within a large range. In strong contrast to other multiresolution

adaptive search techniques, such as multiresolution simulated annealing [15],
multiresolution genetic algorithms [8] or multiresolution Monte Carlo Markov

chains [16], the dyadic structure of the algorithms discussed in this article

permits the easy computation of the discovery probability of a target element.

Synergies between Markov theory and multiresolution analysis can be ex-

ploited to estimate for quite large problems the outcome of the search. The

Markov transition matrices associated to a multiresolution search have a

sparse structure that reduces considerably the necessary computing power to

estimate the discovery probabilities of a solution based on the knowledge of the
fitness function. Fig. 1 shows the general form of the algorithm. At each it-

eration, a resolution m is associated to the candidate solution xinput. The res-

olution m is chosen with a probability which is a function of the fitness f ðxÞ:
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ProbðmÞ ¼ Pmðf ðxÞÞ. An intermediary pool of N candidate solutions is sampled

using the probability distribution hðxinput ! xpoolÞ. The probability distribution

hðxinput ! xpoolÞ describes the probability of sampling the element xpool when
xinput is the last winning sample. The sampling probability distribution is chosen

proportional to
P

n ~um;nðxinputÞ � um;nðxpoolÞ

hðxinput ! xpoolÞ /
X
n

~um;nðxinputÞ � um;nðxpoolÞ ð1Þ

with um;nðxÞ ¼ uððx� nÞ=2mÞ, ~um;nðxÞ ¼ ~uððx� nÞ=2mÞ and m, n integer. Fi-

nally, the candidate solution xoutput with the largest fitness value is kept as input

for the next generation. In order to prevent the ejection of the search from
a promising region after sampling a single low fitness element, a number N of

elements are sampled at each iteration step.

In principle, the only requirement on the scaling functions is that the re-

sulting probability distribution is always positive. In wavelet-based search

methods, ~u is the dual scaling function. In that case, Eq. (1) is the low-reso-

lution kernel of a wavelet decomposition [17]. For orthogonal wavelets
~um;n ¼ um;n. Except for Haar scaling functions, all scaling functions have

negative values. In order to guarantee a positive probability distribution,
several approaches may be used. For instance, a minimal value of the low-

resolution sampling probability, corresponding to a random search with a

uniform distribution, may guarantee a positive probability distribution.

)1(

(x input ,m) (x output,m')

Pool of N candidate solutions

Keep the best

High. res.Low. res.

(2)

Pm'

Fitness

)x() x(~)xx( pooln,minputn,m
n

poolinputm ∝θ Σ ϕ .ϕ

Fig. 1. In a Markov-based multiresolution search, N candidate solutions are chosen according to

the probability distribution (1) and the best candidate is kept. The resolution m0 is chosen with

probability Pm0 given by (2). In this example, only two resolutions (low and high) are taken.
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The general multiresolution search explained in Fig. 1 assumes that the

quality of the sample can be defined by a value between zero and one. Such a

fitness function is not always available. If the quality of the sample cannot be

quantified by a value between zero and one, then the algorithm must be slightly
adapted. The algorithm presented in Fig. 2 is such an adaptation. The algo-

rithm is a special case of the multiresolution search approach (Fig. 1) with a

sampling probability independent of the fitness value.

The algorithm in Fig. 2 can be used in situations for which only a qualitative

characterization of the sample is possible (‘‘good’’, ‘‘very good’’, . . .).

2.1. Limits of the Markov-based multiresolution search methods

In any adaptive search method, an important information is the maximal

improvement of the search method compared to a random search. In a

multiresolution search method, a lower bound to the maximal acceleration

of the search compared to a random search can be given. In order to find
that bound, fitness functions that are particularly adapted to a multireso-

lution search are constructed. Fig. 3 shows an example for a 2-resolution

search using Haar scaling functions. The expected number of samples to

reach the first level on the fitness function (see Fig. 3) is
ffiffiffiffiffiffiffiffiffi
Size

p
with Size the

number of elements in the search space. Once on the first level, the expected

number of samples to reach the target element is again
ffiffiffiffiffiffiffiffiffi
Size

p
. Neglecting

the probability of sampling directly the target sample without first passing

by the first level, the expected number of samples is 2 �
ffiffiffiffiffiffiffiffiffi
Size

p
. The algorithm

described in Fig. 2 exploits best the available prior information and uses the

best strategy (‘‘a random search’’) within each level. Repeating the same

reasoning with m resolutions, the minimum expected number of samples is

)x().x(~)xx( pooln,minputn,m
n

poolinputm ∝θ Σ ϕ ϕ

x input x output

Pool of N candidate solutions

N1 samples at res. 1

Nm samples at res. m

....
Keep the best

Fig. 2. In a Markov-based multiresolution search for which the fitness is either not bounded to one

or only qualitatively known, the multiresolution search algorithm consists of choosing at each

resolution a fixed number Nm of candidates with the probability distribution hm. At each iteration,

the best candidate is kept.
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proportional to m �
ffiffiffiffiffiffiffiffiffi
Sizem

p
. In summary, the potential of the multiresolution

search method is a function of the number of resolutions: the higher the

number of resolutions, the higher the maximum gain is in comparison to a

random search. (Let us notice that considering the ensemble of all search
problems in a search space with Size elements, the more levels one uses, the

smaller is the probability that a problem fulfills the prior information!)

Interestingly, if the quality of the sample is only qualitatively known as in

the situation of Fig. 2, then the minimum expected number of samples is

not much higher: m2 �
ffiffiffiffiffiffiffiffiffi
Sizem

p
.

Multiresolution search can be easily generalized to p variables by using in

Eq. (1) multivariable mother functions: um;nðx1; . . . ; xpÞ and ~um;nðx1; . . . ; xpÞ.
Without further assumptions, the expected number of samples to discover a
target sample is at least of the order of m � Size1=m (m: number of resolution

levels, Size: dimension of the search) [14]. This number can be reduced if some

relationship does exist between the variables. If the fitness function is for in-

stance separable, f ðx1; . . . ; xpÞ ¼
Pp

i¼1 fiðxiÞ, the search problem can be trans-

formed into p independent search problems. In that case, the expected number

of samples to discover a target sample within a search space may be as low

as about m � p � Size1=ðm�pÞ.

Size elements

Size
Target elementFitness

Haar function at low- resolution =
Random sampling

Haar function at
high- resolution

                1 if  f < f T
Plow =

0 else

                1 if  f >= f T
Phigh =

0 else

fT

1st level

Fig. 3. The above fitness function is almost optimal for a 2-resolution search in the sense that the

expected number of samples to discover the sample is close to the minimum value obtainable with a

2-resolution search on Size elements (for a large search space!). The expected number of sample

to discover the target solution is about 2 �
ffiffiffiffiffiffiffiffiffi
Size

p
. For a m-resolution search the expected number

of samples is about m
ffiffiffiffiffiffiffiffiffi
Sizem

p
. For a search space with 106 elements, it represents, compared to

a random search, an improvement by a factor 500 for a 2-resolution search and about 3300 for a

3-resolution search.
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2.2. Choosing the right resolution

The main measure of the quality of a stochastic search algorithm on some

problem is given by the probability of discovering an acceptable solution at

iteration k. For a Markov process, the discovery probability can be computed

using the associated transition matrix [18]. The often-sparse structure of the

transition matrix allows the computation of the discovery probability as a

function of the number of iterations for quite large problems. The possibility of

computing the performance of a Markov-based multiresolution search on

different fitness functions is extremely valuable. So one can gain some experi-
ence on how to choose the search’s parameters for the search. In a 2-resolution

Markov-based search using a random sampling at low resolution, the only free

parameter after the basis function has been chosen is the choice of the high-

resolution level. Fig. 4 shows this with a very simple, but quite representative,

example, a 1-sample search based on Haar functions. The results are quite

typical and bear therefore some generality.

At a too low-resolution, the search is less efficient than the optimal search

but is better than a random search. At a too high resolution, the search con-
verges (too) rapidly towards some high-average fitness region. After a number

of iterations, the search becomes less efficient than a random search, as the

search becomes trapped in a high but not optimal region. In other words, at a

too high resolution, it is better to restart the search than to persist too long in

an unsuccessful search. The best resolution for the search in Fig. 4 corresponds

to the characteristic size of the fitness function.

3. Wavelet-based search using an estimator approach

In this section, new adaptive wavelet-based search methods are introduced.

We will show that by using the properties of the mother scaling functions as-
sociated to a wavelet decomposition, the sampling probability distribution can

be made proportional to a low-resolution version of the fitness function. In this

new approach to search, the learning and the exploitation phase are not sep-

arated as in estimation of density approaches [19], a significant advantage.

From the memory point of view, the method requires only the storage of two

values per low-pass coefficient.

The basic assumption beyond multiresolution and wavelet-based search is

that at some scale, target elements are found with a high probability in regions
of high average fitness. A way to exploit this information is to sample the

search space proportionally to the smoothed fitness function. Concretely the

sampling probability distribution S is chosen proportional to f̂ with

f̂ ðxÞ ¼
X
m

Pmðf Þ �
X
n

ĉm;nðf Þ � um;nðxÞ ð2Þ
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The coefficients ĉm;n are estimated with a wavelet network or a wavelet es-

timator [7]. In the later case, the coefficients are actualised with the following

equation

ĉm;nðf Þ ¼
X
i

f ðxiÞ � ~uðxiÞ
.X

i

~uðxiÞ: ð3Þ

in which ~uðxÞ is the dual scaling function. Fig. 5 shows with an example that

the wavelet-based search has, at equilibrium, a number of interesting features:

0 5 10 15 20 25 30 35
0

0.5

0 100 200 300 500 600 700 800 900 1000
0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

Too  low resolution

Optimal resolution

Fitness function

Too high resolution

Number of iterations

Too high resolution
scaling function

Optimal resolution Too low resolution
scaling function

Fitness

PMulti./PRand.

Fig. 4. Depending on the choice of the resolution, the search quality may change considerably. The

curves show 3 examples of the normalized cumulative probability of discovering the highest fitness

element (xs ¼ 1) (PMulti: cumulative probability of discovering the highest fitness element; PRand:

cumulative probability with a random search). A value above one means that the cumulative

probability of discovering the target sample is higher than with a random search. For a large

number of iterations, the cumulative probability tends to one and therefore the ratio tends as-

ymptotically to one. The Haar scaling functions used at the highest-level of resolution are shown

below the curves (two-resolution levels search with Plow ¼ ð1� f Þ and Phigh ¼ f ). The first level of

resolution corresponds to a random search.
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• The sampling probability distribution is proportional to an approximation

of the fitness function.

• Regions in the search space with a high average fitness are sampled more
often than low average fitness regions.

• The sampling probability distribution is computed at a higher resolution in

high average fitness regions.

3.1. One-resolution wavelet-based search

The equations in the previous subsection are probably best explained if one

starts by describing the 1-resolution case, corresponding to setting Pm ¼ 1 for

Fig. 5. The function (Fig. 5c, black curve) was sampled at two resolutions (Fig. 5d) using Eqs. (2)

and (3) and biorthogonal 4.2 splines. The sampling probability at high-resolution is proportional,

at equilibrium, to fhigh (Fig. 5a), with fhigh a weighted sum of triangular functions. The low-reso-

lution sampling probability distribution is proportional to flow (Fig. 5b). The resulting sampling

probability distribution is proportional to an estimation (Fig. 5c, grey line) of the original function.
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some resolution m. The sampling probability distribution S is then propor-

tional to f̂ ðxÞ:

SðxÞ / f̂ ðxÞ ¼
X
n

ĉm;nðf Þ � um;nðxÞ ð4Þ

or equivalently ĉm;nðf Þ / cm;nðSÞ with SðxÞ ¼
P

n cm;nðSÞ � um;nðxÞ.
The search is practically implemented using Eqs. (3) and (4). The coefficients

ĉm;nðf Þ are computed at each iteration with Eq. (3) summing over all past
samples xi and the sampling probability distribution SðxÞ is chosen propor-

tional to
P

n ĉm;nðf Þ � um;nðxÞ.
Contrarily to the Markov-based approach in Section 2, the discovery

probability cannot be easily estimated. The sampling probability distribution

can only be estimated at equilibrium. The coefficients ĉðf Þ at equilibrium are

related to the function f 1

ðĉm;nðf ÞÞ2 ¼ ðcm;nðf̂ ÞÞ2 ffi cm;nðf � f̂ Þ ð5Þ
The low-resolution projection coefficient cm;nðf � f̂ Þ of the product f ðxÞ � f̂ ðxÞ

is equal to ðĉm;nðf ÞÞ2 with cm;nðf̂ Þ corresponding to the low-resolution estima-

tion of the fitness function obtained with Eq. (3). For Haar wavelets, one shows
that ĉm;nðf Þ ¼ cm;nðf Þ. The expected distribution of samples is therefore in that

case proportional to the low-passed function f̂ ðxÞ ¼
P

cm;nðxÞ � Hm;nðxÞ. For
splines or other mother scaling functions, the probability distribution function

is proportional to a low-resolution version f̂ of the fitness function satisfying

Eq. (5).

A conceptually important special case is when splines are chosen as scaling

mother functions. In that case a fuzzy interpretation of the results can be given

within the framework of the Takagi–Sugeno model. Spline-based adaptive
search methods permit to extend to search and optimization problems the

fuzzy-wavelet methodologies used in estimation theory [7]. Fig. 6 shows an

example using biorthogonal 4.2 splines [17]. The search furnishes, beside a list

of high-fitness data points, a fuzzy representation of the fitness function. One

obtains expressions of the kind:

if X is Large than fitness is Large ðCÞ ð6Þ
with C the confidence level (using a center of gravity defuzzification, rules of the

form of Eq. (6) can be described within the framework of the Takagi–Sugeno

model [7]).

1 Proof of Eq. (5): at equilibrium, one obtains from Eq. (4) that
X

regular
sampling

f ðxÞ � f̂ ðxÞ � ~uðxÞ
.X

f̂ ðxÞ � ~uðxÞ ffi
X

regular
sampling

f̂ ðxÞ � ~uðxÞ
.X

~uðxÞ

which after reorganization of the terms furnishes the last equality.
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A significant advantage of the fuzzy approach is that information on the

fitness can be easily introduced beforehand by initialising some coefficients in

Eq. (3).

The wavelet-based search can be quite easily generalized to higher dimen-

sional projections. At high dimensions, the problem is that the number of trials

to discover a solution on a multivariable fitness function increases quite rapidly

with the number of variables. The expected number of trials can be quite

significantly reduced, if there exists some low-dimension projections on which
the fitness function can be decomposed. In the next subsection, one examines

how the information that the fitness function is separable can be exploited. In

order to simplify the notation, we will deal with the special case of a fitness

function that can be decomposed into the sum of functions of one variables

f ðx1; . . . ; xj; . . . ; xpÞ ¼
X

j¼1;...;p

gjðxjÞ ð7Þ

At each step, the sampling probability is chosen proportional to

Sðx1; . . . ; xpÞ /
Y

j¼1;...;p

ĝjðxjÞ ð8Þ

with ĝjðxÞ ¼
P

n ĉm;nðgjÞ � um;nðxjÞ.

Fig. 6. Spline-based multiresolution search using biorthogonal 4.2 splines. The sampling proba-

bility PmðxÞ at equilibrium is proportional to f̂ ðxÞ (––). The search results can be put under a fuzzy

form.

234 M. Thuillard / Internat. J. Approx. Reason. 35 (2004) 223–238



The coefficient ĉm;n are estimated using a generalization of the one-dimen-

sional case:

ĉm;nðgjÞ ¼
X
k

f ðx1ðkÞ; . . . ; xpðkÞÞ � ~um;nðxjðkÞÞ
.X

k

~um;nðxjðkÞÞ ð9Þ

At equilibrium, the sampling probability can be shown to be proportional to

ĉm;nðgjÞ /
X
a6¼j

ga þ hgj � ĝj; ~um;ni
.
hĝj; ~um;ni ð10Þ

with ga the average of ga over the whole search space. (The following definition

is used: ha; bi ¼
R
aðxÞ � bðxÞ � dx.).

Except for the constant ga the estimated fitness function at equilibrium is of

the same form as in the 1-variable case. For separable functions, the number of

samples at equilibrium is therefore related to the fitness function. The constant

sets a bound to the maximal gain in the search time. Numerical experiments
with functions satisfying the basic assumption behind multiresolution search

methods shows that Markov-based multiresolution search are often more ef-

ficient than wavelet-based search with memory to discover a target element.

The wavelet-based search method has a number of properties that the Markov-

based approach does not have. In addition to giving a solution to the search

problem, it furnishes an approximation of the fitness function, an approxi-

mation that may be quite useful in adaptive systems for instance to estimate the

stability of the proposed solution. A large difference between the estimation of
the fitness function and the best solution is an indication that the solution may

not be very stable. Also in the fuzzy version of the algorithm, qualitative in-

formation on the fitness function can be easily included prior to the search.

This information is refined during the search process as more data are sampled.

The results are much better if after a number of iterations, the search is fo-

cused on the region of highest fitness. Fig. 7 shows a prototypic example in

which high values of the fitness are located in a limited number of small regions

with some well-defined characteristic dimension. The results obtained with a
wavelet-based search with memory (the search is restricted to the highest fitness

region after 2500 samples) are compared to a Markov-based multiresolution

search and a random search. Both multiresolution search methods use Haar

functions of support equal to the characteristic size of the high-value regions of

the fitness function. The 2-resolution Markov-based search (Fig. 2) is adapted

to a 3-variable space. Four samples are drawn at each iteration, one at high

resolution and one per variable at low resolution. (The one variable is sampled

at low resolution, while the two other variables are sampled at high resolution.)
At each iteration, the best sample is the winner. Both the Markov-based and the

multiresolution search with memory are by far better than a random search. On

average, the Markov-based search is better than the search with memory.
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Fig. 7. The surface given by f ðx1; x2; x3Þ ¼ 1=3ðg1ðx1Þ þ g2ðx2Þ þ g3ðx3ÞÞ þ W ðx1; x2; x3Þ with g1, g2,
g3 shown in the top curves and W ðx1; x2; x3Þ a term from a random uniform distribution between [0,

0.2], was searched for high values with different methods: Haar-based search with memory in which

the search is restricted to the highest fitness region after 2500 samples (cross), Markov-based 2-

resolution search (star), random search (circle). The results are shown after 3000 samples. Each

point corresponds to one trial. Both multiresolution search methods are on average much better

than a random search. The black line gives the largest value.
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4. Conclusions

Multiresolution search may considerably outperform random search pro-

vided the prior information justifies directing the search towards regions with

high local average fitness. In other words, multiresolution search methods are

suited to problems for which target samples are found in regions of high av-

erage fitness values. Two search algorithms, a Markov-based multiresolution

search and a wavelet-based multiresolution search using elements of estimation

theory, have been studied. Besides its simplicity to implement, the Markov-

based multiresolution search has the great advantage to allow ‘‘reverse-engi-
neering’’. Starting from a known fitness function the discovery probability of

a target sample can be computed for quite large search spaces. The Markov-

based approach is very simple and can be applied to very large search spaces. A

2-resolution search works best if the fitness function has low values on most of

the search space and acceptable solutions are found in small clusters of high

average values. Rescaling of the fitness function can achieve this, provided that

rescaling preserves the prior information. If the fitness function are (almost)

separable then a 2-resolution search on each variable will already lead to a
quite large improvement compared to a random search as the gain on each

variable (almost) factors. In the wavelet-based multiresolution search method

using estimation theory, the sampling probability distribution is constructed so

as to be a low-resolution estimation of the fitness function. At equilibrium, a

simple relation exists between the sampling probability distribution and the

fitness function providing a natural connection between estimation and search-

and-optimization theory. This approach is particularly recommended if the

estimation of the fitness function serves other purposes, for instance to estimate
the stability of a the solution or as a potential source of new solutions in a non-

stationary system. It requires the storage of only a small number of coefficients

to store an estimation of the fitness function. The search is often less efficient

than the Markov approach. In conjunction to another search method, the

algorithm can however become quite efficient. The multiresolution search is

used to localize the regions of interest, while the second algorithm focus on

those interesting regions.
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