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Abstract

A relative presentation is a triple P = (A; X :R) where A is a group, X is a set, and R is a
set of words in the free product A ∗ F(X ) where F(X ) is the free group with basis X . Under
certain hypotheses on the relative presentation P, we show that (1) the group presented by P

is locally indicable; (2) the pre-aspherical model for P is aspherical; (3) the Freiheitssatz holds
for P. The result has applications in the computation of cohomology of groups and the 6eld of
equations over groups.

c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we will extend three foundational results of one-relator group theory,
Magnus’ Freiheitssatz, Lyndon’s Identity Theorem [8], and a theorem by BrodskABi [3]
which states that each torsion free one-relator group is locally indicable. Each of these
results has previously been generalized by Howie [5–7] to the setting of one-relator
products (A∗B)=r of locally indicable groups A and B which completed the one-relator
case. A group is locally indicable if every non-trivial, 6nitely generated subgroup admits
a surjection onto the integers.

Anshel [1] proved an extension of the Freiheitssatz for a class of two-relator presen-
tations in 1990. Bogley [2] extended Anshel’s Freiheitssatz to a class of multi-relator
presentations and proved an analogue of the Identity Theorem for these presentations.
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We will continue in the generalization of the multi-relator case begun by Anshel and
Bogley by considering relative presentations.

A relative presentation is a triple P = (A; X :R), where A is a group, X is a set,
and R is a set of words in the free product A ∗ F(X ), where F(X ) is the free group
with basis X . The group presented by the relative presentation P is the quotient group
G(P)=(A∗F(X ))=N where N is the normal closure of R. Our results concern the case
when the coeJcient group A is locally indicable. Following Anshel [1] and Bogley [2],
we formulate hypotheses on a relative presentation P under which (i) the Freiheitssatz
holds for P, (ii) there exists an analogue to the Identity Theorem by construction of
a K(G(P); 1), and (iii) the group G(P) is locally indicable.

The paper is organized in the following manner. The second section is an overview of
the results from one-relator group theory. The third section includes the multi-relator
results, the statement of the new results introduced by this paper, and a method of
constructing examples. The 6nal section contains the proofs of all the new theorems.

2. One-relator results

Given the relative presentation P = (A; X :R), we say that the Freiheitssatz holds
for P if the inclusion induced homomorphism j :A→ G(P) is injective. This property
was originally introduced by Magnus in [9] where he showed that the Freiheitssatz
held for one-relator groups.

The following theorem of Howie generalizes Magnus’ Freiheitssatz to the setting
of one-relator products of locally-indicable groups. A group G is said to be locally
indicable if every non-trivial, 6nitely generated subgroup of G admits a surjection onto
the integers.

Theorem 2.1 (Howie [5, Theorem 4.3]). Suppose G = (A ∗ B)=N ; where A and B are
locally indicable groups and N is the normal closure in the free product A ∗ B of a
cyclically reduced word r of length at least 2. Then the canonical maps A→ G and
B→ G are injective.

Now we will de6ne the Identity Property which was 6rst introduced by Lyndon in
[8]. The Identity Property was originally de6ned for ordinary group presentations, but
the de6nition can be generalized to the setting of relative presentations. For a relative
presentation P = (A; X :R), let N be the normal closure of the set of relators R in the
free product A ∗ F(X ). Then de6ne Nab to be the abelianization of the group N . If
G=G(P), then de6ne a G-action on Nab that is induced by conjugation in A ∗ F(X ).
Under this action, the abelian group is a ZG-module. Moreover, it is generated as
a ZG-module by the set of elements {r[N; N ] : r ∈R} which are determined by the
relators of the presentation P. We refer to the ZG-module Nab as the relation module
for the relative presentation P.

For every relator r ∈R, write r = qe(r)r where e(r) is maximal. We say that qr is
the root of the relator r in the free product A ∗ F(X ). We will always have the re-
lations, (qr − 1) ∗ r [N; N ] = 0 when our relators are proper powers. These relations
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are often referred to as the trivial relations. The relative presentation P = (A; X :R) is
said to have the Identity Property if under the generating set {r[N; N ] : r ∈R} the set
of trivial relations {(qr − 1)[N; N ] : r ∈R} are de6ning relations for Nab. The original
de6nition of a relation module can be recovered by taking the group A to be the trivial
group. In [8], Lyndon showed that the Identity property held for one-relator presenta-
tions and a special class of multi-relator presentations that are referred to as staggered
presentations.

Recall that a topological space K is aspherical if every spherical map Sn → K is
null-homotopic for n¿ 2. There is a strong connection between the Identity Property
and asphericity. Given a relative presentation P = (A; X :R), build a topological space
as follows. Start with the one point union of a K(A; 1)–complex KA and the one point
union of a collection of circles that are in 1–1 correspondence with the elements of
the set X , denoted KA ∨ (

∨
x∈X S

1
x ). Now for every r ∈R, there exists a based loop

�(r) : S1 →
(
KA ∨

( ∨
x∈X

S1
x

))(1)

that represents qr where r = qe(r)r and qr is the root of the relator r. Let the CW -
complex De be the K(Ce; 1)-complex where Ce is the cyclic group of order e. Attach
the CW -complex D =

∨
r∈R De(r) to (KA ∨ (

∨
x∈X S

1
x ))

(1) by � =
∨
r∈R �(r) and let K

equal this complex.
Note that for each relator r ∈R, the CW -complex K has a 2-cell c2

r ⊆ De(r) that is
attached along path �(r) : S1 → K (1) which traverses the path �(r) e(r) times. By the
Seifert–Van Kampen theorem, �1(K) ∼= G = (A ∗ F(X ))=U where U = 〈〈R〉〉 is the
normal closure of the set of relators R in the group A∗F(X ). The complex K is called
the pre-aspherical model and was 6rst introduced by Dyer and Vasquez in [4]. If A is
the trivial group, then the 2-skeleton of K is equivalent to the standard 2-complex asso-
ciated to the ordinary group presentation (X :R). It is easy to show that a presentation
has the Identity Property if and only if the pre-aspherical model is aspherical.

Go back to the setting of G = (A ∗ B)=N where N is the normal closure of the
single relator r in the free product A ∗ B. This group is represented by the generalized
presentation P= (A; B : r) where A and B are groups. Write r= qe where q is the root
of the relator r. We can modify the pre-aspherical model to generalized presentations
by starting our construction with the one point union of a K(A; 1) and K(B; 1).

Theorem 2.2 (Howie [7, Theorem 1]). Let P= (A; B : r) be a one-relator generalized
presentation in which the relator r has free product length at least 2 and A and
B are locally indicable groups. Then the pre-aspherical model of this generalized
presentation is aspherical.

This theorem is equivalent to saying that the generalized presentation P has the
identity property when A and B are locally indicable groups and r is a word of free
product length at least 2.

The last result we will oNer a generalization of is the following theorem proved by
BrodskABi.
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Theorem 2.3 (BrodskABi [3]). Torsion-free 1-relator groups are locally indicable.

During the course of the paper, the following result of Howie will be used
repeatedly.

Theorem 2.4 (Howie [6]). Let A and B be locally indicable groups; and let G be the
quotient of the free product A ∗B by the normal closure of a cyclically reduced word
r of length at least 2. Then the following are equivalent:

(i) G is locally indicable;
(ii) G is torsion-free;

(iii) r is not a proper power in A ∗ B.

A reduced word w= x1x2 : : : xn is said to be cyclically reduced if xn �= x−1
1 . A word

w is not a proper power if w = qe implies that e = 1.

3. Semi-staggered presentations

3.1. De9nition of semi-staggered presentations

In 1990, Anshel [1] published a Freiheitssatz statement for a class of two-relator
groups. She extended Magnus’ approach to the one-relator case by developing what
she termed an independence hypothesis for a two-relator presentation of the form P=
(X; y; z :R; S) and proving that the inclusion of the free group with basis X into the
group G(P) is injective. Her methods, like Magnus’, were combinatorial. This theorem
was a 6rst step in attempting to generalize 1-relator group theory to multi-relator groups.
In 1991, by interpreting Anshel’s conditions in a topological setting, Bogley proved
that a larger class of multi-relator presentations which include Anshel’s two-relator
presentations have the Identity Property. He also extended her Freiheitssatz to this
class of multi-relator groups.

Let P = (A; X :R) be a relative presentation where A is a group, X is a set, and R
is a set of cyclically reduced words representing elements in A ∗ F(X ) where F(X )
is the free group with basis X . Let G(P) = (A ∗ F(X ))=U where U = 〈〈R〉〉 is the
normal closure of the set R in the group A ∗ F(X ). Also, let H = (A ∗ F(X ))=N
where N = 〈〈A ∪ R〉〉. Thus, H is obtained from G by “killing” the (normal closure)
of A.

After cyclic permutation, we can assume that each r ∈R has the cyclically reduced
from

r = x1a1x2a2 : : : xnan;

where xi is a word in F(X ) ; ai ∈A, and i¿ 1. Now de6ne Pr to be the subset of cosets
of N

Pr = {x1N; x1x2N; : : : ; x1 : : : xnN = 1N}:
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The set Pr is the set of initial segments of the relator r modulo A. Let # =
⋃
r∈R Pr

⊆ H . If $ is a subset of H , de6ne $•=$−{1N}. Now we are ready for the de6nition
of a semi-staggered presentation.

De�nition 1. A relative presentation P = (A; X :R) is semi-staggered if the following
three conditions are satis6ed:
(S1) P•

r �= ∅ for every r ∈R;
(S2) There exists linear orderings on R and #• such that for r; s∈R; if r ¡ s then

min P•
r ¡min P•

s and maxP•
r ¡maxP•

s ;
(S3) #• is a basis for a free subgroup of H .

Anshel and Bogley’s results are stated in the following theorem.

Theorem 3.1 (Anshel [1]; Bogley [2]). If P is semi-staggered in A as de9ned above
and A is a free group; then
(1) the Freiheitssatz holds for P; and
(2) the presentation P has the Identity Property.

3.2. New results

In this paper, we will adapt the arguments of Anshel and Bogley to prove the
following theorems.

Theorem 3.2. If the relative presentation P = (A; X :R) is semi-staggered and A is a
locally indicable group; then the pre-aspherical model of P is aspherical; i.e. P has
the Identity Property.

Theorem 3.3 (Freiheitssatz). If the relative presentation P = (A; X :R) is semi-
staggered and A is a locally indicable group; then the inclusion of A into G(P)
is an injection.

Theorem 3.4. If the relative presentation P = (A; X :R) is semi-staggered; A is a
locally indicable group; and no relator is a proper power; then the subgroup N=U of
the group G(P) is locally indicable.

Corollary 3.5. If in addition to the assumptions made in Theorem 3.4 the group
H = (A ∗ F(X ))=〈〈A ∪ R〉〉 is locally indicable; then the group G(P) is locally
indicable.

3.3. Constructing examples

To construct examples of semi-staggered presentations P = (A; X :R), we will start
with the group H ∼= G(P)=U where U is the normal closure of the set A ∪ R. For H ,
one must choose a group which has a free subgroup with a basis #. The 6rst step is to
de6ne a linear ordering on the basis #. Now let A be any locally indicable group and
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your basis for the free subgroup of H be the set #= {b1; b2; b3; b4; : : :} with indicated
linear ordering. Construct your relators in the following manner:

r1 = b1a1;1b2a1;2b3a1;3 : : : bka1; k ;

r2 = bla2;1bl+1a2;2 : : : bma2;m;
...

where each relator has free product length at least 2; 26 l6 k ¡m, and each ai; j is
an element of the group A. One can continue this process of “staggering” the basis
elements to build a set of relators. Note, if you start with an in6nite basis for the
free subgroup of H , you can build an in6nite number of relators. The presentation
P= (A;# : ri) is semi-staggered. At this point, none of the relators are proper powers.
One can construct a new semi-staggered presentation by replacing any non-empty subset
of the relators S6 {ri} by the set

{ses : es¿ 2; s∈ S}
which adds proper powers to the presentation. In the case where none of the relators
are proper powers, if you choose H to be a locally indicable group, then by Corollary
3.5, the group G(P) is locally indicable.

4. Proofs of theorems

4.1. A preliminary lemma

To prove Theorem 3.4, we will need the following lemma that shows that a direct
limit of locally indicable groups is locally indicable.

Lemma 4.1. Let {K�: �∈A} be set CW -complexes and let K be the CW -complex
such that the complex K =

⋃
�∈A K�; every compact subcomplex of K is contained in

K� for some �∈A; and for every �; �∈A there exists a * such that K� ∪ K� ⊆ K*.
If �1K� is locally indicable for each K�; then �1K is locally indicable.

Proof. Let K and {K�: �∈A} be as above and let H be a 6nitely generated subgroup
of �1(K). Assume that H does not admit a surjection onto the integers. We will
show that H is trivial in �1(K). Since H is 6nitely generated; there exist x1; : : : ; xn in
�1(K) such that H = 〈x1; : : : ; xn〉. The complex K is a union of subcomplexes K� and
each compact subcomplex of K is contained in some K�. Therefore; we can 6nd an
element N ∈A and elements x′i in �1(KN ) such that the homomorphism induced by
the inclusion of KN into K sends each x′i to the element xi in �1(K).

Since H does not admit a surjection onto the integers, the abelianization of H ,
denoted Hab, is 6nite. Then, for every i, there exists an integer ei such that

xeii ∈ [H;H ]6 �1(K):
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Say that xeii = wi where wi is a product of commutators of H . Then x−eii wi = 1 in
�1K; i.e. x−eii wi is a trivial loop in K so, without loss of generality, we can as-
sume that there exists a disk map di :B2 → K such that the boundary of di is equal
to x−eii wi.

Let T ∈A so that KN ⊆ KT and KT supports each disk map di. Since KN ⊆ KT ,
the image of x′i under the inclusion induced homomorphism i# :�1(KN ) → �1(KT )
is an element x′′i of �1(KT ). Let HT be the subgroup of �1(KT ) that is generated
by the x′′i . Note that this is a 6nitely generated subgroup of the locally indicable
group �1(KT ). Since KT supports each disk map di, each element (x′′1 )ei ∈ [HT ; HT ].
It follows that the abelianization of HT is 6nite, therefore, there exists no surjec-
tive homomorphism from HT onto the integers. Since �1(KT ) is locally indicable, we
conclude that HT is the trivial group. The inclusion of KT into K induces a surjec-
tive homomorphism from HT onto the subgroup H of �1(K), therefore, H must be
trivial.

4.2. Topological models for the proofs of the theorems

The proofs involve examining the structure of a particular covering space of the
pre-aspherical model K . Let p : SK → K be the regular covering of K such that
p](�1( SK)) = N=U E �1K = G(P).

The 0-cells of SK are in one-to-one correspondence with H = (A ∗ F)=N , so we can
choose a labeling of the 0-cells by elements of the group H . At each vertex of SK ,
there will be a lift of each 1-cell of K . For every x∈X , the lift of S1

x at the vertex
h = wN will be a 1-cell of SK with initial vertex wN and terminal vertex wxN . Let
T = p−1(

∨
x∈X S

1
x ).

At each vertex there will also be a lift of K(A; 1) ⊆ K . We will call the lift of the
subcomplex K(A; 1) of K at the vertex h∈H the “rose” at vertex h, denoted V (h). Then
p−1(K(A; 1)) is the disjoint union of the set {V (h) : h∈H}. In fact p−1(K(A; 1)) =
K(A; 1)×H where H represents the discrete set of 0-cells of SK . The following lemma
examines the lift, for each r ∈R, of the subcomplex De(r) of K .

Note, for the remainder of the paper, we assume that the relative presentation P =
(A; X :R) is semi-staggered.

Lemma 4.2. Let P = (A; X :R) be semi-staggered. For every r ∈R and for every
h∈H; the loop �(r) lifts at 0-cell h in SK to a loop �(r; h) in SK

(1)
. Moreover; the

image of �(r; h) is contained in T ∪(
⋃
k∈hPr V (K)) and �(r; h) strictly involves at least

one 1-cell from each rose V (K) for every k ∈ hPr . The loop �(r; h) does not represent
a proper power in �1 SK

(1)
.

Proof. The path �(r) lifts to a path �(r; h) in SK which begins at h = wN and tra-
verses a path in T that covers the non-empty path x1 and ends at vertex wx1N . Then
it travels a lift of a1 in the rose V (wx1N ). For m = 1; : : : ; n − 1; the path �(r; h)
travels from wx1 : : : xmN to wx1 : : : xmxm+1N and lifts to an essential loop in the rose
V (wx1 : : : xm+1N ) covering am+1.
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This implies that im(�(r; h)) ⊆ T ∪ (
⋃
k∈hPr V (K)) and strictly involves at least

one 1-cell from each rose V (k) for each k ∈ hPr . Since im(�(r; h)) = im(�(r; h)), we
also know that im(�(r; h)), involves at least one 1-cell from each rose V (K) for each
k ∈ hPr . Now we will show that �(r; h) lifts to a loop at h= wN ∈H .

Since r = qe(r)r , it suJces to show that qr ∈N . Note that qrN ∈Pr and (qrN )e(r) =
qe(r)r N=rN=1N . However, by assumption, the subgroup generated by # is free, hence
torsion free so qrN =1N . Therefore, qr ∈N and �(r) lifts to a loop at h. We will show
that �(r; h) is not a proper power in �1 SK

(1)
by way of contradiction. If �(r; h) was a

proper power it would transverse a loop *(r; h) : S1 → SK at least 2 times. Since the
covering map p is continuous, the image of *(r; h) under p would be a loop * in K .
Then the image of �(r; h) under p would transverse the loop * at least 2 times. But the
image of �(r; h) is � which is not a proper power, therefore, we have a contradiction
and conclude that �(r; h) is not a proper power.

Recall that for any subset $ of H , we de6ned $• = $ − {1N}. Also we de6ned
# =

⋃
r∈R Pr ⊆ H . Now for r ∈R, let

SPr = {p∈#• : min P•
r 6p6maxP•

r } ∪ {1N} ⊆ #:

For h∈H , let

SK(r; h) = De(r) ∪ T ∪

 ⋃

k∈h SPr

V (k)


 ;

where S1
e(r) ⊆ De(r) is identi6ed with its image in

T ∪
( ⋃
k∈hPr

V (k)

)
⊆ T ∪


 ⋃

k∈h SPr

V (k)




by �(r; h). This identi6cation is well de6ned by Lemma 4.2. If e(r) = 1, then De is a
single 2-cell, denoted c2(r; h) attached by �(r; h).

In particular, SK(r; h) has a single 2-cell outside T ∪ (
⋃
k∈h SPr V (K)) with attaching

map �(r; h). Moreover, the subcomplex SK(r; h) of SK contains the lifts at h of all k-cells
in De(r) ⊆ K for k¿ 2.

Lemma 4.3. For every k ∈ hP•
r ; the inclusion induced homomorphisms

�1


T ∪


 ⋃

k �=l∈hP•
r

V (l)




→ �1( SK(r; h))

and

�1(V (k)) → �1( SK(r; h))

are injective.
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Proof. By Lemma 4.2; the attaching map �(r; h) for the 2-cell c2(r; h) strictly involves
the rose V (K). By condition (S1) of the de6nition of a semi-staggered presentation;
the attaching map �(r; h) also strictly involves the rose V (l) for some k �= l∈ hP•

r . The
Seifert–Van Kampen Theorem [10] implies that

�1( SK(r; h)) ∼=

�1(V (k)) ∗ �1


T ∪


 ⋃

k �=j∈hP∗
r

V (j)






/ 〈〈r〉〉:

Theorem 2.1. implies that the inclusion of each factor into �1( SK(r; h)) is
injective.

For h∈H , let SK(h) =
⋃
r∈R SK(r; h). Note that if g∈H = Aut(p), then g SK(r; h) =

SK(r; gh) and so g SK(h) = SK(gh) and SK =
⋃
h∈H SK(h).

4.3. The proofs of Theorems 3.2–3.4

The method of proof used is to construct the covering space SK as a union of smaller
pieces. The following lemmas will show that the conclusions hold for each of these
pieces. Then compact supports, covering space properties, and Lemma 4.1 will provide
the 6nal step to prove Theorems 3.2–3.4.

Lemma 4.4. Let h∈H . Then
(1) SK(h) is aspherical;
(2) if r ∈R; then the inclusion of SK(r; h) into SK(h) induces a monomorphism of

fundamental groups; and
(3) if e(r) = 1 for every r ∈R; then �1( SK(h)) is locally indicable.

Proof. To show that SK(h) is aspherical; we consider maps of the n-sphere Sn into SK(h).
The image of each of these maps is a compact set in SK(h). Compact supports says
that each compact set in SK(h) is contained in a 6nite subcomplex of SK(h). Moreover;
every 6nite subcomplex is contained in X = T ∪ (

⋃
k∈h# V (K)) ∪ (

⋃n
i=1 c

2(ri; h)) for
some subset {r1; : : : ; rn} where each ri ∈R. If the topological space X is aspherical for
every 6nite subset {r1; : : : ; rn} then we can conclude that SK(h) is aspherical. Therefore;
it suJces to show (1)′ X is aspherical. Similarly; it suJces to show that (2)′ the
inclusion induced homomorphism from �1( SK(r; h)) into �1(X ) is injective. For part
(3); since the collection of complexes X for each 6nite subset of relators satis6es the
conditions of Lemma 4.1; it suJces to show that (3)′ if e(r) = 1 for every r ∈R; then
�1(X ) is locally indicable. We will now prove (1)′; (2)′ and (3)′; by induction on the
number n of relators.

For n= 1, the Lemma 4.2 provides that �(r1; h) does not represent a proper power
in �1( SK(r1; h)(1)). It follows that X = SK(r1; h) is aspherical by Theorem 2.2. The result
(2)′ is trivial in the case n= 1.
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If e(r)=1, then SK(r; h) = T∪(
⋃
k∈hPr V (k))∪c2(r; h). By (S1) and Lemma 4.2, there

exists k0 ∈ hPr such that �(r; h) strictly involves at least one 1-cell of V (k0). Consider
the following decomposition of SK(r; h):

SK(r; h) =


T ∪


 ⋃

k0 �=k∈hPr
V (K)




 ∪ V (k0) ∪ c2(r; h):

By the Seifert–Van Kampen Theorem [10],

�1( SK(r; h)) = �1


T ∪


 ⋃

k0 �=k∈hPr
V (k)




 ∗ �1V (k0)=〈〈r〉〉:

Therefore, by Theorem 2.4, �1 SK(r; h) is locally indicable. This completes the n = 1
case.

Now suppose n¿ 1. Without loss of generality, we may assume that

r1¡r2¡ · · ·¡rn

in the ordering on R. Set Y =
⋃n−1
m=1

SK(rm; h) so that X = Y ∪ SK(rn; h). The complexes
Y and SK(rn; h) are aspherical by our inductive hypothesis. Also, if e(ri) = 1 for every
i∈{1; : : : ; n}; �1Y and �1 SK(r; h) are locally indicable by our inductive hypothesis.

Claim. Let W = h SPrn−1 ∩ h SPrn . Then

Y ∩ SK(rn; h) = T ∪
( ⋃
k∈W

V (k)

)
:

Reason. From the de6nitions; it is clear that

Y ∩ SK(rn; h) = T ∪
(⋃
k∈S
V (k)

)
;

where S = (
⋃n−1
m=1 h SPrm) ∩ h SPrn . It would suJce to show for each 16m6 n− 1; that

h SPrm ∩ h SPrn ⊆ h SPrn−1 . If 1N �=p∈ h SPrm ∩ h SPrn then by (S2)

hmin P•
rn−1

¡hmin P•
rn6p6 hmaxP•

rm ¡hmaxP•
rn−1

and so p∈ h SPrn−1 and the claim follows.

By the claim, the intersection Y ∩ SK(rn); h) is contained in SK(rn−1; h) ⊆ Y . Also,
recall that

Y ∩ SK(rn; h) = T ∪
( ⋃
k∈W

V (K)

)
;
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where W = h SPrn−1 ∩ h SPrn . Therefore, the inclusion of the intersection Y ∩ SK(rn; h) into
Y is the composition

Y ∩ SK(rn; h)
i→ T ∪


 ⋃

k∈h SPrn−1

V (k)


 j→ SK(rn−1; h)

k→ Y

which gives the induced composition on fundamental groups

�1(Y ∩ SK(rn; h))
i#→ �1


T ∪


 ⋃

k∈h SPrn−1

V (K)




 j#→ �1( SK(rn−1; h))

k#→ �1(Y ):

By applying the theory of free products, Theorem 2.1 and our inductive hypothesis,
the inclusion of the intersection Y ∩ SK(rn; h) into Y induces a monomorphism on
fundamental groups. By a similar argument, one can show that the inclusion of the
intersection Y ∩ SK(rn; h) into SK(rn; h) also induces a monomorphism on fundamental
groups. Since

Y ∩ SK(rn; h) = T ∪
( ⋃
k∈W

V (K)

)

is aspherical we see that X is aspherical by Whitehead Amalgamation [11]. The Seifert–
Van Kampen Theorem [10] tells us that �1(X ) is the free product with amalgamation

�1(Y ) ∗�1(Y∪ SK(rn;h)) �1( SK(rn; h)):

Therefore, the induced homomorphism from �1( SK(rn; h)) into �1(X ) is injective by the
theory of free products with amalgamation which proves (2)′.

By conditions (S2) of a semi-staggered presentation, the map �(r; h) associated to
the 2-cell corresponding to the relator rn that is lifted at the 0-cell h to SK strictly
involves a 1-cell of the rose V (hmaxP•

rn). Moreover, by the previous claim, the rose
V (hmaxP•

rn) is not contained in the complex Y . Let the set M =h SPrn −h SPrn−1 and the
set M ′ =M − hmaxP•

rn . For (3)′, consider the following decomposition of X :

X =

(
Y ∪

( ⋃
k∈M ′

V (k)

))
∪ V (hmaxP•

rn) ∪ hc2
rn :

Then, by the Seifert–Van Kampen Theorem [10],

�1X = �1

(
Y ∪

( ⋃
k∈M ′

V (k)

))
∗ (�1(V (hmaxP•

rn)))=〈〈rn〉〉:

By Theorem 2.4, �1X is locally indicable. .

Now let 7 denote the subgroup of H that is generated by #. By (S3), 7 is a free
group with basis #•.
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Lemma 4.5. Let h0; h1; : : : ; hn be distinct elements of H Where n is a positive integer.
Then
(1)

⋃n
m=0

SK(hm) is aspherical;
(2) for i= 0; : : : ; n; the inclusion of SK(hi) into

⋃n
m=0

SK(hm) induces a monomorphism
of fundamental groups; and

(3) if e(r) = 1 for every r ∈R; then �1(
⋃n
m=0

SK(hm)) is locally indicable.

Proof. First; assume that n=1. Partition H into the cosets of 7. Note that if the cosets

h07 �= h17 for h0; h1 ∈H;
then SK(h0) ∩ SK(h1) = T . The inclusion of T into T ∪ V (k) induces a monomorphism
on fundamental groups by the theory of free products since

�1(T ∪ V (k)) ∼= �1(T ) ∗ �1(V (K)):

Then by Lemma 4.3; the inclusion of T ∪ V (k) for some k ∈ h0P•
r into K(r; h0) for

any relator r and any 0-cell h0 of SK induces a monomorphism on fundamental groups.
By Lemma 4.4; the inclusion of K(r; h0) into K(h0) induces a monomorphism on
fundamental groups. Therefore; the inclusion of T into K(h0) induces a monomorphism
on fundamental groups. Once we know that this induced homomorphism is injective;
we can show that SK(h0)∪ SK(h1) is aspherical by Whitehead Amalgamation [11] which
proves (1) for this case. Furthermore; we know that the inclusions of �1( SK(h0)) and
�1( SK(h1)) into �1( SK(h0) ∪ SK(h1)) are injective by the theory of free products with
amalgamation since �1( SK(h0) ∪ SK(h1)) ∼= �1( SK(h0)) ∗�1(T ) ( SK(h1)) by the Seifert–Van
Kampen Theorem [10]; therefore (2) is satis6ed for this case.

The free product with amalgamation structure of �1( SK(h0)∪ SK(h1)) is unfortunately
not enough to show that this group is locally indicable. To see this, we must consider
the following collection of subcomplexes of SK(h0) ∪ SK(h1)

8= T ∪
( ⋃
k∈h0#

V (K)

)
∪
( ⋃
k∈h1#

v(K)

)
∪
(

n⋃
i=1

c2(ri; h0)

)
∪

 m⋃

j=1

c2(sj; h1)




such that r1; : : : ; rn and s1; : : : ; sm are 6nite subsets of R and then apply Lemma 4.1.
The lemma is now proved for the case where n=1 and the intersection SK(h0)∩ SK(h1)

= T . If n¿ 1, assume h0; h1; : : : ; hn splits into two sublists h0; : : : ; hj and hj+1; : : : ; hn
such that

⋃
i6j hi7 and

⋃
i¿j hi7 are disjoint. Now we can follow the previous argu-

ment replacing SK(h0) and SK(h1) with
⋃
i6j

SK(hj) and
⋃
i¿j

SK(hi), respectively.
Now recall that SK(h) is homeomorphic to its translate g SK(h) = SK(gh) so it suJces

to prove the lemma in the case where each h0; : : : ; hn are distinct elements of the trivial
coset 17= 7. Under this assumption, the result is proven by induction on n.

For the case n = 0, all three results are consequences of Lemma 4.4. Now assume
that n¿ 0. Without loss of generality, we may assume that |h0|¿ |hi| for i = 1; : : : ; n
where |h| indicates the length of the element h in the free group 7. Set X =

⋃n
i=0

SK(hi)
and Y =

⋃n
i=1

SK(hi) so that X = Y ∪ SK(h0).
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Let U = (
⋃n
i=1 hi#) ∩ h0#. Lemma 1 in [2] implies that this intersection U is

contained in a singleton. This implies that there exists an element k0 ∈ h0# such
that

T ⊆ Y ∩ SK(h0) ⊆ T ∪ V (k0):

If Y ∩ SK(h0) =T , then the result follows by the same arguments given above. Assume
Y∩ SK(h0) �=T and let r ∈R such that k0 ∈ h0Pr . The attaching map �(r; h0) for the 2-cell
c2(r; h0) of SK(r; h0) strictly involves some 1-cell of a rose other than V (k0) by (S1)
and Lemma 4.2. Then Lemma 4.3 implies that the inclusion of Y ∩ SK(h0) = T ∪V (k0)
into SK(r; h0) induces a monomorphism of fundamental groups. Lemma 4.4 implies
that the inclusion of SK(r; h0) into SK(h0) induces a monomorphism on fundamental
groups, therefore, we conclude that the inclusion of Y ∩ SK(h0) into SK(h0) induces
a monomorphism of fundamental groups. Also, there exists an m∈{1; : : : ; n} such
that k0 ∈ hm# and a similar argument shows that the inclusion of Y ∩ SK(h0) into
SK(hm) induces a monomorphism of fundamental groups. By part 2 of the inductive
hypothesis, the inclusion of SK(hm) into Y induces a monomorphism of fundamental
groups, therefore, the inclusion-induced homomorphism from �1(Y ∩ SK(h0)) into �1(Y )
is injective.

The complexes Y and SK(h0) are aspherical by part 1 of the inductive hypothesis. By
applying Whitehead Amalgamation [11], X =Y ∪ SK(h0) is aspherical, therefore proving
part 1 of the lemma. To show part 2, note that the Seifer–Van Kampen Theorem [10]
implies that the group �1X is a free product of �1Y and �1 SK(h0) with free subgroup
amalgamated which implies that �1 SK(h0) embeds in �1X . By the inductive hypothesis
and the theory of free products, if m∈{1; : : : ; n} the inclusion of SK(hm) into Y and
then into X induces a monomorphism of fundamental groups.

To show part (3), by Lemma 4.1, it suJces to show that �1X is locally indicable
where X = Y ∪ (

⋃
k∈h0# V (k))∪ c2(r1; h0)∪ · · · ∪ c2(rm; h0) with {r1; : : : ; rm} being any

6nite subset of the set R of relators. We will show this by induction on m. For m= 1,
let k∗ be a vertex of SK such that the attaching map �(r; h0) strictly involves the rose
V (k∗). Consider the decomposition X = (Y ∪ (

⋃
k∗ �=k∈h0# V (k)))∪V (k∗)∪ h0c2

r . By the
Seifert–Van Kampen Theorem [10],

�1X = �1


Y ∪


 ⋃

k∗ �=k∈h0#

V (k)


 ∗ �1(V (k∗))


/ 〈〈r〉〉:

By Theorem 2.4, �1X is locally indicable.
Now consider the general case. Let m¿ 1. Without loss of generality, we can assume

that

r1¡r2 ¡ · · ·¡rm

under the liner ordering given by (S2). By (S1) and (S2) there exists a k0 ∈ h0#
such that the attaching map for c2(rm; h0) strictly involves a 1-cell of V (k0) and no
other 2-cell outside the rose involves it. Then consider the following decomposition
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of X :

X =


Y ∪


 ⋃

k �=k0∈h0#

V (k)


 ∪

(
m−1⋃
i=1

h0c2
ri

) ∪ V (k0) ∪ h0c2
rm :

Then by the Seifert–Van Kampen Theorem [10],

�1X =


�1


Y ∪ s


 ⋃

k �=k0∈h0#

V (k)


 ∪

(
m−1⋃
i=1

h0c2
ri

) ∗ �1V (k0)


/ 〈〈r〉〉:

Applying Theorem 2.4, we conclude that �1X is locally indicable.

Theorem 3.2. If the relative presentation P = (A; X :R) is semi-staggered and A is a
locally indicable group; then the pre-aspherical model of P is aspherical; i.e. has the
Identity Property.

Proof. By compact supports and Lemma 4.5; SK is aspherical. It then follows that K
is aspherical.

Theorem 3.3. If the relative presentation P = (A; X :R) is semi-staggered and A is a
locally indicable group; then the inclusion of A into G(P) is an injection.

Proof. The result follows once it is shown that the inclusion of K(A; 1) into K induces
a monomorphism of fundamental groups. We can translate the problem to SK by lifting
through the covering p at the 0-cell 1N . We must now show that the inclusion of
V (1N ) into SK induces a monomorphism of fundamental groups. Let r be any element
of R. We know from (S1) and Lemma 4.2 that the attaching map for the 2-cell of
SK(r; 1N ) strictly involves a 1-cell of a rose other than V (1N ). By applying Theorem
4.3 in [5]; we 6nd that the inclusion of V (1N ) into SK(r; 1N ) induces a monomorphism
of fundamental groups. Now apply Lemmas 4.4 and 4.5 to show that the inclusion
of V (1N ) into SK(h) induces a monomorphism of fundamental groups. The result now
follows from compact supports.

Theorem 3.4. If the relative presentation P = (A; X :R) is semi-staggered; A is a
locally indicable group; and no relator is a proper power; then the subgroup N=U6
G(P) is locally indicable.

Proof. Let the collection $ of subcomplexes of SK be de6ned to be

$ =

{⋃
h∈M

SK(h) :M is a 6nite subset ofH

}
:

Every 6nite subcomplex of SK is contained in an element of $ for some 6nite sub-
set {h1; : : : ; hn} ⊆ H . Also; the union of any two elements of $ is also a union of
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complexes SK(hi) for a 6nite number of elements hi; therefore; an element of the col-
lection $. The result follows by applying Lemma 4.1 to the collection $.
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