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1. Introduction and preliminaries

Csaszar [1] gave a new method for the foundation of general topology based on the theory of syntopogenous structure to
develop a unified approach to the three main structures of set-theoretic topology: topologies, uniformities and proximities.
This enabled him to evolve a theory including the foundations of the three classical theories of topological spaces, uniform
spaces and proximity spaces. In the case of the fuzzy structures there are at least two notions of fuzzy syntopogenous
structures, the first notion worked out in [2-4] presents a unified approach to the theories of Chang fuzzy topological
spaces [5], Hutton fuzzy uniform spaces [6], Katsaras fuzzy proximity spaces [7-9] and Artico fuzzy proximity [10]. The
second notion worked out in Katsaras [11,12] agree very well with Lowen fuzzy topological spaces [13], Lowen-Hdhle fuzzy
uniform spaces [14] and Artico-Moresco fuzzy proximity spaces [10].

In this paper, we study the relationships between L-fuzzy quasi-proximity (resp. L-fuzzy topogenous order spaces) and
L-grill (resp. L-filter) and the stratification of them.

Throughout this paper, let X be a nonempty set. Let a complete lattice L = (L, <, V, A,") be a complete distributive
complete lattice with an order-reversing involution on it, and with a smallest element | and largest element T (L # T).
Fora € L, a(x) = a forall x € X.

2. Stratified L-fuzzy quasi-proximity spaces

Definition 2.1 ([15]). Amap § : [¥ x [¥ — L is said to be an L-fuzzy quasi-proximity on X if it satisfies the following
conditions:
(LP1) 8(1y, 1x) = L.
(LP2) If8(f,g) # T,thenf < g'.
(LP3) 8(f1 Vv fo,8) =48(f1,8) Vé(fHr, g)and 8(g, fr v fo) = é(g. f1) vV é(g, f).
(LP4) 3(f,8) = N\pepx (8(f, h) vV (I, 8)}.
An L-fuzzy quasi-proximity § is said to be stratified iff § satisfies the following condition:
(LPS) 8(a, ') = L, forallx € L.
Let 81 and §, be L-fuzzy quasi-proximities on X. We say &, is finer than §, (8, is coarser than §;) if §;(f, g) < 8,(f, g)
forallf, g e L.
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Theorem 2.2 ([16]). Let (X, §) be an L-fuzzy quasi-proximity space. Define 8% : [X x [X — Lby

8 (f.g) = A\ \/ 8.8 ¢ -

{(i-gi-a) lIEN}YeW(F.8) | (fi.8-00)€{(fi-gi- i) [iEN}

where W(f, g) = {{(fi, &, @) | i € N, N is finite index set} | f < \/;cy(irne) andg < A,y (g V o)}. Then §* is the coarsest
stratified L-fuzzy quasi-proximity on X which is finer than 4.
Definition 2.3. Amap § : [¥ — Lis said to be an L-grill on X if it satisfies the following conditions:

(LG1) ¢(1p) = Land 4(1x) =T,
(LG2) §(f V&) < §(f) v §(g). foreachf, g € L*,
(LG3) Iff < g, then §(f) =< §(&).
An L-grill § is said to be stratified iff § satisfies the following condition:
(LGS) ¢(f Va) < (f) Va,foreachf e [¥anda € L.
Let G, and §, be L-grills on X. We say §; is finer than §, (4, is coarser than 1) if §;(f) < g,(f) forall f e IX.

Theorem 2.4. Let § be an L-grill on X. Define g% : [¥ — L by

9'H= A \/  shvey.

{(i.aplieNtew() | (i.aD€{(fi,a)lieN}

where W(f) = {{(f;, a;) | i € N, N is finite index set } | f < Nien i Vv a;)}. Then g5t is the coarsest stratified L-grill on X which
is finer than §.

Proof. First, we will prove that gt is stratified L-grill on X.

(LG1) Forall {(fi, a) | k € N} € W(1x), we have f; = 1x or o, = 1x. Thus, §*(1x) = T.Also, §*(1y) = L.
(LG2) Suppose that there exist f, g € L* such that

$FVve £ VE@.
By the definition of g, there exist {(fs, ai) | k € N} € W(f) and {(gn, Bm) | m € M} € W(g) such that

9 ve) % Vo osvae]v \/ 5(g) v B

(fi-ati) €{(fie- k) [keN} (g B €t(gm, fm)ImeM)

Put ! € N UM such that

fiva, ifle N— (NNM)
hvo = aVvh, ifleM—(NNM)
(five) v(uvpy, ifle(NNM).
On the other hand,
fves= (/\(fkvo@) v (/\(gmvﬂ,a) = N\ (tuvo.
keN meM leNUM
{(hi,op) |l e NUM} € W(f V g). Then we have
9% (Fve) < \/ G(hn) V 0y
(hn,on)€{(hy,07)[leENUM}
= Vo osvae]v \/ 9(g) Vv B
(fi.i) €{(fie, ) IkEN} (g B €t (gm, fm)ImeM}

It is a contradiction. Hence, §°*(f v g) < ¢°(f) Vv §%(g).
(LG3) Obvious.
(LGS) Suppose there exist f € L¥ and o € L such that

9 fva) £ 4% Ve
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By the definition of g%, there exists {(fy, ai) | k € N} € W(f) such that

5 Vva) £ \V/ ) vai|ve.

(fi-ei) €{(fie, o) [keN}

On the other hand, f v a < Aoy (fk V 0x), where oy = o; V «, then {(fy, 0%) | k € N} € W(f V ). Then we have

$ v

IA

9 Vo

(fi.o1) €{(fi. o) [keN}

g Vail| va.

(i) €{(fie, k) [keN}

It is a contradiction. Hence §5'(f V &) < 6(f) Vv . Thus, §* is stratified.
Second, for each f e IX, there exists a family {«} with f < f V « such that §*'(f) < 4.(f). Hence §*' is finer than §.
Finally, consider §* is a stratified L-grill on X which is finer than §. And we will show that §* > g*. Suppose there exists
f € IX such that §*(f) £ G°X(f). By the definition of %, there exists {(f, ai) | k € N} € W(f) such that

gz GHva.
(i) €{(fie, k) [keN}

On the other hand, g* is stratified, then we have

9 < 9 (/\(fkvow)

keN

<V §Givaw

keN

\ (o v e

keN

IA

IA

(G v ).

(fi.a)e{(fi.a) [keN}
It is a contradiction. Thus §*' is the coarsest stratified L-grill on X which is finer than §. O

Now, let § be an L-fuzzy quasi-proximity, we can identify the relation §; on L* with the map & : [¥ — L such that

5 (8) = {T, ifg = 1y.

It is clearly that & is L-grill.

Theorem 2.5. Let 2(X) and ¥ (X) be families of all L-fuzzy quasi-proximities and L-grills, respectively. Define # : 2(X) x
¥ (X) - ¥ (X) as follows:

#©, 9@ = N\ 6.2 v gD,
gelX

where § € 2(X) and § € W (X). Then, we have the following properties:
(1) #(3, §) € ¥ (X).
(2) § = H(8, §), forany G € ¥(X).
(3) #(, &) = 6.
(4) H(8*, §°) = (H(5, §))*.
Proof. (1) (LG1) Since $(1p) = Land §(1x) =T,

HE, 9 ) = \ 18, 1) v §(1p)} = L,

gelX

HE, 9 (10 = \ 8@ 10 v g0} =T.

gelX
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(LG2) Let f, g e LX. Then we have
H©, 9 Ve = \B¢ Ve nverye)

helX

NS, by v 8@, W}V AG(F) v 4@

helX

NGE. DV aEv \ 6@ hv4@)

helX helX
= H(5, §)() v #H(S, §)(g).
(LG3) Iff < g, then
HG, $(f) = /\{5(f, v g} = /\{5(& h) v §(g)} = (3, §)(g).

helX helX

IA

(2) It is clear from the definition.
(3) From (2), #(8, 6r) > 8¢, we need only show that #(8, 6f) < 6. Let 1y # g € [*. Then we have

#©.5)(@) = \(6h.g) v 5(2)

helX

\18(h,2) v 5, 2)

helX
<8(f.g) V.8 =488 =5
(4) Let f, g € L*. From Theorems 2.2 and 2.4, we have for all finite families {f; | f < Ay (i V o)} and {ge | g <
\/keN (gk A %)}. we have

HE 9N = \18%@. N v g

gelX

A((AMysen])« (Afysove))

ATV | A s o V(/\[\/g(fk)\/akD

keN \ gpelX keN

ALV A s@efo vt va

keN \ gyelX

=A (\/ H(, 9) () v ak)

keN

= (#G, 9)"(H. O

3. Stratified L-fuzzy topogenous order spaces

Definition 3.1 ([17]). Amap & : [¥ x [X — Lis said to be an L-fuzzy topogenous order on X if it satisfies the following
conditions:

(LN1) M(1x, 1x) = N(1g, 1p) = T,

(LN2) If M(f,g) # L,thenf < g,

(LN3) If f < f; and g1 < g, then N (f1,81) < N (f,8),

(LN4) (i) N(fi V2,81V &) = N(1,8) AN, &),
(ii) N(fi A2, 81 A &) = N(f1, 81) A N(f2, &2)-

The pair (X, V) is called L-fuzzy topogenous order space.

An L-fuzzy topogenous order -V is said to be stratified iff .&° satisfies the following condition:

(INS) M (e, @) = T,foralla € L.

Let N7 and N, be L-fuzzy topogenous orders on X. We say N is finer than A, (M, is coarser than A7) if M5(f, g) <
N (f,g) forallf, g e IX.
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Theorem 3.2 ([16]). Let (X, N) be an L-fuzzy topogenous order space. Define N : [X x [¥ — Lby

NUF,8) = \ A\ N2 ¢

{(fi.gi.aDlieNteM(f.g) | (fi.8.aDel(fi.gi.a)liEN}

where M(f,g) = {{(f, &, @) | i € N, Nis finite index set} | f < Vieni A aj)andg > Vien(8i A a;)}. Then NSUis the
coarsest stratified L-fuzzy topogenous order on X which is finer than V.

Definition 3.3 ([18,19]). Amap ¥ : L¥ — Lis said to be an L-filter on X if it satisfies the following conditions:

(LF1) F(1y) = Land F(1x) = T,
(LF2) F(f Ag) = F(f) A F(g), foreachf, g e IX,
(LF3) Iff < g, then F(f) < F(g).
An L-filter # is said to be stratified iff # satisfies the following condition:
(LES) F(f Aa) > F(f) Aa, foreachf e [¥ and« € L.
Let #; and %, be L-filters on X. We say # is finer than %, (% is coarser than #;) if 5 (f) < #(f) forall f € LX.

Theorem 3.4 ([20]). Let ¥ be an L-filter on X. Define ¥ : [X — L by

H= '\ N FRrag,
(.o lieNyew() | (i.ape((fi.anlieN)

where W(f) = {{(f, i) | i € N, N is finite index set} | f > \/;cy (fi A cti)}. Then F*' is the coarsest stratified L-filter on X which
is finerthan ¥. 0O

Now, let . be an L-fuzzy topogenous, we can identify the relation .y on [X with the map #; : I¥ — 175 such that
_JN(.g), ifg#ly
N (8) = {J_, ifg = 1,.

Itis clear that A} is L-filter.

Theorem 3.5. Let £2(X) and ¥ (X) be families of all L-fuzzy topogenous and L-filters, respectively. Define # : 2(X) x ¥ (X) —
¥ (X) as follows:

HWN,F)() = \/IN@E. ) AFE
gelX
where N € 2(X) and F € ¥ (X). Then, we have the following properties:

(1) H(N,F) e ¥(X).

(2) F = H(N, F), forany F € ¥ (X).
(3) H(N, Np) = M.

(4) H (N, F3H = (H(N, F)".

Proof. (1) (LF1) Since F (1) = Land F(1x) = T,
HWN, F)(1p) = \/ (N@ 1) A Fp)) = L,
gelX
HWN, )0 = \/{N(@E 1) AF)} =T,
gelX

(LF2) Let f, g € IX. Then we have
HN,F)F AL = \/(NfAAF(F AL}

helX

\ N () A N (2} AMF () A F (@)

helX

\NBHAFOYA N N2 A F @)
helX helX

H(N, F)) AFH(N, F) Q).

v
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(LF3)Iff < g, then
HN,F)) =\ INILHAFO) < \/ (N g) AF@)=HWN, F)@).
helX helX

(2) It is clear from the definition.
(3) From (2), #(N, M) < Ny, we need only to show that # (N, N;) > M. Let 1y # g € [X. Then we have

HN, M@ = \/ (8(h.g) A N ()
helX

= VN AN 2)

helX

> N, AN, 8 =N, 8 = M©E.
(4) Let f,g e L¥. From Theorems 3.2 and 3.4, we have for all finite families il f= \/jeN(fj Aaj)}and (g | g <
\/keN (& A %)}.

HNFNE) =\ (V@) A F())

gelX
= \/ \/ /\W(gk,f}) A \/ /\}'(f})/\aj
gelX jk i
= \/ /\ \/ N (g, ;) A \/ /\jfi(fj) A
Jk \gpelX j

\/ /\ \/N(gk,ﬁ)/\}‘(;;) Adj

Jko \ geelX

VA A\ #N. ) A ey
J

(HN, FN(). O
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