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Abstract:  Evolutionary algorithm is time consuming because of the large number of evolutions and
much times of finite element analysk, when it is used to optimize the wing structure of a certain high aF
titude long endurance unmanned aviation vehicde( UAV) . In order to improve efficiency it is proposed to
construct a model management framework to perform the multrobjective optimization design of w ing
structure. The sufficient accurate approximation models of objective and constraint functions in the wing
structure optimization model are built when using the model management framework, therefore in the

evolutionary algorithm a number of finite element analyses can be avoided and the satisfactory multt obr

jective optimization results of the wing structure of the high altitude long endurance UAV are obtained.
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After the geometry parameters of a certain
high altitude long endurance UAV are determined,
it is necessary to perform the multi-objective optr
mization design of the UAV’ s wing structure in or-
der to reduce the mass of wing structure and pro-
long the UAV’ s endurance. However, it is very
time consuming to optimize the wing structure by
using the evolutionary algorithm because of the
large number of evolutions and much times of finite
element analysis. In order to improve the efficierr
cy, the model management frame work is used to
build sufficient accurate approximea tion models of
objective and constraint functions in the wing
structure optimization model. By using these accur
rate approximation models, evolutionary algorithm

can avoid a number of finite element analyses and
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obtain a good Pareto set quickly. It is a successful
attempt to use models management framework in

engineering optim ization design.

1 Multr objective Optimization Model of
the Wing Structure
Fig. 1
high altitude long endurance UAV. Tablel shows

the geometry parameters of the wing structure.

shows the wing structure of a certain

T he configuration of the wing structure is dual
beams that are designed in 34% and 67% of the
wing root chord. There are 28 ribs and the space
between every two neighboring ribs is 700 mm.
The skin adopts carbon fiber (epoxy resin) compos-
ite material. The fibers of composite material are

oriented at 0°, — 45°, + 45 and 90°. The material
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of beam is 30CrM nSiA, and the material of ribs
and stringers is LY 12.

Fig.1 The wing structure of a certain high altitude long
endurance UAV

Table 1 The geometry parameters of the wing

Geometry parameters Value
Span 23.330m
Root chord 1.372m
Tip chord 0.494 m
Wing area 21.767 m?
Taper ratio 2.78
Mean aerodynamic chord 1.001 m
Quarter chord line sweep angle 5.9
Airfoil thickness ratio( root) 18%
Airfoil thickness ratio( tip) 14%
Dihedral angle 1}
Incidence angle 1}

Design vector is( x1, x2, X3, x4, x5, X6, X7,
%8, x9), in which x1, x2, 3, x4, x5 and x6 are
the thicknesses of wing skin from root chord to tip
chord and x7, xs and x99 are the thicknesses of
beam web from root chord to tip chord. T he unit
of design variables is millimeter. T he objectives of
optimization design are to minimize the mass and
maximum vertical displacement of wing structure
under a certain flight condition. The aerody namic
load is obtained by CFD software. T he finite ele
ment analyses of wing structure are computed by
Aeronautic and Astronautics Structure Analysis

softw are. The optimization model is written below:

Min  f,= W(X)
Mil’l f2= Lmax
ST: 0 </[0],i= 1234

0.5<x; <12 i=1 -4,9

(D

where W is the mass of wing structure; Lna is the

maximum vertical displacement of wing structure;

[ 6] is the allow able stress.

2 Multrobjective Model M anagement

Framework

Because of the lack of sampling data and the
large numbers of dimensions for the wing structure
optimization in present paper, it is difficulty to
build approximation models of the whole searching
space with sufficient accuracy. In order to over
come this difficulty the model management frame
work is adopted to use and manipulate approxima
tion models!'!. Here Ref. [2] is refered and a mul-
trobjective model management framework is pro-
posed. T he model management framew ork used in
this paper has three procedures: (Udetermining the
initial sampling points with uniform random num-
ber; @adopting the radial basis function neural
network to build approximation models of objective
and constraint functions; 3in every n generation,
some modifying points are selected by roulette
wheel and recomputed by finite element analyses.
Then these results are used to update approxima-
tion models. T he three procedures are described as
follows.

2.1 Determining initial sampling points

M any papers suggest that the initial sampling
points should be determined by experimental de
sign. In methods of experimental design, uniform
design is recommended because it can afford better
searching space coverage than other experimental
design, such as Latin hypercubes, orthogonal ar

mysl3J .

In the multrobjective optimization model
of wing structure, the searching space is very large
because of the high dimensions and wide range of
each variable. Therefore, the number of initial sam-
pling points should be taken large enough. In the
present case, it is taken as 400. Because it is un-
able to find uniform design table of 400 experr
ments in any existing references, so in the wing
structure optimization of the present paper, the ini-
tial sampling points are determined by uniform ran-

dom number instead of uniform design. Uniform

random number not only affords uniform initial
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sampling points but also is easy to be obtained.
2.2 Radial basis function neural network
(RBFNN)

Several methods' ¥

have been developed to
construct approximation models, such as response
surface, kriging, radial basis function neural net
work and so on. In this research, the radial basis
function neural network is adopted as approxima
tion method for follow ing reasons!™!.

(1) Complex engineering systems cannot often
be expressed by explicit numerical functions. It is
unknown how much error will occur if explicit nur
merical functions are used to approximate the comr
plex engineering systems. When radial basis func
tion neural netw ork is used to approximate data, it
likes a black box. This character is very fit to ap
proximate the complex engineering systems.

(2) Neural network has excellent ability to
approximate to functions, which has been proved
theoretically.

(3) For large or scarce sample set, radial basis
function performs better than response surface and
kriging when accuracy and robustness are consid
ered . Radial basis function neural network i
herits the superiority of radial basis function be
cause it adopts radial basis function.

Consider an objective or constraint function
f(x) to be approximated by a RBFNN. The out
put of a RBFNN is given by!”!

N

y= 2wi®(x) ~f(x) (2)

=1

® («x) is the basis function which is assumed to be

||x_02icl- ||} )

where x is the mput vector, N indicates the total

the Gaussian function:

®i(x)= exp|-

number of neurons in the network, ¢;, 0; and w;
refer to the center, width and weight of the ith
neuron, and |l* || denotes the Euclidean norm. In
the model management framew ork, by using initial
sampling points set that includes design vectors,
objective vectors and constraint vectors, k& means
clustering is used to determine the ¢;, k-nearest

neighbor heuristic to determine the G, and the

multiple linear regressions to determine the w;.
After these parameters are determined, a RBFNN
is constructed. The RBFNN is the approximation
model of objective or constraint function, there-
fore, the objective or constraint can be calculated by
RBFNN instead of finite element analysis.

2.3 Selecting modifying points

In the model management framework, m ir
dividuals are selected to modify the approximation
models every n generation. How to select the
points that can efficiently modify the approxima-
tion models is the key to building sufficient accu-
rate approximation models. In this research, each of
Pareto individuals is assigned fitness using Eq. (4)
in design space,

fi=min{ llp;=s;ll2},j = 1,2..,n (4)
where p; is the ith Pareto individual, n is the num-
ber of sampling points, s is the jth sampling
points, and f; is the fitness of p;.

According to fitness, some modifying points
are selected by roulette wheel and recompute these
points are recomputed by finite element analyses.
Not only every Pareto individual has chance to be
selected as modifying points, but also the more iso-
lated the points are the more chances they have.
The modifying points recomputed by finite element
analyses are added to sampling points set and a new
RBFNN is constructed. The new RBFNN will be

more accurate than before.

3 Interaction between SM-M OPSO and the

Model M anagement Framew ork

When objectives and constraints are computed
by approximation models, evolutionary algorithm
often get a shorter Pareto front that can not include
those near the extremum. So in order to extend
Pareto curve it is necessary to adopt evolutionary
algorithm with strong local searching ability. SM-
MOPSO proposed by the present authors in Ref.
[8], is a new hybrid algorithm that integrates
MOPSO ( multiple objective particle swarm optr
mization) with SM ( simple method). SM-MOPSO
not only inherits all the merits of M OPSO but also
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has strong local searching ability. Therefore, in
multr objective optimization design of the wing
structure the SM-MOPSO is adopted. The interac
tion between SM-M OPSO and the model manage

ment framework is showed in Fig. 2.

Determining initial
sampling points

!

Sampling points are computed
by high-fidelity models

!

Building approximation models

1

Implementing the rth
generationot SM-MOPSO
by using approximation

models *

- Updating pareto set by using
approximation models

Maoditying approximation
models

|

Selecting modifying points
and recomputing these
points by high-fidelity models

Maximum generation
is reached?

Fig.2 Interaction between SM-MOPSO and the model

management framework
In order to validate the effectiveness of the ir

teraction between SM-MOPSO and the model m arr

agement framew ork, a testing function proposed by

Deb ? is used,

Min f(x1,x2) = x1
Min f(x1,x2) = (1+ 10x2) *
A (5)
X1 X1 .
[1_ 1+ %2 1+ xzsm(ZJqu 1)]

where 0<x 1, %2 <1, a= 2, and g= 2. This
prob-lem has disconnected Pareto front and consis
tent with 2 Pareto curves.

In the optimization, the parameters of SM-
M OPSO are determined by experience, they are:
the number of population 81; maximum generation
50; the number of initial sampling points 81; and

the number of modifying points of every generation

10. The optimization of the testing function is con-
tinuously calculated for three times. The best result
is showed in Fig. 3. InFig.3, MMF is the abbre-
via tion for the model management framew ork. It is
obvious that by using the model management
framework and SM-M OPSO good optimization re
sults can be obtained.

Lir * SM-MOPSO
10 | ey, SM-MOPSO and MMF
08 N P
.06 \
D04 f y
02

0.0 1

-0.2 .
-0.1 0.1

03 05 07 09 1.1
i

Fig. 3 T he Pareto front of the testing function

4 Results of Optimization Design of Wing

Structure

The SM-MOPSO and the model management
framework are adopted to perform the mulir objec-
tive optimization design of the wing structure. The
parameters are determined by experience, they
are: the number of population 400; the maximum
generation 100; the number of mitial sampling
points 400; and the number of modifying points of
every generation 10.

T he optimization results are showed in Fig. 4
and T able 2. In Table 2, TP is the abbreviation for
testing points. Fig. 4 shows the uniform Pareto
front of the wing structure optimization. In order to
test the error of the Pareto front, four individuals
A, B, C and D showed in Fig. 4, are selected to be
Table 2

shows that the error of Pareto individuals is accept-

recomputed by finite element analysis.

ed. The maximum relative error of objective func-
tions is only 2. 78%. If the approximation models
are not adopted, the finite element analyses will run
40 000 times. However, when the approximation
models are used, the finite element analyses only
run 1400 times. The CPU time of optimization
design is 4296.75 s, which can be accepted by de-

signers.

© 1994-2010 China Academic Journal Electronic Publishing House. Open access under CC BY-NC-ND license. http://www.cnki.net



http://creativecommons.org/licenses/by-nc-nd/4.0/

February 2006

Multt objective Optim zation Design of Wing Structure with the M odel Management Framew ork * 35

1800 1

1400 A

%%( 5

1000 - M
C

r D

b

600

J5 fmm

Jikg

200 400 600

Fig.4 T he Pareto front of the wing structure optimiza

tion

Table 2 Error of testing points

A pproximation Finite element
TP results results Error/ %
S/ kg f o mm f{ ks f,/ mm
A 257.8 1394 252.9 1398. 1 1.93
B 305.7 1124 297. 4 1133.3 2.78
C 439.2 785.8 436.9 785.8 0.52
D 652. 1 636. 8 648. 8 640. 3 0.51

5 Conclusion

(1) Asseen from Fig. 4, the masses of differ-
ent designs remarkably differs. So it is very neces
sary to use optimization design in the field of aero-
nautics and astronautics.

(2) To multrobjective optim ization design of
the wing structure in the present paper, it takes
little time to obtain good Pareto set by using the
model management framework and SM-M OPSO.
Pareto front can obviously show the relation be
tween mass objective and displacement objective. In
Pareto set, decisiorr makers can easily select a satis
factory design according to their preference.

(3) The model management framework and
SM-M OPSO introduced in the present paper can be

used to solve multrobjective engineering problems

efficiently. It has good prospect in the airplane de
sign as well as in other complex systems optimiza

tion designs.
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