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In this work, a Partial Least Squares (PLS) regression model using Near-Infrared (NIR) spectroscopy was
developed to monitor the progress of the catalyzed transesterification reactions of soybean oil that pro-
duce biodiesel. The NIR spectra were collected during the transesterification reaction with a lab made
spectrophotometric flow cell. Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy was employed
for determining the conversion percentage of glycerides to methyl esters during the transesterification
reaction and used as reference to build the PLS calibration model employing NIR spectroscopy data.
The model, constructed with selected spectral range has not been tried before and allows the monitoring
of the transesterification reaction in terms of conversion ratio for different temperatures. The model was
validated and the values of Root Mean Square Error of Prediction (RMSEP) found for two different tem-
peratures were 0.74% and 1.27% (of conversion) for reactions carried out at 20 ± 0.2 �C and 55 ± 0.2 �C,
respectively.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Nowadays the need of reducing the environmental impacts
caused by the use of fossil fuels, in addition to the increasing price
and potential limits to petroleum sources shown in the last three
decades, are the major factors responsible for the development of
renewable and environmentally and economically sustainable en-
ergy sources [1–6].

In this context, biodiesel is a promising alternative fuel as sub-
stitute for mineral diesel, considering it is a renewable energy
source that can be produced from vegetable oils and animal fat.
Furthermore, biodiesel is economically viable, biodegradable, non-
toxic and shows pollutant emission profiles lower than mineral
diesel. Another advantage of biodiesel is its very similar physical
characteristics to conventional diesel fuel, which enables it to be
directly employed for diesel engines [2,7,8].

Chemically, vegetable oil and animal fat consist of triglyceride
molecules having three long chain fatty acids that are bonded
through an ester linkage to a single glycerol molecule. These fatty
acids differ by the length of their carbon chains and by the number,
orientation and position of double bonds in these chains [2]. Bio-
diesel is composed of alkyl esters derived from the long chain fatty
acids and is produced by the transesterification of triglycerides
with short chain alcohols. The most used alcohol is methanol due
its lower cost [7]. In the transesterification reaction one alcohol
.
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is replaced by another alcohol. The reaction is similar to a hydroly-
sis except that alcohol is used instead of water.

The transesterification of a triglyceride produces fatty acid alkyl
esters and glycerol. The reaction is reversible and, therefore, it de-
pends on the reactant concentrations. Moreover, the reaction is
slow, requiring a catalyst to accelerate triglyceride conversion to
esters. Several catalysts have been employed, such as acids, bases
and enzymes. However, the most used are sodium and potassium
hydroxides, sodium and potassium methoxides and acids like sul-
furic, hydrochloric and phosphoric. In general, the basic catalysts
are preferred as they are less expensive, lead to faster reactions
and demand lower temperatures (about 60 �C), when compared
to acid catalysis, which usually requires reaction temperatures
greater than 100 �C [2,9].

To obtain a high quality fuel and to achieve the requirements
for commercialization, it is important to monitor the transesterifi-
cation process to ensure low levels of mono- and diacylglycerols
resulting from incomplete reactions, to follow the content of resid-
ual triacylglycerols that have not reacted, and other residuals such
as glycerol, free fatty acids, alcohol and catalyst that have not been
properly separated after the transesterification process.

Monitoring the transesterification in real time also allows for
optimizing the experimental parameters of the reaction, in order
to achieve better yields and minimize costs. Gas chromatography
(GC) [10] and high performance liquid chromatography (HPLC)
[9,11,12] are the most widely employed techniques to monitor
the transesterification reaction. However, these techniques de-
mand significant time and cannot be easily adapted for in/on-line
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monitoring of the progress of reversible reactions such as the
transesterification of vegetable oils [13,14]. Thus, spectroscopic
techniques appear to be more suitable, considering that they are
fast and more easily adaptable for in situ applications [15–18].

The work by Gelbard et al. [19], published in 1995, and devel-
oped by using Proton Nuclear Magnetic Resonance (1H NMR)
shows the first application of a spectroscopic technique for moni-
toring the transesterification of vegetable oil, allowing the deter-
mination of reaction yields. However, the method requires a
sample pretreatment. As a consequence, it cannot be directly ap-
plied in-line. On the other hand, some papers [13,20–24] describe
monitoring the transesterification yield by using vibrational spec-
troscopic techniques, such as Near-Infrared (NIR), mid-infrared
and Raman spectroscopies. These papers show the higher potential
for in situ use because they do not require sample pretreatment, al-
low faster determinations and employ lower cost instrumentation.

Among the group of vibrational spectroscopic techniques for
in situ application, NIR spectroscopy deserves special attention,
due its lower instrumental costs, simplicity, and the fact that it is
a well established technique used for a wide range of process con-
trols in industry [25,26].

The present work is focused on the development of an analyti-
cal method based on NIR spectroscopy and multivariate regression
that employs 1H NMR in the calibration stage for on-line determi-
nation of the progress of the soybean oil transesterification
reaction.
2. Experimental

2.1. Reagents and materials

Commercial soybean oil (Soya, lot 0809B, iodine number of
128.30, free fatty acid content of 0.06%, saponification value of
193.70 mg KOH/g and water content of 0.03%) was used in all
transesterification reactions carried out in this work. Canola
(Bünge, lot 27809), peanut (Sementes Esperança, lot 02) and sun-
flower (Bünge, lot 28009) oils were bought in a local market and
used as received. Methanol (Fisher Scientific, HPLC grade), sodium
hydroxide (Labsynth, analytical grade), acetic acid (Merck, analyt-
ical grade) and sodium sulfate (Acros, analytical grade) were also
employed. Deuterated chloroform (Cambridge Isotope Laborato-
ries) was used in 1H NMR analyses.

A spectroscopic flow cell made of Teflon� was developed for
monitoring the transesterification reaction of soybean oil by NIR
spectroscopy. The cell has a 2.0 mm light path and an internal vol-
ume of 220 lL. Fig. 1 shows a transversal section of the cell.
Fig. 1. Spectrophotometric flow cell: (a) Optical path; (b) Teflon� cell body; (c)
Teflon� tapper cylinders, used to hold the circular glass cylinders against the optical
path and to allow the electromagnetic radiation passing; (d) Circular glass
cylinders; (e) Teflon� fittings for 1.0 mm Teflon� tubes for sample flow.
Transesterification reactions were carried out in a 1000 mL
three-necked glass flask. The three inlets were properly sealed,
by rubber stoppers, after insertion of a helix stirrer, a reflux con-
denser, a thermometer and three Teflon� sampling tubes. Two of
three tubes were employed to allow the sample to flow through
the spectrophotometric cell, and the third allows for sample collec-
tion from the glass reactor, for determination of ester content by
1H NMR. Fig. 2 shows the experimental set up.

The reaction was processed at constant temperature by using a
thermostatized water bath. A peristaltic pump was used to impel
the reactor contents to the spectrophotometric flow cell. The NIR
spectra were collected using a NIR spectrophotometer (ABB Bo-
mem, model MB160D) in the range from 4000 to 14,000 cm�1 with
a 4 cm�1 resolution. Each spectrum is an ensemble average of 80
scans, collected of the reaction mixture pumped at 3 mL min�1

through the flow cell. A spectrum of air, acquired with the same
cell, was employed as reference for absorption calculations. The
program Unscrambler (Camo, version 9.2) was employed to analyze
the spectral sets and construct the regression models.

In order to obtain the 1H NMR spectra of the reaction mixture,
several samples were collected at different reaction times by using
a vacuum pump connected through a centrifuge tube (Fig. 2j).
15 mL of the reaction mixture were collected in the tube contain-
ing 1.5 mL of glacial acetic acid to neutralize the NaOH employed
as reaction catalyst [13]. After homogenization, the tube contents
were washed three times with distilled water. After each washing
operation the organic phase (supernatant) was removed to another
tube. The remaining organic phase (after three washes) was rota-
evaporated (70 �C and 260 torr) in the presence of anhydrous mag-
nesium sulfate, to fully eliminate the residual water. 15 mg of the
final material were dissolved in 700 lL of CDCl3 for 1H NMR spec-
trum acquisition using a Bruker-250 MHz spectrometer (model
Avance-250 MHz). All the spectra are an average of 16 scans.
2.2. Transesterification reactions

All transesterification reactions were carried out by mixing
700 mL of soybean oil, 175 mL of methanol (6:1 M ratio) and
6.3 g of sodium hydroxide (1% m/m of base in relation to oil), pre-
viously dissolved in methanol. In this work the transesterification
reactions were conducted at two different temperatures,
20.0 ± 0.2 �C and 55.0 ± 0.2 �C.
Fig. 2. Instrumentation set up: (a) NIR spectrophotometer; (b) Spectrophotometric
flow cell; (c) Peristaltic pump; (d) Thermostatized bath; (e) Three-necked glass
flask; (f) Mechanical helix stirrer; (g) Reflux condenser; (h) Digital thermometer; (i)
Teflon� tubes, i.d. = 1.0 mm; (j) Centrifuge tube, for sample collection by vacuum
suction; (k) Vacuum pump.



Fig. 3. Typical NIR spectrum obtained during a transesterification reaction of
soybean oil. Spectral range of 4000–14,000 cm�1 (2500–714 nm).
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2.3. 1H NMR and NIR transesterification reaction monitoring

The reactions were monitored by both 1H NMR and NIR tech-
niques, during 200 min and 80 min, when carried out at
20.0 ± 0.2 �C and 55.0 ± 0.2 �C, respectively. The time of reaction
start to count with the addition of the NaOH:methanol solution
into the thermostatized soybean oil. Spectra were obtained by both
the 1H NMR and NIR techniques at elapsed time intervals of 4, 8,14,
20, 30, 40, 50, 60, 70, 80, 120, 140, 160, 180 and 200 min for reac-
tions conducted at 20.0 ± 0.2 �C and at 4, 8,14, 20, 30, 40, 50, 60, 70
and 80 min for reactions conducted at 55.0 ± 0.2 �C.

NIR data was start collected by turning on the peristaltic pump
45 s before spectral data acquisition, ensuring the representative-
ness of the composition in the flow cell. After each NIR spectral
data acquisition, the flow passing the cell was switched to air. In
this way the reaction mixture could not separate into two phases
inside the cell and an effective cleanup of the spectroscopic flow
cell was assured.

2.4. PLS calibration

PLS models for the conversion of triglycerides to their respec-
tively methyl esters were constructed using data from three
transesterification reactions carried out at 20.0 ± 0.2 �C. These
three reactions were monitored by NIR and 1H NMR spectroscopy
as described above. For both techniques the spectra of the reaction
mixtures were collected after the same elapsed intervals, as previ-
ously described. NIR spectroscopic data were preprocessed by first
derivative, since it showed the best results, in terms of RMSEC and
RMSECV, when compared to baseline correction, standard normal
variate and second derivative. The triglyceride conversion ratios
found by 1H NMR were employed to produce the multivariate cal-
ibration model using the NIR spectra set.

In order to achieve conversion ratios close to 100%, the reaction
carried out at 20.0 ± 0.2 �C was monitored for 200 min. In this case,
15 calibration samples, collected at the same time intervals, were
analyzed by 1H NMR and their spectra were also obtained by NIR.

2.5. Model validation

To validate the calibration model two other transesterification
reactions were carried out, one at 20.0 ± 0.2 �C and one at
55.0 ± 0.2 �C. These two reactions were also monitored by both
NIR and 1H NMR spectroscopies. The spectra were collected at
the same times as used for PLS calibration. Thus, validation sam-
ples were generated in duplicate for both reaction temperatures.

3. Results and discussion

3.1. Determination of the triglycerides conversion ratios by 1H NMR

1H NMR spectroscopy was employed as the reference technique
for determination of the conversion percentage of the glycerides
present in soybean oil to methyl esters during the transesterifica-
tion reaction. These values were later used to build the PLS calibra-
tion model by NIR spectroscopy.

To determine the conversion ratio (Cme) by 1H NMR the integral
of the peak intensities for glyceryl protons and the integral of the
peak intensities for methyl ester protons were used in the follow-
ing equation[23]:

Cme ¼
5� Ime

ð5� ImeÞ þ ð9� ItagÞ
ð1Þ

where Ime is the value found for integration of methyl ester protons
(three protons with absorption at 3.67 ppm) and Itag is value for
integration of glyceryl protons (five protons with absorption be-
tween 4.05 and 4.40 ppm), present in the tri-, di- and monoglyce-
rides found in vegetable oils.
3.2. NIR spectroscopy results

Fig. 3 shows a NIR spectrum collected during the progress of a
soybean oil transesterification reaction. The spectral regions lo-
cated at the lower and higher extremes of the spectra were cut
off due to excessively high absorption for wavenumbers lower than
4450 cm�1 and due to high instrumental noise found at wavenum-
bers greater than 9000 cm�1.

Initially the NIR spectra were evaluated to find the best spectral
region to develop the PLS calibration model. Therefore, a compar-
ison was made between the spectra of soybean oil, soybean biodie-
sel and a NaOH:methanol mixture (at the same concentration as
employed in the transesterification reaction). Fig. 4 shows these
spectra where three promising highlighted regions (a, b and c, d)
are shown, due to the major spectral differences observed between
the pure soybean oil and its biodiesel.
3.3. PLS calibration model

For the development of the calibration model the reactions con-
ducted at 20.0 ± 0.2 �C were used. At this temperature it is possible
to access transesterification conversion ratios between 60% and
100%. For the usual temperature employed in commercial biodiesel
production (between 50 and 60 �C) the transesterification ratios
are higher than 90% for reaction times as short as 4 min. This fact
restricts calibration range monitoring to higher conversion ratios,
since the sampling of the reaction mixture for time intervals lower
than 4 min is unreliable, due to sample preparation steps necessary
for 1H NMR analysis.

Conversion ratios established by 1H NMR, for time intervals be-
tween 4 and 200 min were employed for the development of PLS
calibration models.

Five different spectral regions were evaluated to be used in the
model calibration. Four PLS models were developed using the re-
gions a, b, c and d shown in Fig. 4. A fifth model refers to a combi-
nation of these regions. The use of entire spectral region resulted in
calibration models whose error values for calibration and cross val-
idation were always higher than those observed for the models ob-
tained by using any of the regions shown in Fig. 4.



Fig. 4. Typical NIR spectra of a NaOH:methanol mixture, pure soybean oil and pure
soybean biodiesel. The circles (a, b and c, d) mark the three regions where the major
spectral differences between the oil and biodiesel occurs. The small insert shows
the expanded c, d region.

Table 1
Results obtained with the PLS models evaluated.

Model Emp. region
(cm�1)

LVs RMSECV
(% Conv.)a

RMSEC
(% Conv.)a

Reg. a 4451–4775 2 1.32 1.80
Reg. b 5770–5874 2 2.44 3.86
Reg. c 5928–5959 1 1.09 1.32
Reg. d 5978–6044 2 1.66 2.08
Reg. a, b, c, d a + b + c + d 3 1.12 1.56

a Percent of glycerides conversion to methyl esters.
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Fig. 6. Progress of soybean reactions monitored at 20 ± 0.2 �C and 55 ± 0.2 �C by
using the model constructed with NIR spectral data of the reaction mixture.
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Table 1 shows the spectral range used for each calibration mod-
el. Furthermore, it shows the Root Mean Square Error of Calibration
(RMSEC), Root Mean Square Error of Cross Validation (RMSECV) and
the optimal number of Latent Variables (LVs) suggested for each
model.

Region c (Fig. 4), which correspond to the first overtone of C–H
stretching for CH2 and CH3 bonds [27], was shown to be the most
attractive for this work, as the model built with this region shows
the lowest RMSEC and RMSEP values. This result probably could be
assigned to the spectral differences between oil and biodiesel
found in this region, as can be seen in the inserted of Fig. 4. More-
over, in this region the NaOH:methanol mixture shows a lower
absorption. It is important to consider that the NaOH:methanol
absorption spectrum, shown in Fig. 4, was collected with the spec-
troscopic cell filled with the mixture. However, in the transesteri-
fication reaction mixture it represents 20% of the total volume and
then the absorption intensities will be reduced five times, causing
an even lower influence.

Region d (maximum at 6005 cm�1), was used by Knothe [23,24]
for quantitation of ester yield. However, region c, corresponding to
the absorption band with maximum at 5940 cm�1, shows a better
performance than the one employed by Knothe, as can be demon-
strated by the lower values of RMSEC and RMSECV. Furthermore, a
smaller number of Latent Variables is required for the PLS model.
This fact can be explained by assigning the 5940 cm�1 band to
the first overtone of C–H stretching of CH3 bonded to methoxyl car-
bons. This region shows an absorption band due to soybean biodie-
sel (esters of glycerides) and no band of the soybean oil
(triglycerides). The region suggested by Knothe [23,24] also shows
an oil absorption band. These features were also confirmed by ana-
lyzing the NIR spectra of other oils and their respective biodiesels,
such as peanut, canola and sunflower oils, as shown in Fig. 5.
Therefore, it is reasonable that this region could also be employed
to follow the progress of the transesterification reaction of these
oils.

Thus, regions a, b, d (Fig. 4) or their combination were not used
in this work as they produce models with higher RMSEC and
RMSECV. In particular, for regions a and b, the lack of performance
can be attributed to a great extent to the absorption of the
NaOH:methanol mixture.

In summary, the best calibration model obtained in this work
was built using the spectral range between 5928.7 and 595
9.6 cm�1 (region c). The model shows R2 = 0.991 and R2 = 0.983
for calibration and cross validation, respectively, and a mean
RMSEC = 1.09 and RMSECV = 1.32 (% of conversion) for the conver-
sion ratio followed throughout the reaction.
3.4. Model validation

The validation of the elected calibration model was done by
employing data from two new transesterification reactions carried
out at 20 ± 0.2 �C and 55 ± 0.2 �C. The purpose of the second
reaction was to verify the performance of the model, built
from the data of a transesterification reaction carried out at
20 ± 0.2 �C, to predict the progress of reactions conducted at higher



Table 2
Prediction and reference values for the conversion ratio obtained for reactions carried out at 20 ± 0.2 �C, and 55 ± 0.2 �C. Vref = Reference value; Vpred = Predicted value;
E = Absolute error; Er = Relative error (%).

20 �C Time
(min)

Vref (1H NMR) % Conv. Vpred (NIR) %
Conv.

E % Conv. Er
(%)

55 �C Time
(min)

Vref (1H NMR) % Conv. Vpred (NIR) %
Conv.

E % Conv. Er
(%)

4 62.00 62.57 0.57 0.91 4 94.01 93.43 0.58 0.62
8 79.78 78.98 0.80 1.00 8 97.03 96.31 0.72 0.75

14 86.28 86.28 0.00 0.00 14 96.75 96.98 0.22 0.23
20 89.49 89.44 0.05 0.06 20 100.00 97.48 2.52 2.52
30 91.10 91.70 0.60 0.66 30 99.76 98.81 0.95 0.95
40 94.18 94.08 0.11 0.11 40 100.00 98.90 1.10 1.10
50 95.16 95.41 0.25 0.26 50 99.74 99.53 0.21 0.21
60 96.73 96.51 0.22 0.23 60 99.52 99.81 0.29 0.29
70 96.64 97.54 0.90 0.94 70 98.51 100.05 1.54 1.56
80 96.45 98.22 1.77 1.84 80 99.75 101.83 2.08 2.08

Mean – – 0.53 0.60 Mean – – 1.03 1.02
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temperatures. It is important to consider that independent of the
reaction temperature, the temperature of the reaction mixture
sampled for acquisition of NIR spectrum is close to ambient, due
to the Teflon� tubing used to transfer the mixture from the glass
flask to the flow cell. The tubes (i.d. = 1 mm) are 50 cm long,
allowing the reaction mixture sampled to equilibrate with ambient
temperature, kept at 25 ± 1 �C. This fact was confirmed by moni-
toring the sample temperature at the output of the flow cell.
Moreover, some data were obtained by using a glass coil
(i.d. = 2 mm) 72 cm long immersed in a thermostatized bath
(25 ± 1 �C), placed between the glass flask and the flow cell. There
are no significant differences, with 95% of confidence, for results
acquired with or without the glass coil.

Table 2 shows the predicted values of the conversion ratio of oil
to ester employing the PLS model constructed by using the NIR
spectra. 1H NMR results were also taken for validation samples,
and their respective prediction errors are shown. The Root Mean
Square Error of Prediction (RMSEP) found during the progress of
the transesterification reaction carried out at 20 ± 0.2 �C and
55 ± 0.2 �C were 0.74 and 1.27 (% of conversion), respectively.

3.5. Model employment

The developed NIR-based model allows for accurate monitoring
of the progress of the transesterification reaction of soybean oil.
Fig. 6 shows conversion percentages of soybean oil obtained by
the proposed model carried out at 20 ± 0.2 �C, monitored for
100 min and for a reaction carried out at 55 ± 0.2 �C, monitored
for 80 min. The NIR spectra were collected at 4, 8, 14, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 min in both
cases. The difference in the kinetics of the two reactions is evident.
4. Conclusions

The proposed monitoring system can follow the progress of the
transesterification reaction carried out at any temperature with
reasonable accuracy.

For ambient acclimatized measurements, as in most instrumen-
tal analytical chemistry laboratories, it was not necessary to con-
trol the sample mixture temperature when acquiring the NIR
spectra. However, for on-line monitoring of the transesterification
reaction in an industrial environment, where temperature is not
under control, a sample thermostatization system such as the
one proposed in this work could be used.

The results shown in this work demonstrate that NIR spectros-
copy can be an effective tool for on-line monitoring of the progress
of transesterification reactions with mean error values close to 1%
of oil to biodiesel conversion ratio. Therefore, a more effective con-
trol of reagent and energy consumption for biodiesel production
can be achieved. This, with time, will impact favorably on the cost
of the final product.

The narrow spectral range (5928.7–5959.6 cm�1), that has not
been tried before, employed for construction of the regression
model points towards the possibility of building a low cost NIR
photometer, based on a lead sulfite detector and an interference fil-
ter to select the relevant spectral range.
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