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Transport of phosphorothioate oligonucleotides in the kidney: Impli-
cations for molecular therapy. The systemic administration of phospho-
rothioated antisense oligonucleotides has been demonstrated to be an
effective strategy for the control of gene expression. Because previous
studies have suggested both hepatic and renal accumulation of systemi-
cally administered oligonucleotides, we explored whether the kidney
might be a site of free DNA transport. [32P]-phosphorothioate oligonu-
cleotides (20 mers) were excreted in urine but cleared at only 30% of
glomerular filtration rate. Plasma clearance of the label was very rapid (t112
—5 mm) but the half life of labeled S-deoxynucleotide excreted in urine
was much slower (28 mm). Infused oligonucleotide appeared in urine with
little degradation. By autoradiography of renal tissue, labeled antisense
oligonucleotides appeared within Bowman's capsule and the proximal
tubule lumen. DNA was detected in association with brush border
membrane and within tubular epithelial cells. Brush border membrane
preparations from rat kidney contained oligonucleotide binding proteins
as determined by gel mobility shift and UV cross linking assays. Because
renal epithelial cells efficiently take up phosphorothioate oligonucleotides
without apparent degradation, the kidney appears to be an excellent target
for site-directed antisense therapy, but may be a site of antisense toxicity
as well.

Short oligonucleotides with mRNA complementarity can spe-
cifically interfere with stability and translation of mRNAs [re-
viewed in 1—5]. The hybridization of antisense phosphorothioate
oligodeoxynucleotides to mRNA activates cellular RNAse H
activity, leading to degradation of targeted mRNA species [1, 6,
71. The ability to design specific antisense oligomers based on
various mRNA target sequences has led to the emergence of
numerous studies in vitro [8—16], and in vivo [17—191 which
demonstrate the utility of antisense oligonucleotides to inhibit
specific gene expression. This approach may have broad applica-
tion in the treatment of diseases such as AIDS, cancer, progres-
sive renal failure as well as various other disease states that
involve the expression of cellular and/or viral gene products [5,
20—23]. The stabilization of oligonucleotide by various chemical
[6, 24—26] and structural [27] modifications has furthered the
potential use of antisense therapy. Methyl phosphonates, phos-
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phorothioates, and other modifications improve the half-life of
antisense molecules intra- and extracellularly, thereby allowing
gene-specific suppression at pharmacological doses [20—22, 28,
29]. The phosphorothioate oligonucleotides are particularly at-
tractive as therapeutic agents, since these modifications retain
solubility and RNAse H activation properties [7, reviewed in 2].

Modified oligodeoxyribonucleotides bind to the surface of cells
and are readily internalized by a mechanism that appears to be
receptor mediated [29—33]. The efficacy of antisense therapy may
depend on the ability of antisense to bind to the cell surface and
the fraction of antisense molecules which can escape trapping in
the endosomal compartment. Antisense oligonucleotides that can
enter the cell are rapidly transported to the nucleus [34—36].
Keratinocytes are notably efficient in this regard, without appar-
ent endosomal accumulation of oligonucleotides [37]. Although
the mechanism of uptake has not been established, several studies
have identified cell surface nucleic acid binding proteins which
may serve as receptors for nucleic acid [30, 31, 33, 38—40].

Distribution of antisense oligonucleotide in vivo is organ-
dependent, with predominant accumulation in liver and kidney
[41—43]. While localization in these sites appears to reflect
metabolic elimination and excretion, this preferential distribution
might reflect efficient mechanisms for binding and internalization
of nucleic acids. Our results support this latter hypothesis, sug-
gesting that accumulation of oligonucleotides in the kidney is
mediated, in part, by a transport mechanism.

Methods

Synthesis and labeling of phosphorothioate oligonucleotides

Phosphorothioate antisense (S)-oligodeoxynucleotides target-
ing the Spi and TAR sequence found in all HIV-1 transcripts
were synthesized using an Applied Biosystems 392 synthesizer, the
sulfurization cycle, and TETD sulfurizing agent as recommended
by the manufacturer. TAR and Spi sequences are dTCC-CAG-
GCT-CAG-ATC-TGG-TC and dGAG-TFG-TGG-CCT-GGG-
CGG-GAC-TGG-GGA-GTG-GC, respectively. Oligonucleotides
(100 ng to 2 tg) were labeled in 50 pJ reactions with terminal
transferase (Boehringer Mannheim Biochemicals) and 50 to 150
sCi cs-{32P1-ddATP (Amersham). Alternatively, oligonucleotides
were 5'-labeled with y-[32P]-ATP to exclude differences in renal
handling based on the position of the phosphate label. Labeled
oligonucleotides were purified on 15% denaturing polyacrylamide

1462

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82684297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Rappaport et at: Phosphorothioate oligonucleotides 1463

gels, eluted in ammonium hydroxide, dried, resuspended in water,
and passed over a G-25 spin column equilibrated in PBS.

Tissue distribution of oligonucleotides

To study in vivo localization of phosphorothioate antisense, we
administered [32P]-labeled phosphorothioate oligonucleotides to
FVB/N mice and studied the appearance of radioactivity in
various organs. A 20 mer phosphorothioate modified antisense
with complementarity to the HIV-1 TAR element was 3' labeled
and injected intravenously into mice. Mice were sacrificed and
organs collected at 15, 30, 60, 120, 240, and 360 minutes.
Radioactivity was measured by liquid scintillation counting of
aliquots of homogenized tissues.

Renal clearance of oligonucleotides

Renal clearance studies were performed in mice by standard
methods [44]. Briefly, mice were anaesthetized with 0.04 mg/gram
pentobarbital and a polyethylene catheter (PE-90) was placed in
the trachea to facilitate spontaneous ventilation. For the purposes
of intravenous infusion, intermittent blood sampling, and mean
arterial pressure monitoring, the left carotid artery and jugular
vein were cannulated with polyethylene catheters (PE-lO). Surgi-
cal blood loss was replaced by an infusion of normal saline (2%
total body wt). [3H]-inulin was administered first as a priming dose
followed by an infusion in normal saline (0.25 pi/min/g body wt).
The bladder was cannulated via a suprapubic incision with a
PE-50 catheter. After 30 minutes of equilibration, [32P]-Iabeled
phosphorothioate oligonucleotides (2 to 5 x iO cpm) were
injected intravenously. Urine samples were collected during two
consecutive 30-minute clearance periods and blood samples were
taken at the midpoint of each 30-minute clearance period. Renal
clearance after administration of unlabeled oligonucleotide was
also determined. Following two baseline collections, an unlabeled
bolus (0.33 mg TAR oligonucleotide) was delivered by a contin-
uous infusion of 10 j.g/min. Ten minutes after starting this
infusion a second injection of [32P] labeled oligonucleotide was
given. Urine was collected for two additional 30-minute clearance
periods and blood samples were collected at the midpoint of each
clearance period. Radioactivities ([3HJ-inulin and [32P] labeled
S-oligonucleotide) were measured in aliquots of plasma and urine
by liquid scintillation (Beckman) with appropriate discriminator
windows set to minimize cross contamination. The isotope clear-
ance was calculated as:

=

Fractional excretion was determined by the following ratio:

Cf32p]rjljgo / q3H}IU1I

Labeled phosphorothioate oligonucleotides in urine samples were
analyzed by electrophoresis on 15% acrylamide denaturing gels.

Adhesion to whole blood cells

Whole blood was collected from mice and anticoagulated with
either heparin or EDTA. EDTA or heparin-treated blood was
then divided into 2 aliquots; in one sample from each, cells were
washed three times in PBS and resuspended in the same volume
as the plasma containing samples. To each of the four samples,
100,000 cpm of 3' end-labeled oligonucleotide were added and
allowed to incubate at room temperature for one hour. After one

hour, cells were pelleted and the supernatant counted. Cells were
washed twice in PBS, and the final cell pellet was resuspended in
PBS and counted in liquid scintillation fluid.

Histology and autoradiography

FVB/N mice were injected intravenously with [35S]-phosphoro-
thioate TAR oligonucleotide labeled at internal sulfur substitu-
tions [45]. Internally labeled TAR phosphorothioate oligonucle-
otide (approximately 700,000 cpm) was injected intravenously into
FVB/N mice. Kidneys were harvested at the times indicated and
histology sections were prepared by standard methods. Kidneys
were fixed in neutral buffered formalin and embedded in paraffin.
Three micron sections were coated with NTB2 emulsion (Kodak,
Rochester, New York, USA), exposed in the dark at 4°C for one
week and developed and fixed using Kodak chemicals by standard
procedures. The tissue was counterstained with toluidine blue and
photographed using a darkfield equipped microscope (Olympus,
Tokyo Japan).

Purification of oligonucleotide binding proteins from brush
border membranes

Membrane vesicles from renal brush border were purified as
previously described [46]. Essentially, kidneys were collected from
male Sprague-Dawley rats and placed immediately in cold man-
nitol buffer (10 m mannitol, 2 mivi Tris-HC1 pH 7.1). Outer
cortical tissue was harvested, weighed, suspended in 10 volumes
mannitol buffer and homogenized. CaC12 was added to a final
concentration of 10 m and incubated on ice for 15 minutes. The
mixture was diluted 1:1 wt/mannitol buffer containing 10 mM
CaCl2 and centrifuged at 15,000 x g for 12 minutes. The pellet
was resuspended in mannitol buffer (150 ml) using a glass Teflon
homogenizer. CaC12 was again added to a concentration of 10 mM
and the mixture was incubated 15 minutes on ice. The mixture was
then centrifuged at 15,000 X g for 12 minutes. The pellet was
subjected to 3 resuspension/centrifugation (48,000 x g) cycles.
Enrichment of brush border membrane proteins in the final
suspension was confirmed by alkaline phosphatase activity of
fractions [46]. The suspension (10 ml, approximately 0.5 mg
protein/mi) was mixed with 5'-biotinylated-phosphorothioate oh-
gonucleotide antisense immobilized on avidin-agarose (250 j.il of
affinity matrix containing approximately 150 g of biotinylated
ohigonucleotide). Incubation was carried out at 4°C for 30 min-
utes. Beads were then washed three times in buffer. Binding
proteins were eluted with 0.5 ml buffer containing 1.0 M KC1, 20
mM Tris 7.5, 1 mrvt EDTA, 1 mM DTF, 200 .tg/ml BSA. Eluate was
concentrated approximately 10-fold by centrifugal filtration. As a
control, brush border membrane vesicles were incubated as
described above with avidin-agarose-biotin matrix that lacked
phosphorothioate oligonucleotides.

Electrophoretic mobility shift and UV cross linking assay

Proteins were prepared as above and incubated with the labeled
S-ohigodeoxynucleotides for 20 minutes at room temperature
under conditions previously described [471. Purified DNA binding
proteins (10 to 15 gl concentrated eluate) were incubated in a
standard gel shift reaction mixture (400 mivi NaC1, 10 g/ml
polydl-dC and 10% glycerol) with a-32P labeled oligonucleotide
(10,000 cpm/reaction). Glycerol bromphenol blue dye was added
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Fig. 1. Organ distribution of a [32P1-TAR oligonucleotide over time. Sym-
bols are: (0) liver; (•) kidney; (A) fat; (A) spleen; (V) lymph node; (•)
heart; (V) muscle; (c') brain; (LI) lung; (X) testis; (*) gut; (LI) salivary
gland. The majority of recovered oligonucleotide was found in liver and
kidney. Methods: Six mice each received an intravenous injection (tail
vein) of approximately 5.0 x iO cpm of [32P]-TAR in a volume of 300 jd.
At each time point (15 mm, 30 mm, 1 hr, 2 hr, 4 hr, 6 hr) one animal was
sacrificed and organs were isolated. Organs were harvested, homogenized,
and counted by liquid scintillation. Data are expressed as percent of total
injected counts.

and samples were subjected to electrophoresis on a 6% polyacryl-
amide gel containing 3% glycerol in 0.5XTBE buffer, dried, and
exposed to X-ray film. For UV cross linking analysis, binding
reactions were UV irradiated approximately two inches from
source for 20 minutes at 254 nm (1200 joules/min) in a room
temperature bath. SDS sample buffer was added and the samples
were subjected to electrophoresis on SDS-polyacrylamide (12%)
gel.

Results
The kidney and the liver have previously been demonstrated to

be major sites of antisense accumulation [41—43, 48]. To confirm
this observation, antisense TAR S-oligodeoxynucleotide (20 mer)
was injected intravenously and organs collected and counted at
various times. Labeled oligonucleotides localized predominantly
to liver and kidney (Fig. 1). Maximum renal tissue levels of
oligodeoxynucleotides were detected within 30 minutes whereas
maximum levels of counts were detected in liver after 60 minutes.
In liver, with the exception of the single animal at 120 minutes,
counts were sustained for the entire period of study (6 hr). In
kidney, however, after the initial peak in counts at 30 minutes,
there was a slow decline in the accumulation of radioactivity. By
two hours, total counts in renal tissue were equivalent to muscle
and gut, the two additional tissues that appeared to have signifi-
cant uptake of phosphorothioated oligonucleotides.

As shown in Figure 2, inulin clearance or glomerular filtration
rate was normal in these mice (approximately 9 mI/mm/kg). The

Fig. 2. Clearances of inulin and phosphorothioate oligonucleotides (TAR)
in vivo, determined simultaneously in anaesthetized mice. The clearance of
inulin in adult mice was 9.5 1.5 mI/mm/kg, the clearance of oligonucle-
otide was 2.0 0.5 mI/mm/kg. The fractional excretion of DNA (FEDNA)
was 0.30. Concentrations of [3Hj-inulin and [32Pj-labeled S-oligonucleo-
tide in plasma and urine were determined in a liquid scintillation counter.
Clearance and fractional excretions were calculated using standard
formulae.

clearance of phosphorothioate oligonucleotides, however, was
significantly less, approximately 30% of inulin clearance. Similar
results were obtained whether oligonucleotides were labeled at
the 5' or 3' end or whether random nucleotide sequences were
utilized (data not shown). When unlabeled competitor oligonu-
cleotide was administered, the fractional excretion increased from
approximately 30% to 50% in two experiments suggesting dis-
placeable binding occurs at some site. To examine the possibility
of an intravascular cellular site, we examined binding of labeled
oligonucleotides to heparinized whole blood. Fewer than 5% of
labeled oligonucleotides could be precipitated by heparinized
whole blood.

The decay curves for plasma and urine [32P]-phosphorothioate
oligonucleotides after intravenous injection are shown in Figure
3A. Plasma half-life was approximately five minutes, while half-
life in urine was much greater (approximately 28 mm). Urine and
plasma samples collected at various times were analyzed by
electrophoresis on 15% polyacrylamide/7 M urea gels (Fig. 3B).
Disappearance of phosphorothioated oligonucleotides was rapid
in plasma. In urine, however, phosphorothioated oligonucleotides
were stable without evidence of degradation for up to one hour.

To localize oligodeoxynucleotides in specific sites within kidney,
renal tissue sections were examined by autoradiography and dark
field microscopy (Fig. 4). After 15 minutes, oligonucleotide could
be found in both proximal and distal tubules (Fig. 4B). After 30
minutes, the majority of counts were located within cells (Fig. 4 C,
D). Abundant counts were present in Bowman's space and within
glomerular epithelial cells (Fig. 4C). At 30 minutes, radioactivity
appeared to be intracellular and also in aggregations along the
brush border membrane (Fig. 4 C, D).

To explore the DNA binding activity from renal brush border
proteins, renal cortical membrane preparations were affinity pu-
rified on biotin-labeled phosphorothioate oligonucleotides corn-
plexed to avidin agarose. Oligonucleotide binding proteins were
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Fig. 3. Time course of antisense oligonucleotide appearance in plasma (•)
and urine (L1). (A) Plasma and urine decay curves. The half life of
oligonucleotide was 5 minutes in plasma but 28 minutes in urine. (B)
Stability of phosphorothioate oligonucleotides in plasma and urine. La-
beled oligonucleotide was detectable for only 5 minutes in plasma but
could be detected intact in urine for up to 60 minutes. Methods: Plasma
and urine were collected during in vivo clearance studies at the indicated
intervals. [32P] in samples was measured by liquid scintillation counter. At
various times following the administration of labeled phosphorothioate
oligonucleotides, plasma and urine were collected, mixed with an equal
volume of loading buffer containing 80% formamide, and loaded on 15%
aciylamide/7 M urea gel. The gel was exposed to X-ray film overnight.
Mobility in electrophoresis is shown relative to a labeled Tar-i oligonu-
cleotide (20 mer) as a marker.

eluted in high salt buffer, concentrated by pressure filtration, and
analyzed for DNA binding activity. As shown in Figure 5A, gel
mobility shift assay of purified fractions demonstrated oligonucle-

otide binding activity in preparations from oligonucleotide matrix
(lane 2) but absent from preparations from matrix alone (lane 5).
To exclude the sequence dependence of binding, electrophoretic
mobility shift assays (EMSA) were performed using proteins
purified using the sequence of the HIV-1 transactivator response
region (TAR) and competition was performed with either excess
unlabeled TAR or excess oligonucleotides corresponding to the
transcription factor SP1. Both TAR and SP1 sequences competed
effectively (Fig. 5A, lanes 3 and 4, respectively), suggesting that
binding was sequence independent.

Photochemical cross linking of nucleic acids to proteins has
been a useful approach to identity unknown nucleic acid binding
proteins and to characterize known protein:nucleic acid interac-
tions. The cross linking of nucleic acids to proteins generates a
covalent linkage between pyrimidine bases (that is, cytosine,
thymine, or uracil) and certain amino acids [49]. In order to
identify proteins which interact with phosphorothioate oligonu-
cleotides, affinity-purified oligonucleotide binding proteins were
UV irradiated in the presence of 32P-Iabeled oligonucleotide.
Analysis of polypeptides by polyacrylamide gel electrophoresis
revealed specific oligonucleotide binding proteins of 46 kDa and
97 kDa (Fig. SB). The 97 kDa polypeptide comigrated with the
bovine serum albumin prestained marker. Since BSA (unstained)
is faster migrating (66,600), this protein is probably not albumin.
We cannot exclude the possibility that the 97 kDa is a dimer of the
46 kDa polypeptide. The 97 kDa band is barely detectable with
protein preparations purified with biotin-agarose (no oligonucle-
otide control) (lane 3), however, there is a dramatic increase when
proteins were affinity purified using an oligonucleotide containing
matrix (lane 2), suggesting specificity. Identical results were
observed in EMSA and UV cross linking assays when protein
purification was accomplished using SP1 oligonucleotide (data not
shown). These data provide additional evidence that the DNA-
protein binding activity in renal brush border membrane is not
dependent on the oligonucleotide sequence.

Discussion

The systemic delivery of chemically modified antisense oligo-
nucleotides holds great promise for molecular therapy for many
diseases including cancer, AIDS, and renal disease. Despite the
great potential for clinical application, the molecular mechanism
by which antisense molecules are taken up by cells has been
remarkably difficult to determine. Previous studies that have
addressed the half life and distribution of antisense in vivo have
established that circulating oligonucleotides are degraded pre-
dominately in liver and that the kidney participates significantly in
oligonucleotide excretion [41—43, 48]. In the present study, we
find similar pharmacological handling of phosphorothioate anti-
sense using sequences directed to potential targets for the treat-
ment of HIV-1 infection. In addition, we find that oligonucleo-
tides are cleared at a fraction of inulin clearance (30%) and that
competition with unlabeled oligos increases the fractional excre-
tion to 50% suggesting binding to either a plasma protein or to the
renal brush border. Furthermore, we have found that renal brush
border membrane exhibits significant DNA binding activity and
we have isolated the majority of this activity to 46 kDa and 97 kDa
proteins. Finally, this binding activity appears to be sequence-
independent.

Previous studies have established the in vivo pharmacokinetics
of systemically administered oligonucleotides [41—43, 48]. In the
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Fig. 4. Autoradiography and dark field microscopy of labeled phosphorothioated antisense oligonucleotides in kidney. Animals were injected intravenously
with internally labeled [35S] TAR oligonucleotides as described in Methods. Kidneys were harvested without injection (A), at 15 minutes (B), and 30
minutes (C and B) post-injection. Photomicrographs were made by superimposing bright field images and filtered dark field images of the same field
of view to allow visualization of renal anatomy as well as the location of radiolabeled probe. Without antisense infusion background was minimal (A).

present study, our pharmacokinetic data were quite similar to
previous investigators with the half-life of excretion of intact
oligonucleotide in urine substantially longer than that in plasma.
Significant binding to a circulating cell (platelet or leukocyte) or
plasma proteins could account for this pattern of excretion with
filtration of the oligonucleotide dependent upon the kinetics of
dissociation of the S-deoxynucleotides from its binding site.
Although antisense has been reported to be absorbed by platelets
[50] and leukocytes [51], this possibility appears unlikely, since
<5% of counts could be attributed to cellular binding in vitro.
Furthermore, autoradiographic analysis of kidney sections after
labeled antisense administration revealed the majority of label in
the urinaiy space and renal tissue rather than on cells within
capillaries. In this study, oligonucleotides appeared in abundance
within Bowman's capsule, suggesting that they had gained ently to
the urinary space by filtration. Because the molecular weight of a
20-mer is quite small (<7000 kDa), a size barrier to filtration
appears to be unlikely. Previous studies have clearly demonstrate

binding of phosphorothioate oligonucleotides to plasma proteins
[52]. It is not clear how binding to plasma proteins affects the
clearance results, but the rapid clearance of label from the plasma
suggests that clearance is not greatly affected by this binding.
Since unlabeled competition increased the fractional excretion of
antisense, it appears more likely that the displacement of binding
occurred within the renal urinary space during the process of
reabsorption, rather than the displacement of oligonucleotides
from plasma proteins. Combined with the autoradiographic evi-
dence and gel mobility shift assay, these data support the hypoth-
esis that specific binding to renal epithelium occurs.

Since specific binding of DNA clearly antedated the evolution-
ary exposure to systemic antisense administration, it is important
to consider the identity of the endogenous substrate. Given the
role of renal epithelial cells in antigen presentation, the uptake of
small nucleic acids by a specific binding protein may have func-
tional relevance in immune surveillance mechanisms for circulat-
ing DNA. In that regard, we have identified putative cell surface
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A

Fig. 5. Electrophoretic mobility shift assay and UVcross linking ofpunfied bmsh border membrane proteins. Purified protein samples were incubated with
[32P] labeled DNA (100,000 cpm) in a buffer consisting of 400 m NaCI, 10% glycerol, and 170 g/ml poly dIdC for 20 minutes at room temperature.
(A) EMSA of TAR-affinity purified brush border membrane oligonuclcotide binding protein. Lane 1, free TAR oligonucleotide probe alone; lane 2,
TAR oligonucleotide probe plus affinity purified protein; lane 3, identical to lane 2 with excess unlabeled TAR oligonucleotide; lane 4, identical to lane
2 with excess unlabeled SP1 oligonucleotide; lane 5, control protein incubated with labeled TAR oligonucleotide. (B) SDS-PAGE of UV crosslinked
protein-oligonucleotide complexes. UV cross linking was performed as described in Methods. Lane 1, TAR oligonucleotide probe alone; lane 2, TAR
affinity purified protein incubated with TAR oligonucleotide probe; lane 3, protein affinity purified using biotin-agarose resin (no oligonucleotide)
incubated with labeled TAR oligonucleotide.

oligonucleotide receptor proteins of 46 kDa and 97 kDa from
enriched preparations of purified brush border membranes.

Nucleic acid receptors have previously been proposed for
various cell types [30, 51, 53—57] and the mechanisms of uptake in
different cells may be dependent upon the presence and abun-
dance of particular cell type-specific nucleic acid binding proteins.
Given the preferential uptake of oligonucleotides in kidney and
liver, these organs appear to be rich in specific receptors for DNA.
Although antisense uptake has been studied in liver [33], there has
been little investigation of oligonucleotide metabolism in the
kidney. Based on the molecular size estimated by UV cross-
linking studies, the polypeptides we have identified in affinity
purified preparations from brush border membranes appear to be
different from those previously described using other cell types.
These differences may reflect mechanistic diversity both function-
ally and in DNA metabolism. Since the kidney exhibits preferen-
tial oligonucleotide uptake, it appears likely the renal proximal

tubule cells have either cell type-specific nucleic acid receptors or
are specialized in their abundance of a more general receptor for
DNA. Future studies will determine if the polypeptide that we
have identified is specific for or enriched in renal epithelial cells.

The preferential localization and uptake of oligonucleotides in
kidney emphasizes the potential utility of antisense therapy in the
treatment of renal diseases, particularly in tubular and interstitial
disease states. These data also suggest that the kidney may be a
site of toxicity for antisense therapy for other diseases. Recently,
nephrotoxicity was observed with high dose in vivo antisense
administration [58]. Further elucidation of the mechanisms of
renal uptake of antisense oligonucleotides will enable rational
strategies for chemical modifications to enhance renal targeting
and minimize nephrotoxicity. These considerations may be rele-
vant in efforts to target antisense to other organs as well, where
the diversion of antisense away from the kidney would be desir-
able to minimize toxicity and to increase the bioavailability at
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other sites. The definition of specific mechanisms for DNA uptake
by renal cells remains unclear, but is necessary for continued
progress in the use of systemic antisense for molecular therapy.
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