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Abstract: Evolutionary algor ithm is time consuming because of the larg e number of evolutions and

much times of finite element analysis, w hen it is used to optimize the wing structure of a certain high al

t itude long endurance unmanned aviation vehicle( UAV) . In order to improve efficiency it is proposed to

construct a model management framework to per form t he multi objective optimization design of w ing

structure. The sufficient accurate approx imation models of objective and constraint functions in the w ing

structure optimization model are built w hen using the model management framewo rk, t herefor e in the

evolutionar y algorithm a number of finite element analyses can be avoided and the satisfactory multi ob

jective optimization results of t he wing str ucture of the high altitude long endurance UAV are obtained.
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SM M OPSO

基于模型管理框架的机翼结构多目标优化设计. 安伟刚, 李为吉,苟仲秋 .中国航空学报(英文版) ,

2006, 19( 1) : 31- 35.

摘 要:采用演化算法对某高空长航时无人机机翼结构进行多目标优化设计时, 由于需要大量的

演化迭代和很多次的有限元分析计算,使演化算法相当耗时。为了提高效率,采用模型管理框架

对该机翼结构进行多目标优化设计。采用模型管理框架可以建立满足精度要求的目标及约束的

近似模型,使演化算法不仅避免了大量的有限元分析计算, 而且获得了满意的该高空长航时无人

机机翼结构的多目标优化设计结果。
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After the geometry parameters of a certain

high alt itude long endurance UAV are determined,

it is necessary to perform the multi object ive opt i

mizat ion design of the UAV  s w ing st ructure in or

der to reduce the m ass of w ing structure and pro

long the UAV  s endurance. However, it is very

time consuming to opt imize the w ing structure by

using the evolutionary algorithm because of the

large number of evolut ions and much t imes of f inite

element analysis. In order to improve the eff icien

cy, the model management frame w ork is used to

build suff icient accurate approx ima t ion models of

object ive and const raint funct ions in the wing

st ructure opt im izat ion model. By using these accu

rate approx imat ion models, evolutionary algorithm

can avoid a number of f inite element analyses and

obtain a good Pareto set quickly. It is a successful

at tempt to use models management framework in

eng ineering opt im izat ion design.

1 M ulti objective Optimization M odel of

the Wing Structure

Fig. 1 show s the w ing st ructure of a certain

high alt itude long endurance UAV. T able1 show s

the geometry parameters of the w ing st ructure.

T he configurat ion of the w ing st ructure is dual

beams that are designed in 34% and 67% of the

wing root chord. There are 28 ribs and the space

between every two neighboring ribs is 700 mm.

The skin adopts carbon fiber ( epoxy resin) compos

ite material. The f ibers of com posite material are

oriented at 0!, - 45!, + 45! and 90!. The m aterial
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of beam is 30CrM nSiA, and the material of ribs

and st ringers is LY12.

Fig . 1 The w ing str ucture o f a certain high altitude long

endurance UAV

Table 1 The geometry parameters of the wing

Geomet ry parameters Value

Span 23. 330 m

Root chord 1. 372 m

Tip chord 0. 494 m

Wing area 21. 767 m2

Taper rat io 2. 78

Mean aerodynamic chord 1. 001 m

Quarter chord lin e sw eep angle 5. 9!

Airfoil thickness ratio( root ) 18%

Airfoil thickness ratio( t ip) 14%

Dihedral angle 0!

Incidence angle 0!

Design vector is( x 1, x 2, x 3, x 4, x 5, x 6, x 7,

x 8, x 9 ) , in w hich x 1, x 2, x 3, x 4, x 5 and x 6 are

the thicknesses of w ing skin from root chord to t ip

chord and x 7, x 8 and x 9 are the thicknesses of

beam w eb from root chord to t ip chord. T he unit

of design variables is millimeter. T he object ives of

optimizat ion design are to minimize the mass and

max imum vertical displacement of w ing structure

under a certain f light condition. The aerodynamic

load is obtained by CFD sof tw are. T he f inite ele

ment analyses of w ing st ructure are computed by

Aeronaut ic and Astronaut ics St ructure Analysis

sof tw are. The opt imizat ion model is w rit ten below:

Min f 1 = W ( X )

Min f 2 = L max

S. T : i ∀ [ i ] , i = 1, 2, 3, 4

0. 5 ∀ x i ∀ 12, i = 1, #, 9

(1)

w here W is the mass of w ing structure; L m ax is the

max imum vertical displacem ent of w ing st ructure;

[ i ] is the allow able st ress.

2 Mult i objective M odel M anagement

Framework

Because of the lack of sampling data and the

large numbers of dimensions for the wing st ructure

optimizat ion in present paper, it is dif ficulty to

build approximat ion models of the w hole searching

space w ith suf ficient accuracy. In order to over

come this difficulty the model management frame

work is adopted to use and m anipulate approx ima

tion models[ 1] . Here Ref . [ 2] is refered and a mul

t i object ive model management framew ork is pro

posed. T he model m anagem ent framew ork used in

this paper has three procedures: ∃ determ ining the

init ial sampling points w ith uniform random num

ber; % adopting the radial basis funct ion neural

network to build approx im at ion models of object ive

and constraint funct ions; & in every n generat ion,

some modifying points are selected by roulet te

wheel and recomputed by finite element analyses.

Then these results are used to update approxima

t ion models. T he three procedures are described as

follows.

2. 1 Determining initial sampling points

M any papers suggest that the init ial sampling

points should be determ ined by experim ental de

sign. In methods of experimental design, uniform

design is recommended because it can af ford bet ter

searching space coverage than other experimental

design, such as Lat in hypercubes, orthogonal ar

rays[ 3] . In the mult i object ive optimizat ion model

of w ing structure, the searching space is very large

because of the high dimensions and w ide range of

each variable. Therefore, the number of initial sam

pling points should be taken large enough. In the

present case, it is taken as 400. Because it is un

able to find uniform design table of 400 experi

ments in any existing references, so in the w ing

structure optimizat ion of the present paper, the ini

t ial sampling points are determined by uniform ran

dom number instead of uniform design. Uniform

random number not only affords uniform init ial
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sampling points but also is easy to be obtained.

2. 2 Radial basis function neural network

(RBFNN)

Several methods[ 4] have been developed to

const ruct approximation models, such as response

surface, krig ing, radial basis funct ion neural net

w ork and so on. In this research, the radial basis

funct ion neural network is adopted as approx ima

tion method for follow ing reasons[ 5] .

( 1) Complex eng ineering systems cannot often

be expressed by explicit numerical functions. It is

unknow n how much error w ill occur if explicit nu

merical funct ions are used to approximate the com

plex eng ineering systems. When radial basis func

tion neural netw ork is used to approx imate data, it

likes a black box. This character is very fit to ap

prox imate the complex engineering systems.

( 2) Neural netw ork has excellent ability to

approx imate to functions, w hich has been proved

theoret ically.

( 3) For large or scarce sam ple set , radial basis

funct ion performs better than response surface and

kriging w hen accuracy and robustness are consid

ered[ 6] . Radial basis funct ion neural netw ork in

herits the superiority of radial basis function be

cause it adopts radial basis function.

Consider an object ive or const raint funct ion

f ( x ) to be approx imated by a RBFNN. The out

put of a RBFNN is g iven by[ 7]

y = (
N

i= 1
w i i ( x) ) f ( x) (2)

i ( x ) is the basis funct ion w hich is assumed to be

the Gaussian funct ion:

i ( x ) = exp -
∗x - ci ∗

2
i

(3)

w here x is the input vector, N indicates the total

number of neurons in the netw ork, ci , i and w i

refer to the center, width and w eight of the i th

neuron, and ∗∋ ∗ denotes the Euclidean norm. In

the model m anagement framew ork, by using init ial

sampling points set that includes design vectors,

object ive vectors and constraint vectors, k means

clustering is used to determine the ci , k nearest

neighbor heurist ic to determine the i , and the

multiple linear regressions to determine the w i .

After these param eters are determined, a RBFNN

is constructed. T he RBFNN is the approx imat ion

model of object ive or const raint function, there

fore, the object ive or const raint can be calculated by

RBFNN instead of f inite element analysis.

2. 3 Selecting modifying points

In the model management f ramework, m in

div iduals are selected to modify the approx imat ion

models every n generat ion. How to select the

points that can eff icient ly modify the approxima

t ion models is the key to building suff icient accu

rate approximat ion models. In this research, each of

Pareto indiv iduals is assigned f itness using Eq. ( 4)

in design space,

f i = m in{ ∗p i - s j ∗2} , j = 1, 2 #, n (4)

where p i is the i th Pareto individual, n is the num

ber of sampling points, sj is the j th sampling

points, and fi is the f itness of p i .

According to f itness, some modifying points

are selected by roulet te wheel and recom pute these

points are recomputed by f inite element analyses.

Not only every Pareto individual has chance to be

selected as modifying points, but also the more iso

lated the points are the more chances they have.

The modify ing points recom puted by f inite element

analyses are added to sampling points set and a new

RBFNN is constructed. The new RBFNN w ill be

more accurate than before.

3 Interaction betw een SM M OPSO and the

M odel M anagement Framew ork

When object ives and const raints are computed

by approximat ion models, evolut ionary algorithm

of ten get a shorter Pareto front that can not include

those near the ext remum. So in order to extend

Pareto curve it is necessary to adopt evolutionary

algorithm with strong local searching ability. SM

MOPSO proposed by the present authors in Ref.

[ 8 ] , is a new hybrid algorithm that integ rates

MOPSO ( mult iple objective part icle sw arm opt i

mizat ion) w ith SM ( sim ple method) . SM MOPSO

not only inherits all the merits of M OPSO but also
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has strong local searching ability. Therefore, in

multi object ive opt im izat ion design of the wing

st ructure the SM MOPSO is adopted. The interac

tion between SM M OPSO and the model manage

ment framework is show ed in Fig. 2.

Fig . 2 Interact ion between SM M OPSO and the model

management framework

In order to validate the effect iveness of the in

teract ion between SM MOPSO and the model m an

agement f ramew ork, a test ing funct ion proposed by

Deb[ 9] is used,

Min f 1( x 1, x 2) = x 1

Min f
2
( x 1, x 2) = (1 + 10x 2) ∋

1 -
x 1

1 + x 2

 

-
x 1

1+ x 2
sin(2!qx 1)

(5)

w here 0 ∀ x 1, x 2 ∀ 1,  = 2, and q = 2. T his

prob lem has disconnected Pareto front and consis

tent w ith 2 Pareto curves.

In the opt im ization, the parameters of SM

M OPSO are determined by experience, they are:

the number of populat ion 81; maximum generat ion

50; the number of init ial sampling points 81; and

the number of modifying po ints of every generat ion

10. The opt im izat ion of the test ing funct ion is con

t inuously calculated for three t im es. The best result

is showed in Fig. 3. In Fig. 3, MM F is the abbre

via t ion for the model management framew ork. It is

obvious that by using the model management

framework and SM M OPSO good opt imizat ion re

sults can be obtained.

Fig. 3 T he Pareto front of the testing function

4 Results of Optimizat ion Design of Wing

Structure

T he SM MOPSO and the model management

framework are adopted to perform the mult i objec

t ive opt imizat ion design of the w ing st ructure. The

parameters are determined by experience, they

are: the number of populat ion 400; the m ax imum

generat ion 100; the number of init ial sampling

points 400; and the num ber of modifying po ints of

every generat ion 10.

T he opt im izat ion results are show ed in Fig. 4

and T able 2. In Table 2, T P is the abbreviat ion for

test ing points. Fig. 4 shows the uniform Pareto

front of the w ing st ructure opt imizat ion. In order to

test the error of the Pareto front , four indiv iduals

A , B , C and D show ed in Fig. 4, are selected to be

recomputed by f inite element analysis. Table 2

shows that the error of Pareto individuals is accept

ed. T he m ax imum relat ive error of objective func

t ions is only 2. 78%. If the approximation models

are not adopted, the f inite element analyses w ill run

40 000 t imes. How ever, w hen the approx imat ion

models are used, the f inite element analyses only

run 1 400 t imes. T he CPU time of opt imizat ion

design is 4296. 75 s, which can be accepted by de

signers.
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Fig . 4 T he Pareto front of the wing structure optimiza

tion

Table 2 Error of testing points

TP

Approximat ion

result s

Finite element

result s

f
1
/ kg f 2/ mm f

1
/ kg f

2
/ mm

Error/ %

A 257. 8 1394 252. 9 1398. 1 1. 93

B 305. 7 1124 297. 4 1133. 3 2. 78

C 439. 2 785. 8 436. 9 785. 8 0. 52

D 652. 1 636. 8 648. 8 640. 3 0. 51

5 Conclusion

( 1) As seen from Fig . 4, the masses of dif fer

ent designs remarkably differs. So it is very neces

sary to use opt im izat ion design in the field of aero

nautics and astronaut ics.

(2) To mult i object ive opt im ization design of

the w ing st ructure in the present paper, it takes

lit tle t ime to obtain good Pareto set by using the

model management f ramew ork and SM M OPSO.

Pareto front can obviously show the relation be

tw een mass object ive and displacement object ive. In

Pareto set, decision makers can easily select a sat is

factory design according to their preference.

( 3 ) The model management fram ework and

SM M OPSO introduced in the present paper can be

used to solve multi objective engineering problems

eff icient ly. It has good prospect in the airplane de

sign as w ell as in other complex systems opt imiza

tion designs.
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