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a b s t r a c t

In this paper, we study the relationships between L-fuzzy quasi-proximity (resp. L-fuzzy
topogenous order spaces) and L-grill (resp. L-filter) and the stratification of them.
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1. Introduction and preliminaries

Csaszar [1] gave a newmethod for the foundation of general topology based on the theory of syntopogenous structure to
develop a unified approach to the three main structures of set-theoretic topology: topologies, uniformities and proximities.
This enabled him to evolve a theory including the foundations of the three classical theories of topological spaces, uniform
spaces and proximity spaces. In the case of the fuzzy structures there are at least two notions of fuzzy syntopogenous
structures, the first notion worked out in [2–4] presents a unified approach to the theories of Chang fuzzy topological
spaces [5], Hutton fuzzy uniform spaces [6], Katsaras fuzzy proximity spaces [7–9] and Artico fuzzy proximity [10]. The
second notion worked out in Katsaras [11,12] agree very well with Lowen fuzzy topological spaces [13], Lowen–Höhle fuzzy
uniform spaces [14] and Artico–Moresco fuzzy proximity spaces [10].

In this paper, we study the relationships between L-fuzzy quasi-proximity (resp. L-fuzzy topogenous order spaces) and
L-grill (resp. L-filter) and the stratification of them.

Throughout this paper, let X be a nonempty set. Let a complete lattice L = (L, ≤, ∨, ∧ ,′) be a complete distributive
complete lattice with an order-reversing involution on it, and with a smallest element ⊥ and largest element ⊤(⊥ ≠ ⊤).
For α ∈ L, α(x) = α for all x ∈ X .

2. Stratified L-fuzzy quasi-proximity spaces

Definition 2.1 ([15]). A map δ : LX × LX → L is said to be an L-fuzzy quasi-proximity on X if it satisfies the following
conditions:
(LP1) δ(1∅, 1X ) = ⊥.
(LP2) If δ(f , g) ≠ ⊤, then f ≤ g ′.
(LP3) δ(f1 ∨ f2, g) = δ(f1, g) ∨ δ(f2, g) and δ(g, f1 ∨ f2) = δ(g, f1) ∨ δ(g, f2).
(LP4) δ(f , g) ≥


h∈LX {δ(f , h) ∨ δ(h′, g)}.

An L-fuzzy quasi-proximity δ is said to be stratified iff δ satisfies the following condition:
(LPS) δ(α, α′) = ⊥, for all α ∈ L.

Let δ1 and δ2 be L-fuzzy quasi-proximities on X . We say δ1 is finer than δ2 (δ2 is coarser than δ1) if δ1(f , g) ≤ δ2(f , g)
for all f , g ∈ LX .

∗ Corresponding author at: Department of Mathematics, Faculty of Science, Sohag 82524, Egypt.
E-mail address: sabbas73@yahoo.com (S.E. Abbas).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.01.023

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82684446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.01.023
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:sabbas73@yahoo.com
http://dx.doi.org/10.1016/j.aml.2011.01.023


1064 S.E. Abbas, M.A. Hebeshi / Applied Mathematics Letters 24 (2011) 1063–1068

Theorem 2.2 ([16]). Let (X, δ) be an L-fuzzy quasi-proximity space. Define δst
: LX × LX → L by

δst(f , g) =


{(fi,gi,αi)|i∈N}∈W(f ,g)

 
(fl,gl,αl)∈{(fi,gi,αi)|i∈N}

δ(fl, gl)

 ,

whereW(f , g) = {{(fi, gi, αi) | i ∈ N,N is finite index set} | f ≤


i∈N(fi ∧αi) and g ≤


i∈N(gi ∨αi
′)}. Then δst is the coarsest

stratified L-fuzzy quasi-proximity on X which is finer than δ.

Definition 2.3. A map G : LX → L is said to be an L-grill on X if it satisfies the following conditions:

(LG1) G(1∅) = ⊥ and G(1X ) = ⊤,
(LG2) G(f ∨ g) ≤ G(f ) ∨ G(g), for each f , g ∈ LX ,
(LG3) If f ≤ g , then G(f ) ≤ G(g).

An L-grill G is said to be stratified iff G satisfies the following condition:
(LGS) G(f ∨ α) ≤ G(f ) ∨ α, for each f ∈ LX and α ∈ L.

Let G1 and G2 be L-grills on X . We say G1 is finer than G2 (G2 is coarser than G1) if G1(f ) ≤ G2(f ) for all f ∈ LX .

Theorem 2.4. Let G be an L-grill on X. Define Gst
: LX → L by

Gst(f ) =


{(fi,αi)|i∈N}∈W(f )

 
(fl,αl)∈{(fi,αi)|i∈N}

G(fl) ∨ αl

 ,

where W(f ) = {{(fi, αi) | i ∈ N,N is finite index set } | f ≤


i∈N(fi ∨ αi)}. Then Gst is the coarsest stratified L-grill on X which
is finer than G.

Proof. First, we will prove that Gst is stratified L-grill on X .

(LG1) For all {(fk, αk) | k ∈ N} ∈ W(1X ), we have fk = 1X or αk = 1X . Thus, Gst(1X ) = ⊤. Also, Gst(1∅) = ⊥.
(LG2) Suppose that there exist f , g ∈ LX such that

Gst(f ∨ g) ≰ Gst(f ) ∨ Gst(g).

By the definition of Gst, there exist {(fk, αk) | k ∈ N} ∈ W(f ) and {(gm, βm) | m ∈ M} ∈ W(g) such that

Gst(f ∨ g) ≰

 
(fi,αi)∈{(fk,αk)|k∈N}

G(fi) ∨ αi

 ∨

 
(gj,βj)∈{(gm,βm)|m∈M}

G(gj) ∨ βj

 .

Put l ∈ N ∪ M such that

hl ∨ σl =


fl ∨ αl, if l ∈ N − (N ∩ M)

gl ∨ βl, if l ∈ M − (N ∩ M)

(fl ∨ gl) ∨ (αl ∨ βl), if l ∈ (N ∩ M).

On the other hand,

f ∨ g ≤


k∈N

(fk ∨ αk)


∨


m∈M

(gm ∨ βm)


=


l∈N∪M

(hl ∨ σl),

{(hl, σl) | l ∈ N ∪ M} ∈ W(f ∨ g). Then we have

Gst(f ∨ g) ≤


(hn,σn)∈{(hl,σl)|l∈N∪M}

G(hn) ∨ σn

=

 
(fi,αi)∈{(fk,αk)|k∈N}

G(fi) ∨ αi

 ∨

 
(gj,βj)∈{(gm,βm)|m∈M}

G(gj) ∨ βj

 .

It is a contradiction. Hence, Gst(f ∨ g) ≤ Gst(f ) ∨ Gst(g).
(LG3) Obvious.
(LGS) Suppose there exist f ∈ LX and α ∈ L such that

Gst(f ∨ α) ≰ Gst(f ) ∨ α.
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By the definition of Gst, there exists {(fk, αk) | k ∈ N} ∈ W(f ) such that

Gst(f ∨ α) ≰

 
(fi,αi)∈{(fk,αk)|k∈N}

G(fi) ∨ αi

 ∨ α.

On the other hand, f ∨ α ≤


k∈N(fk ∨ σk), where σk = αi ∨ α, then {(fk, σk) | k ∈ N} ∈ W(f ∨ α). Then we have

Gst(f ∨ α) ≤

 
(fi,σi)∈{(fk,σk)|k∈N}

G(fi) ∨ σi


=

 
(fi,αi)∈{(fk,αk)|k∈N}

G(fi) ∨ αi

 ∨ α.

It is a contradiction. Hence Gst(f ∨ α) ≤ Gst(f ) ∨ α. Thus, Gst is stratified.
Second, for each f ∈ LX , there exists a family {α} with f ≤ f ∨ α such that Gst(f ) ≤ G(f ). Hence Gst is finer than G.
Finally, consider G∗ is a stratified L-grill on X which is finer than G. And we will show that Gst

≥ G∗. Suppose there exists
f ∈ LX such that G∗(f ) ≰ Gst(f ). By the definition of Gst, there exists {(fk, αk) | k ∈ N} ∈ W(f ) such that

G∗(f ) ≰


(fi,αi)∈{(fk,αk)|k∈N}

(G(fi) ∨ αi).

On the other hand, G∗ is stratified, then we have

G∗(f ) ≤ G∗


k∈N

(fk ∨ αk)


≤


k∈N

G∗(fk ∨ αk)

≤


k∈N

(G∗(fk) ∨ αk)

≤


(fi,αi)∈{(fk,αk)|k∈N}

(G(fi) ∨ αi).

It is a contradiction. Thus Gst is the coarsest stratified L-grill on X which is finer than G. �

Now, let δ be an L-fuzzy quasi-proximity, we can identify the relation δf on LX with the map δf : LX → L such that

δf (g) =


δ(f , g), if g ≠ 1X
⊤, if g = 1X .

It is clearly that δf is L-grill.

Theorem 2.5. Let Ω(X) and Ψ (X) be families of all L-fuzzy quasi-proximities and L-grills, respectively. Define H : Ω(X) ×

Ψ (X) → Ψ (X) as follows:

H(δ, G)(f ) =


g∈LX

{δ(f , g) ∨ G(f )},

where δ ∈ Ω(X) and G ∈ Ψ (X). Then, we have the following properties:

(1) H(δ, G) ∈ Ψ (X).
(2) G ≤ H(δ, G), for any G ∈ Ψ (X).
(3) H(δ, δf ) = δf .
(4) H(δst, Gst) = (H(δ, G))st.

Proof. (1) (LG1) Since G(1∅) = ⊥ and G(1X ) = ⊤,

H(δ, G)(1∅) =


g∈LX

{δ(g, 1∅) ∨ G(1∅)} = ⊥,

H(δ, G)(1X ) =


g∈LX

{δ(g, 1X ) ∨ G(1X )} = ⊤.
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(LG2) Let f , g ∈ LX . Then we have

H(δ, G)(f ∨ g) =


h∈LX

{δ(f ∨ g, h) ∨ G(f ∨ g)}

≤


h∈LX

{{δ(f , h) ∨ δ(g, h)} ∨ {G(f ) ∨ G(g)}}

=


h∈LX

{δ(f , h) ∨ G(f )} ∨


h∈LX

{δ(g, h) ∨ G(g)}

= H(δ, G)(f ) ∨ H(δ, G)(g).

(LG3) If f ≤ g , then

H(δ, G)(f ) =


h∈LX

{δ(f , h) ∨ G(f )} ≤


h∈LX

{δ(g, h) ∨ G(g)} = H(δ, G)(g).

(2) It is clear from the definition.
(3) From (2), H(δ, δf ) ≥ δf , we need only show that H(δ, δf ) ≤ δf . Let 1∅ ≠ g ∈ LX . Then we have

H(δ, δf )(g) =


h∈LX

{δ(h, g) ∨ δf (g)}

=


h∈LX

{δ(h, g) ∨ δ(f , g)}

≤ δ(f , g) ∨ δ(f , g) = δ(f , g) = δf (g).

(4) Let f , g ∈ LX . From Theorems 2.2 and 2.4, we have for all finite families {fk | f ≤


k∈N(fk ∨ αk
′)} and {gk | g ≤

k∈N(gk ∧ αk)}, we have

H(δst, Gst)(f ) =


g∈LX

{δst(g, f ) ∨ Gst(f )}

=


g∈LX


k∈N

δ(gk, fk)


∨


k∈N

G(fk) ∨ αk



=


k∈N


gk∈LX

δ(gk, fk)


 ∨


k∈N

G(fk) ∨ αk


=


k∈N


gk∈LX

δ(gk, fk) ∨ G(fk)

 ∨ αk


=


k∈N

H(δ, G)(fk) ∨ αk


= (H(δ, G))st(f ). �

3. Stratified L-fuzzy topogenous order spaces

Definition 3.1 ([17]). A map N : LX × LX → L is said to be an L-fuzzy topogenous order on X if it satisfies the following
conditions:

(LN1) N (1X , 1X ) = N (1∅, 1∅) = ⊤,
(LN2) If N (f , g) ≠ ⊥, then f ≤ g ,
(LN3) If f ≤ f1 and g1 ≤ g , then N (f1, g1) ≤ N (f , g),
(LN4) (i) N (f1 ∨ f2, g1 ∨ g2) ≥ N (f1, g1) ∧ N (f2, g2),

(ii) N (f1 ∧ f2, g1 ∧ g2) ≥ N (f1, g1) ∧ N (f2, g2).

The pair (X, N ) is called L-fuzzy topogenous order space.
An L-fuzzy topogenous order N is said to be stratified iff N satisfies the following condition:
(LNS) N (α, α) = ⊤, for all α ∈ L.
Let N1 and N2 be L-fuzzy topogenous orders on X . We say N1 is finer than N2 (N2 is coarser than N1) if N2(f , g) ≤

N1(f , g) for all f , g ∈ LX .
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Theorem 3.2 ([16]). Let (X, N ) be an L-fuzzy topogenous order space. Define N st
: LX × LX → L by

N st(f , g) =


{(fi,gi,αi)|i∈N}∈M(f ,g)

 
(fl,gl,αl)∈{(fi,gi,αi)|i∈N}

N (fl, gl)

 ,

where M(f , g) = {{(fi, gi, αi) | i ∈ N,N is finite index set} | f ≤


i∈N(fi ∧ αi) and g ≥


i∈N(gi ∧ αi)}. Then N st is the
coarsest stratified L-fuzzy topogenous order on X which is finer than N .

Definition 3.3 ([18,19]). A map F : LX → L is said to be an L-filter on X if it satisfies the following conditions:

(LF1) F (1∅) = ⊥ and F (1X ) = ⊤,
(LF2) F (f ∧ g) ≥ F (f ) ∧ F (g), for each f , g ∈ LX ,
(LF3) If f ≤ g , then F (f ) ≤ F (g).

An L-filter F is said to be stratified iff F satisfies the following condition:
(LFS) F (f ∧ α) ≥ F (f ) ∧ α, for each f ∈ LX and α ∈ L.

Let F1 and F2 be L-filters on X . We say F1 is finer than F2 (F2 is coarser than F1) if F2(f ) ≤ F1(f ) for all f ∈ LX .

Theorem 3.4 ([20]). Let F be an L-filter on X. Define F st
: LX → L by

F st(f ) =


{(fi,αi)|i∈N}∈W(f )

 
(fl,αl)∈{(fi,αi)|i∈N}

F (fl) ∧ αl

 ,

where W(f ) = {{(fi, αi) | i ∈ N,N is finite index set} | f ≥


i∈N(fi ∧αi)}. Then F st is the coarsest stratified L-filter on X which
is finer than F . �

Now, let N be an L-fuzzy topogenous, we can identify the relation Nf on LX with the map Nf : LX → LL
X
×LX such that

Nf (g) =


N (f , g), if g ≠ 1∅

⊥, if g = 1∅.

It is clear that Nf is L-filter.

Theorem 3.5. Let Ω(X) and Ψ (X) be families of all L-fuzzy topogenous and L-filters, respectively. Define H : Ω(X)× Ψ (X) →

Ψ (X) as follows:

H(N , F )(f ) =


g∈LX

{N (g, f ) ∧ F (f )},

where N ∈ Ω(X) and F ∈ Ψ (X). Then, we have the following properties:

(1) H(N , F ) ∈ Ψ (X).
(2) F ≥ H(N , F ), for any F ∈ Ψ (X).
(3) H(N , Nf ) = Nf .
(4) H(N st, F st) = (H(N , F ))st.

Proof. (1) (LF1) Since F (1∅) = ⊥ and F (1X ) = ⊤,

H(N , F )(1∅) =


g∈LX

{N (g, 1∅) ∧ F (1∅)} = ⊥,

H(N , F )(1X ) =


g∈LX

{N (g, 1X ) ∧ F (1X )} = ⊤.

(LF2) Let f , g ∈ LX . Then we have

H(N , F )(f ∧ g) =


h∈LX

{N (h, f ∧ g) ∧ F (f ∧ g)}

≥


h∈LX

{{N (h, f ) ∧ N (h, g)} ∧ {F (f ) ∧ F (g)}}

=


h∈LX

{N (h, f ) ∧ F (f )} ∧


h∈LX

{N (h, g) ∧ F (g)}

= H(N , F )(f ) ∧ H(N , F )(g).
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(LF3) If f ≤ g , then

H(N , F )(f ) =


h∈LX

{N (h, f ) ∧ F (f )} ≤


h∈LX

{N (h, g) ∧ F (g)} = H(N , F )(g).

(2) It is clear from the definition.
(3) From (2), H(N , Nf ) ≤ Nf , we need only to show that H(N , Nf ) ≥ Nf . Let 1∅ ≠ g ∈ LX . Then we have

H(N , Nf )(g) =


h∈LX

{δ(h, g) ∧ Nf (g)}

=


h∈LX

{N (h, g) ∧ N (f , g)}

≥ N (f , g) ∧ N (f , g) = N (f , g) = Nf (g).

(4) Let f , g ∈ LX . From Theorems 3.2 and 3.4, we have for all finite families {fj | f ≥


j∈N(fj ∧ αj)} and {gk | g ≤
k∈N(gk ∧ αk)},

H(N st, F st)(f ) =


g∈LX

{N st(g, f ) ∧ F st(f )}

=


g∈LX


j,k

N (gk, fj)


∧


j

F (fj) ∧ αj



=


j,k


gk∈LX

N (gk, fj)


 ∧


j

F (fj) ∧ αj


=


j,k


gk∈LX

N (gk, fj) ∧ F (fj)

 ∧ αj


=


j

H(N , F )(fj) ∧ αj


= (H(N , F ))st(f ). �
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