Group theory/Differential geometry

Classification of differential symmetry breaking operators for differential forms

Classification des opérateurs de brisure de symétrie pour les formes différentielles

Toshiyuki Kobayashi ${ }^{\text {a }}$, Toshihisa Kubo ${ }^{\text {b }}$, Michael Pevzner ${ }^{\text {c }}$
${ }^{\text {a }}$ Kavli IPMU and Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
${ }^{\mathrm{b}}$ Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914, Japan
${ }^{\text {c }}$ Laboratoire de Mathématiques, Université de Reims-Champagne-Ardenne, CNRS FR 3399, 51687 Reims, France

ARTICLE INFO

Article history:

Received 31 March 2016
Accepted after revision 28 April 2016
Available online 17 May 2016
Presented by Michel Duflo

Abstract

We give a complete classification of conformally covariant differential operators between the spaces of differential i-forms on the sphere S^{n} and j-forms on the totally geodesic hypersphere S^{n-1} by analyzing the restriction of principal series representations of the Lie group $O(n+1,1)$. Further, we provide explicit formulæ for these matrix-valued operators in the flat coordinates and find factorization identities for them.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
R É S U M É
Nous présentons une classification complète des opérateurs différentiels conformément covariants agissant entre les espaces des i-formes différentielles sur la sphère S^{n} et ceux des j-formes sur la hypershère totalement géodésique S^{n-1} en analysant les restrictions des représentations des séries principales du groupe de Lie $O(n+1,1)$. Pour de tels opórateurs à valeurs matricielles, nous donnons des formules explicites dans les coordonnées plates et trouvons des identités de factorisation.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. Introduction

Suppose a Lie group G acts conformally on a Riemannian manifold (X, g). This means that there exists a positive-valued function $\Omega \in C^{\infty}(G \times X)$ (conformal factor) such that

$$
L_{h}^{*} g_{h \cdot x}=\Omega(h, x)^{2} g_{x} \quad \text { for all } h \in G \text { and } x \in X
$$

where $L_{h}: X \rightarrow X, x \mapsto h \cdot x$ denotes the action of G on X. Since Ω satisfies a cocycle condition, we can form a family of representations $\varpi_{u}^{(i)}$ for $u \in \mathbb{C}$ and $0 \leq i \leq \operatorname{dim} X$ on the space $\mathcal{E}^{i}(X)$ of differential i-forms on X by

$$
\begin{equation*}
\varpi_{u}^{(i)}(h) \alpha:=\Omega\left(h^{-1}, \cdot\right)^{u} L_{h^{-1}}^{*} \alpha \quad(h \in G) . \tag{1}
\end{equation*}
$$

The representation $\varpi_{u}^{(i)}$ of the conformal group G on $\mathcal{E}^{i}(X)$ will be simply denoted by $\mathcal{E}^{i}(X)_{u}$.
If Y is a submanifold of X, then we can also define a family of representations $\varpi_{v}^{(j)}$ on $\mathcal{E}^{j}(Y)(v \in \mathbb{C}, 0 \leq j \leq \operatorname{dim} Y)$ of the subgroup

$$
G^{\prime}:=\{h \in G: h \cdot Y=Y\}
$$

which acts conformally on the Riemannian submanifold $\left(Y,\left.g\right|_{Y}\right)$.
We study differential operators $\mathcal{D}: \mathcal{E}^{i}(X) \longrightarrow \mathcal{E}^{j}(Y)$ that intertwine the two representations $\varpi_{u}^{(i)} \mid G^{\prime}$ and $\varpi_{v}^{(j)}$ of G^{\prime}. Here $\left.\varpi_{u}^{(i)}\right|_{G^{\prime}}$ stands for the restriction of the G-representation $\varpi_{u}^{(i)}$ to the subgroup G^{\prime}. We say that such \mathcal{D} is a differential symmetry breaking operator, and denote by $\operatorname{Diff}_{G^{\prime}}\left(\mathcal{E}^{i}(X)_{u}, \mathcal{E}^{j}(Y)_{v}\right)$ the space of all differential symmetry breaking operators. We address the following problems:

Problem 1. Determine the dimension of the space $\operatorname{Diff}_{G^{\prime}}\left(\mathcal{E}^{i}(X)_{u}, \mathcal{E}^{j}(Y)_{v}\right)$. In particular, find a necessary and sufficient condition on a quadruple (i, j, u, v) such that there exist nontrivial differential symmetry breaking operators.

Problem 2. Construct explicitly a basis of $\operatorname{Diff}_{G^{\prime}}\left(\mathcal{E}^{i}(X)_{u}, \mathcal{E}^{j}(Y)_{v}\right)$.
In the case where $X=Y, G=G^{\prime}$, and $i=j=0$, a classical prototype of such operators is a second-order differential operator called the Yamabe operator

$$
\Delta+\frac{n-2}{4(n-1)} \kappa \in \operatorname{Diff}_{G}\left(\mathcal{E}^{0}(X)_{\frac{n}{2}-1}, \mathcal{E}^{0}(X)_{\frac{n}{2}+1}\right)
$$

where Δ is the Laplace-Beltrami operator, n is the dimension of X, and κ is the scalar curvature of X. Conformally covariant differential operators of higher order are also known: the Paneitz operator (fourth order) [11], which appears in four dimensional supergravity [2], or more generally, the so-called GJMS operators [3] are such examples. Analogous conformally covariant operators on forms ($i=j$ case) were studied by Branson [1]. On the other hand, the insight of representation theory of conformal groups is useful in studying Maxwell's equations, see [10], for instance.

Let us consider the more general case where $Y \neq X$ and $G^{\prime} \neq G$. An obvious example of symmetry breaking operators is the restriction operator Rest $_{Y}$ which belongs to $\operatorname{Diff}_{G^{\prime}}\left(\mathcal{E}^{i}(X)_{u}, \mathcal{E}^{i}(Y)_{u}\right)$ for all $u \in \mathbb{C}$. Another elementary example is $\operatorname{Rest}_{Y} \circ \iota_{N_{Y}(X)} \in \operatorname{Diff}_{G^{\prime}}\left(\mathcal{E}^{i}(X)_{u}, \mathcal{E}^{i-1}(Y)_{v}\right)$ if $v=u+1$ where $\iota_{N_{Y}(X)}$ denotes the interior multiplication by the normal vector field to Y when Y is of codimension one in X.

In the model space where $(X, Y)=\left(S^{n}, S^{n-1}\right)$, the pair $\left(G, G^{\prime}\right)$ of conformal groups amounts to $(O(n+1,1), O(n, 1))$ modulo center, and Problems 1 and 2 have been recently solved for $i=j=0$ by Juhl [4], see also [5,7] and [9] for different approaches by the F-method and the residue calculus, respectively.

Problems 1 and 2 for general i and j for the model space can be reduced to analogous problems for (nonspherical) principal series representations by the isomorphism (3) below. In this note we shall give complete solutions to Problems 1 and 2 in those terms (see Theorems 3 and 4).

Notation: $\mathbb{N}=\{0,1,2, \cdots\}, \mathbb{N}_{+}=\{1,2, \cdots\}$.

2. Principal series representations of $G=O(n+1,1)$

We set up notations. Let $P=$ MAN be a Langlands decomposition of a minimal parabolic subgroup of $G=O(n+1,1)$. For $0 \leq i \leq n, \delta \in \mathbb{Z} / 2 \mathbb{Z}$, and $\lambda \in \mathbb{C}$, we extend the outer tensor product representation $\bigwedge^{i}\left(\mathbb{C}^{n}\right) \otimes(-1)^{\delta} \otimes \mathbb{C}_{\lambda}$ of $M A \simeq(O(n) \times$ $O(1)) \times \mathbb{R}$ to P by letting N act trivially, and form a G-equivariant vector bundle $\mathcal{V}_{\lambda, \delta}^{i}:=G \times_{P}\left(\Lambda^{i}\left(\mathbb{C}^{n}\right) \otimes(-1)^{\delta} \otimes \mathbb{C}_{\lambda}\right)$ over the real flag variety $X=G / P \simeq S^{n}$. Then we define an unnormalized principal series representations

$$
\begin{equation*}
I(i, \lambda)_{\delta}:=\operatorname{Ind}_{P}^{G}\left(\bigwedge^{i}\left(\mathbb{C}^{n}\right) \otimes(-1)^{\delta} \otimes \mathbb{C}_{\lambda}\right) \tag{2}
\end{equation*}
$$

of G on the Fréchet space $C^{\infty}\left(X, \mathcal{V}_{\lambda, \delta}^{i}\right)$ of smooth sections.

In our parameterization, $I(i, n-2 i)_{\delta}$ and $I(i, i)_{\delta}$ have the same infinitesimal character with the trivial one-dimensional representation of G. Then, for all $u \in \mathbb{C}$, we have a natural G-isomorphism

$$
\begin{equation*}
\varpi_{u}^{(i)} \simeq I(i, u+i)_{i \bmod 2} \tag{3}
\end{equation*}
$$

Similarly, for $0 \leq j \leq n-1, \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}$ and $v \in \mathbb{C}$, we define an unnormalized principal series representation $J(j, v)_{\varepsilon}:=\operatorname{Ind}_{P^{\prime}}^{G^{\prime}}\left(\bigwedge^{j}\left(\mathbb{C}^{n-1}\right) \otimes(-1)^{\varepsilon} \otimes \mathbb{C}_{\nu}\right)$ of the subgroup $G^{\prime}=O(n, 1)$ on $C^{\infty}\left(Y, \mathcal{W}_{\nu, \varepsilon}^{j}\right)$, where $\mathcal{W}_{v, \varepsilon}^{j}:=G^{\prime} \times P_{P^{\prime}}$ $\left(\bigwedge^{j}\left(\mathbb{C}^{n-1}\right) \otimes(-1)^{\varepsilon} \otimes \mathbb{C}_{v}\right)$ is a G^{\prime}-equivariant vector bundle over $Y=G^{\prime} / P^{\prime} \simeq S^{n-1}$.

3. Existence condition for differential symmetry breaking operators

A continuous G^{\prime}-intertwining operator $T: I(i, \lambda)_{\delta} \longrightarrow J(j, \nu)_{\varepsilon}$ is said to be a symmetry breaking operator (SBO). We say that T is a differential operator if T satisfies $\operatorname{Supp}(T f) \subset \operatorname{Supp} f$ for all $f \in C^{\infty}\left(X, \mathcal{V}_{\lambda, \delta}^{i}\right)$, and $\operatorname{Diff}_{G^{\prime}}\left(I(i, \lambda)_{\delta}, J(j, v)_{\varepsilon}\right)$ denotes the space of differential SBOs. We give a complete solution to Problem 1 for (X, Y) $=\left(S^{n}, S^{n-1}\right)$ in terms of principal series representations:

Theorem 3. Let $n \geq 3$. Suppose $0 \leq i \leq n, 0 \leq j \leq n-1, \lambda, \nu \in \mathbb{C}$, and $\delta, \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}$. Then the following three conditions on 6 -tuple ($i, j, \lambda, \nu, \delta, \varepsilon$) are equivalent:
(i) $\operatorname{Diff}_{O(n, 1)}\left(I(i, \lambda)_{\delta}, J(j, \nu)_{\varepsilon}\right) \neq\{0\}$.
(ii) $\operatorname{dim}_{\operatorname{Diff}_{O(n, 1)}}\left(I(i, \lambda)_{\delta}, J(j, v)_{\varepsilon}\right)=1$.
(iii) The 6-tuple belongs to one of the following six cases:

Case 1. $j=i, 0 \leq i \leq n-1, v-\lambda \in \mathbb{N}, \varepsilon-\delta \equiv v-\lambda \bmod 2$.
Case 2. $j=i-1,1 \leq i \leq n, v-\lambda \in \mathbb{N}, \varepsilon-\delta \equiv v-\lambda \bmod 2$.
Case 3. $j=i+1,1 \leq i \leq n-2,(\lambda, v)=(i, i+1), \varepsilon \equiv \delta+1 \bmod 2$.
Case $3^{\prime} .(i, j)=(0,1),-\lambda \in \mathbb{N}, v=1, \varepsilon \equiv \delta+\lambda+1 \bmod 2$.
Case 4. $j=i-2,2 \leq i \leq n-1,(\lambda, v)=(n-i, n-i+1), \varepsilon \equiv \delta+1 \bmod 2$.
Case $4^{\prime} .(i, j)=(n, n-2),-\lambda \in \mathbb{N}, v=1, \varepsilon \equiv \delta+\lambda+1 \bmod 2$.

We set $\Xi:=\{(i, j, \lambda, \nu)$: the 6-tuple $(i, j, \lambda, \nu, \delta, \varepsilon)$ satisfies one of the equivalent conditions of Theorem 3 for some $\delta, \varepsilon \in$ $\mathbb{Z} / 2 \mathbb{Z}\}$.

4. Construction of differential symmetry breaking operators

In this section, we describe an explicit generator of the space of differential SBOs if one of the equivalent conditions in Theorem 3 is satisfied. For this, we use the flat picture of the principal series representations $I(i, \lambda)_{\delta}$ of G, which realizes the representation space $C^{\infty}\left(X, \mathcal{V}_{\lambda, \delta}^{i}\right)$ as a subspace of $C^{\infty}\left(\mathbb{R}^{n}, \bigwedge^{i}\left(\mathbb{C}^{n}\right)\right)$ by trivializing the bundle $\mathcal{V}_{\lambda, \delta}^{i} \longrightarrow X$ on the open Bruhat cell

$$
\mathbb{R}^{n} \hookrightarrow X, \quad\left(x_{1}, \cdots, x_{n}\right) \mapsto \exp \left(\sum_{j=1}^{n} x_{j} N_{j}^{-}\right) P
$$

Here $\left\{N_{1}^{-}, \cdots, N_{n}^{-}\right\}$is an orthonormal basis of the nilradical $\mathfrak{n}_{-}(\mathbb{R})$ of the opposite parabolic subalgebra with respect to an M-invariant inner product. Without loss of generality, we may and do assume that the open Bruhat cell $\mathbb{R}^{n-1} \hookrightarrow Y \simeq G^{\prime} / P^{\prime}$ is given by putting $x_{n}=0$. Then the flat picture of the principal series representation $J(j, v)_{\varepsilon}$ of G^{\prime} is defined by realizing $C^{\infty}\left(Y, \mathcal{W}_{\nu, \varepsilon}^{j}\right)$ as a subspace of $C^{\infty}\left(\mathbb{R}^{n-1}, \bigwedge^{j}\left(\mathbb{C}^{n-1}\right)\right)$. For the construction of explicit generators of matrix-valued SBOs, we begin with a scalar-valued differential operator. For $\alpha \in \mathbb{C}$ and $\ell \in \mathbb{N}$, we define a polynomial of two variables (s, t) by

$$
\left(I_{\ell} \widetilde{C}_{\ell}^{\alpha}\right)(s, t):=s^{\frac{\ell}{2}} \widetilde{C}_{\ell}^{\alpha}\left(\frac{t}{\sqrt{s}}\right)
$$

where $\widetilde{C}_{\ell}^{\alpha}(z)$ is the renormalized Gegenbauer polynomial given by

$$
\widetilde{C}_{\ell}^{\alpha}(z):=\frac{1}{\Gamma\left(\alpha+\left[\frac{\ell+1}{2}\right]\right)} \sum_{k=0}^{\left[\frac{\ell}{2}\right]}(-1)^{k} \frac{\Gamma(\ell-k+\alpha)}{k!(\ell-2 k)!}(2 z)^{\ell-2 k}
$$

Then $\widetilde{C}_{\ell}^{\alpha}(z)$ is a nonzero polynomial for all $\alpha \in \mathbb{C}$ and $\ell \in \mathbb{N}$, and a (normalized) Juhl's conformally covariant operator $\widetilde{\mathbb{C}}_{\lambda, v}$: $C^{\infty}\left(\mathbb{R}^{n}\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{n-1}\right)$ is defined by

$$
\widetilde{\mathbb{C}}_{\lambda, \nu}:=\operatorname{Rest}_{x_{n}=0} \circ\left(I_{\ell} \widetilde{C}_{\ell}^{\lambda-\frac{n-1}{2}}\right)\left(-\Delta_{\mathbb{R}^{n-1}}, \frac{\partial}{\partial x_{n}}\right)
$$

for $\lambda, \nu \in \mathbb{C}$ with $\ell:=\nu-\lambda \in \mathbb{N}$. For instance,

$$
\widetilde{\mathbb{C}}_{\lambda, v}=\operatorname{Rest}_{x_{n}=0} \circ \begin{cases}\text { id } & \text { if } v=\lambda, \\ 2 \frac{\partial}{\partial x_{n}} & \text { if } v=\lambda+1, \\ \Delta_{\mathbb{R}^{n-1}}+(2 \lambda-n+3) \frac{\partial^{2}}{\partial x_{n}^{2}} & \text { if } v=\lambda+2\end{cases}
$$

For $(i, j, \lambda, \nu) \in \Xi$, we introduce a new family of matrix-valued differential operators

$$
\widetilde{\mathbb{C}}_{\lambda, v}^{i, j}: C^{\infty}\left(\mathbb{R}^{n}, \bigwedge^{i}\left(\mathbb{C}^{n}\right)\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{n-1}, \bigwedge^{j}\left(\mathbb{C}^{n-1}\right)\right)
$$

by using the identifications $\mathcal{E}^{i}\left(\mathbb{R}^{n}\right) \simeq C^{\infty}\left(\mathbb{R}^{n}\right) \otimes \bigwedge^{i}\left(\mathbb{C}^{n}\right)$ and $\mathcal{E}^{j}\left(\mathbb{R}^{n-1}\right) \simeq C^{\infty}\left(\mathbb{R}^{n-1}\right) \otimes \bigwedge^{j}\left(\mathbb{C}^{n-1}\right)$, as follows. Let $d_{\mathbb{R}^{n}}^{*}$ be the codifferential, which is the formal adjoint of the differential $d_{\mathbb{R}^{n}}$, and $\iota_{\frac{\partial}{\partial x_{n}}}$ the inner multiplication by the vector field $\frac{\partial}{\partial x_{n}}$. Both operators map $\mathcal{E}^{i}\left(\mathbb{R}^{n}\right)$ to $\mathcal{E}^{i-1}\left(\mathbb{R}^{n}\right)$. For $\alpha \in \mathbb{C}$ and $\ell \in \mathbb{N}$, let $\gamma(\alpha, \ell):=1$ (ℓ is odd); $=\alpha+\frac{\ell}{2}$ (ℓ is even). Then we set

$$
\begin{array}{rlr}
\mathbb{C}_{\lambda, \nu}^{i, i} & =\widetilde{\mathbb{C}}_{\lambda+1, v-1} d_{\mathbb{R}^{n}} d_{\mathbb{R}^{n}}^{*}-\gamma\left(\lambda-\frac{n}{2}, v-\lambda\right) \widetilde{\mathbb{C}}_{\lambda, v-1} d_{\mathbb{R}^{n} \iota} \frac{\partial}{\partial \times n}+\frac{1}{2}(\nu-i) \widetilde{\mathbb{C}}_{\lambda, v} & \text { for } 0 \leq i \leq n-1 . \\
\mathbb{C}_{\lambda, v}^{i, i-1} & :=-\widetilde{\mathbb{C}}_{\lambda+1, v-1} d_{\mathbb{R}^{n}} d_{\mathbb{R}^{n} \iota}^{*} \frac{\partial}{\partial \times x_{n}}-\gamma\left(\lambda-\frac{n-1}{2}, v-\lambda\right) \widetilde{\mathbb{C}}_{\lambda+1, \nu} d_{\mathbb{R}^{n}}^{*}+\frac{1}{2}(\lambda+i-n) \widetilde{\mathbb{C}}_{\lambda, \nu} \iota \frac{\partial}{\partial \times n} & \text { for } 1 \leq i \leq n .
\end{array}
$$

We note that there exist isolated parameters (λ, ν) for which $\mathbb{C}_{\lambda, \nu}^{i, i}=0$ or $\mathbb{C}_{\lambda, \nu}^{i, i-1}=0$. For instance, $\mathbb{C}_{\lambda, \nu}^{0,0}=\frac{1}{2} \nu \widetilde{\mathbb{C}}_{\lambda, \nu}$, and thus $\mathbb{C}_{\lambda, \nu}^{0,0}=0$ if $\nu=0$. To be precise, we have the following:

$$
\mathbb{C}_{\lambda, v}^{i, i}=0 \text { if and only if } \lambda=v=i \text { or } v=i=0 ; \quad \mathbb{C}_{\lambda, v}^{i, i-1}=0 \text { if and only if } \lambda=v=n-i \text { or } v=n-i=0
$$

We renormalize these operators by

$$
\widetilde{\mathbb{C}}_{\lambda, v}^{i, i}:=\left\{\begin{array}{ll}
\operatorname{Rest}_{x_{n}}=0 & \text { if } \lambda=v, \\
\widetilde{\mathbb{C}}_{\lambda, v} & \text { if } i=0, \\
\mathbb{C}_{\lambda, v}^{i, i} & \text { otherwise, }
\end{array} \quad \text { and } \quad \widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i-1}:= \begin{cases}\operatorname{Rest}_{x_{n}=0} \circ \iota \frac{\partial}{\partial x_{n}} & \text { if } \lambda=v, \\
\widetilde{\mathbb{C}}_{\lambda, \nu} \circ \iota \frac{\partial}{\partial x_{n}} & \text { if } i=n, \\
\mathbb{C}_{\lambda, \nu}^{i, i-1} & \text { otherwise }\end{cases}\right.
$$

Then $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i}(0 \leq i \leq n-1)$ and $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i-1}(1 \leq i \leq n)$ are nonzero differential operators of order $v-\lambda$ for any $\lambda, \nu \in \mathbb{C}$ with $\nu-\lambda \in \mathbb{N}$.

The differential operators $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i+1}$ and $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i-2}$ are defined only for special parameters (λ, v) as follows.

Then we give a complete solution to Problem 2 for the model space $(X, Y)=\left(S^{n}, S^{n-1}\right)$ in terms of the flat picture of principal series representations as follows:

Theorem 4. Suppose a 6-tuple ($i, j, \lambda, v, \delta, \varepsilon$) satisfies one of the equivalent conditions in Theorem 3. Then the operators $\widetilde{\mathbb{C}}_{\lambda, v}^{i, j}$: $C^{\infty}\left(\mathbb{R}^{n}\right) \otimes \bigwedge^{i}\left(\mathbb{C}^{n}\right) \longrightarrow C^{\infty}\left(\mathbb{R}^{n-1}\right) \otimes \bigwedge^{j}\left(\mathbb{C}^{n-1}\right)$ extend to differential SBOs $I(i, \lambda)_{\delta} \longrightarrow J(j, v)_{\varepsilon}$, to be denoted by the same letters. Conversely, any differential SBO from $I(i, \lambda)_{\delta}$ to $J(j, v)_{\varepsilon}$ is proportional to the following differential operators: $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i}$ in Case $1, \widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i-1}$ in Case 2, $\widetilde{\mathbb{C}}_{i, i+1}^{i, i+1}$ in Case 3, $\widetilde{\mathbb{C}}_{\lambda, 1}^{0,1}$ in Case $3^{\prime}, \widetilde{\mathbb{C}}_{n-i, n-i+1}^{i, i-2}$ in Case 4, and $\widetilde{\mathbb{C}}_{\lambda, 1}^{n, n-2}$ in Case 4^{\prime}.

5. Matrix-valued factorization identities

Suppose that $T_{X}: I\left(i, \lambda^{\prime}\right)_{\delta} \rightarrow I(i, \lambda)_{\delta}$ or $T_{Y}: J(j, v)_{\varepsilon} \rightarrow J\left(j, v^{\prime}\right)_{\varepsilon}$ are G - or G^{\prime}-intertwining operators, respectively. Then the composition $T_{Y} \circ D_{X \rightarrow Y}$ or $D_{X \rightarrow Y} \circ T_{X}$ of a symmetry breaking operator $D_{X \rightarrow Y}: I(i, \lambda)_{\delta} \rightarrow J(j, \nu)_{\varepsilon}$ gives another symmetry breaking operator:

The multiplicity-free property (see Theorem 3 (ii)) assures the existence of matrix-valued factorization identities for differential SBOs, namely, $D_{X \rightarrow Y} \circ T_{X}$ must be a scalar multiple of $\widetilde{\mathbb{C}}_{\lambda^{\prime}, \nu}^{i, j}$, and $T_{Y} \circ D_{X \rightarrow Y}$ must be a scalar multiple of $\widetilde{\mathbb{C}}_{\lambda, \nu^{\prime}}^{i, j}$. We shall determine these constants explicitly when T_{X} or T_{Y} are Branson's conformally covariant operators [1] defined below. Let $0 \leq i \leq n$. For $\ell \in \mathbb{N}_{+}$, we set

$$
\mathcal{T}_{2 \ell}^{(i)}:=\left(\left(\frac{n}{2}-i-\ell\right) d_{\mathbb{R}^{n}} d_{\mathbb{R}^{n}}^{*}+\left(\frac{n}{2}-i+\ell\right) d_{\mathbb{R}^{n}}^{*} d_{\mathbb{R}^{n}}\right) \Delta_{\mathbb{R}^{n}}^{\ell-1}=\left(-2 \ell d_{\mathbb{R}^{n}} d_{\mathbb{R}^{n}}^{*}-\left(\frac{n}{2}-i+\ell\right) \Delta_{\mathbb{R}^{n}}\right) \Delta_{\mathbb{R}^{n}}^{\ell-1}
$$

Then the differential operator $\mathcal{T}_{2 \ell}^{(i)}: \mathcal{E}^{i}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{E}^{i}\left(\mathbb{R}^{n}\right)$ induces a nonzero $O(n+1,1)$-intertwining operator, to be denoted by the same letter $\mathcal{T}_{2 \ell}^{(i)}$, from $I\left(i, \frac{n}{2}-\ell\right)_{\delta}$ to $I\left(i, \frac{n}{2}+\ell\right)_{\delta}$, for $\delta \in \mathbb{Z} / 2 \mathbb{Z}$. Similarly, we define a G^{\prime}-intertwining operator $\mathcal{T}_{2 \ell}^{\prime(j)}: J\left(j, \frac{n-1}{2}-\ell\right)_{\varepsilon} \longrightarrow J\left(j, \frac{n-1}{2}+\ell\right)_{\varepsilon}$ for $0 \leq j \leq n-1$ and $\varepsilon \in \mathbb{Z} / 2 \mathbb{Z}$ as the lift of the differential operator $\mathcal{T}_{2 \ell}^{\prime(j)}$: $\mathcal{E}^{j}\left(\mathbb{R}^{n-1}\right) \longrightarrow \mathcal{E}^{j}\left(\mathbb{R}^{n-1}\right)$, which is given by

$$
\mathcal{T}_{2 \ell}^{\prime(j)}=\left(\left(\frac{n-1}{2}-j-\ell\right) d_{\mathbb{R}^{n-1}} d_{\mathbb{R}^{n-1}}^{*}+\left(\frac{n-1}{2}-j+\ell\right) d_{\mathbb{R}^{n-1}}^{*} d_{\mathbb{R}^{n-1}}\right) \Delta_{\mathbb{R}^{n-1}}^{\ell-1} .
$$

Consider the following diagrams for $j=i$ and $j=i-1$:

where parameters δ and $\varepsilon \in \mathbb{Z} / 2 \mathbb{Z}$ are chosen according to Theorem 3 (iii). In what follows, we put

$$
\begin{aligned}
& p_{ \pm}=\left\{\begin{array}{ll}
i \pm \ell-\frac{n}{2} & \text { if } a \neq 0 \\
\pm 2 & \text { if } a=0
\end{array}, \quad q=\left\{\begin{array}{ll}
i+\ell-\frac{n-1}{2} & \text { if } i \neq 0, a \neq 0 \\
-2 & \text { if } i \neq 0, a=0 \\
-\left(\ell+\frac{n-1}{2}\right) & \text { if } i=0
\end{array}, \quad r= \begin{cases}i-\ell-\frac{n+1}{2} & \text { if } i \neq n, a \neq 0 \\
2 & \text { if } i \neq n, a=0, \\
-\left(\ell+\frac{n+1}{2}\right) & \text { if } i=n\end{cases} \right.\right. \\
& K_{\ell, a}:=\prod_{k=1}^{\ell}\left(\left[\frac{a}{2}\right]+k\right) .
\end{aligned}
$$

Then the factorization identities for differential SBOs $\widetilde{\mathbb{C}}_{\lambda, \nu}^{i, j}$ for $j \in\{i-1, i\}$ and Branson's conformally covariant operators $\mathcal{T}_{2 \ell}^{(i)}$ or $\mathcal{T}_{2 \ell}^{\prime(j)}$ are given as follows.

Theorem 5. Suppose $0 \leq i \leq n-1, a \in \mathbb{N}$ and $\ell \in \mathbb{N}_{+}$. Then
(1) $\widetilde{\mathbb{C}}_{\frac{n}{2}+\ell, a+\ell+\frac{n}{2}}^{i, i} \circ \mathcal{T}_{2 \ell}^{(i)}=p_{-} K_{\ell, a} \widetilde{\mathbb{C}}_{\frac{n}{2}-\ell, a+\ell+\frac{n}{2}}^{i, i}$.
(2) $\mathcal{T}^{\prime}{ }_{2 \ell}^{(i)} \circ \widetilde{\mathbb{C}}_{\frac{n-1}{2}-a-\ell, \frac{n-1}{2}-\ell}^{i, i}=q K_{\ell, a} \widetilde{\mathbb{C}}_{\frac{n-1}{2}-a-\ell, \frac{n-1}{2}+\ell}^{i,}$

Theorem 6. Suppose $1 \leq i \leq n, a \in \mathbb{N}$ and $\ell \in \mathbb{N}_{+}$. Then
(1) $\widetilde{\mathbb{C}}_{\frac{n}{2}+\ell, a+\ell+\frac{n}{2}}^{i, i-1} \circ \mathcal{T}_{2 \ell}^{(i)}=p_{+} K_{\ell, a} \widetilde{\mathbb{C}}_{\frac{n}{2}-\ell, a+\ell+\frac{n}{2}}^{i, i-1}$.
(2) $\mathcal{T}^{\prime}{ }_{2 \ell}^{(i-1)} \circ \widetilde{\mathbb{C}}_{\frac{n-1}{2}-a-\ell, \frac{n-1}{2}-\ell}^{i, i-1}=r K_{\ell, a} \widetilde{\mathbb{C}}_{\frac{n-1}{2}-a-\ell, \frac{n-1}{2}+\ell}^{i, i-1}$.

In the case where $i=0, \widetilde{\mathbb{C}}_{\lambda, \nu}^{i, i}$ is a scalar-valued operator, and the corresponding factorization identities in Theorem 5 were studied in $[4,8,9]$.

The main results are proved by using the F-method [5,6,9]. Details will appear elsewhere.

References

[1] T.P. Branson, Conformally covariant equations on differential forms, Commun. Partial Differ. Equ. 7 (1982) 393-431.
[2] E.S. Fradkin, A.A. Tseytlin, Asymptotic freedom in extended conformal supergravities, Phys. Lett. B 110 (1982) 117-122.
[3] C.R. Graham, R. Jenne, L.J. Mason, G.A.J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2) 46 (1992) $557-565$.
[4] A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holography, Prog. Math., vol. 275, Birkhäuser, Basel, Switzerland, 2009.
[5] T. Kobayashi, F-method for symmetry breaking operators, Differ. Geom. Appl. 33 (2014) 272-289.
[6] T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. I. General theory and F-method, Sel. Math. (N.S.) 22 (2016) $801-845$.
[7] T. Kobayashi, M. Pevzner, Differential symmetry breaking operators. II. Rankin-Cohen operators for symmetric pairs, Sel. Math. (N.S.) 22 (2016) $847-911$.
[8] T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups, Mem. Amer. Math. Soc., vol. 238, ISBN 978-1-4704-1922-6, 2015, 118 p.
[9] T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015) 1796-1852.
[10] B. Kostant, N.R. Wallach, Action of the conformal group on steady state solutions to Maxwell's equations and background radiation, in: Symmetry: Representation Theory and Its Applications, in: Prog. Math., vol. 257, Birkhäuser/Springer, New York, 2014, pp. 385-418.
[11] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008) paper 036, 3 p.

[^0]: म̂ The first named author was partially supported by Institut des Hautes Études Scientifiques, France and Grant-in-Aid for Scientific Research (A) (25247006), Japan Society for the Promotion of Science. All three authors were partially supported by CNRS Grant PICS No. 7270.

 E-mail addresses: toshi@ms.u-tokyo.ac.jp (T. Kobayashi), toskubo@ms.u-tokyo.ac.jp (T. Kubo), pevzner@univ-reims.fr (M. Pevzner).
 http://dx.doi.org/10.1016/j.crma.2016.04.012
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

