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The paper contains generalizations of the Latimer-MacDuffee theorem and the 
Chevalley-Hasse-Noether theorem. It shows that the two theorems are closely 
related to each other by means of a duality, which depends on simultaneous actions 
of the idele groups on maximal orders in central simple algebras and on embed- 
dings of maximal commutative subrings into such orders. ‘p 1990 Academic press. 1~. 

INTRODUCTION 

The purpose of the paper is to generalize two well-known theorems 
about orders and to point out very close connections between them. 

The first theorem was published by C. G. Latimer and C. C. MacDuffee 
in 1933 (see [6,9]): 

(0.1) THEOREM. Let A = M,(Z) and let S= Z[e], where f(0) = 0 for a 
manic separable polynomial f E Z [ X] of degree n. Then there is a one-to-one 
correspondence between the A* = GL,(Z)-orbits on the (ring-)embeddings of 
S into A and the ideal classes of S. 

Notice that if cp: S -+ ,4 is an embedding, then the action of A* is defined 
by conjugation, that is, (cpoA)(X) =A-‘q(x) ;1 for XE S and 1.~ A*. Of 
course, there is a bijection between the embeddings and the solutions to 
f(X) = 0 in A. 

The second theorem was published independently by C. Chevalley, 
H. Hasse, and E. Noether in 1934 (see [3, 5, 71). It gives a characterization 
of a class of ideals in maximal orders of finitely dimensional central simple 
algebras over global fields, which are extended from ideals in maximal 
commutative suborders. E. Noether defined in her paper a bouquet of 
orders (in German “Gebiet” but a better non-reserved English term seems 
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to be difficult to find) as a family of all maximal orders in such an algebra 
A having the same intersection S with a given maximal commutative 
subfield L of A and such that the completions of the orders in that family 
are equal at all ramification points of A. In terms of bouquets the 
Chevalley-Hasse-Noether theorem can be formulated in the following way 
(see [7, Sect. II, Satz 2; Sect. III, Satz 11): 

(0.2) THEOREM. Let A be a finitely dimensional central simple algebra 
over a global field K and let S be the maximal order in a maximal com- 
mutative subfield of A. If A and A’ are two orders belonging to a bouquet of 
S, then there is an S-ideal a in L such that A’a = a/l. 

Note that one can write A’= aAa-‘, and then the theorem says that A 
and A’ belong to the same orbit of the group of S-ideals acting by conjuga- 
tion on the maximal orders containing S. 

The first theorem can be easily generalized by means of a result proved 
by Chevalley and used by him and Hasse in their proofs of the second 
theorem (see (2.2)). The Latimer-MacDuffee theorem is valid when Z is 
replaced by any principal ideal domain R, and S by any R-order in a 
commutative semisimple algebra of dimension n over the quotient field K 
of R (see (2.3)). 

The second theorem also has a far-going generalization. Replacing K by 
the quotient field of any Dedekind ring R, L by any maximal commutative 
semisimple subalgebra of A, and modifying the notion of bouquet to 
consist of maximal orders whose completions are equal at each point where 
the algebra is not split, we get that the Chevalley-Hasse-Noether theorem 
is valid for every Gorenstein order S in L (see (2.6)). 

Still the most interesting point is that the two theorems are essentially 
dual in a suitable sense, so each of them is an easy consequence of the 
other one. The duality follows from the fact that the idele group of A acts 
by conjugation both on maximal orders in A and on the embeddings of S 
into A. This makes it possible to apply a purely combinatorial class 
number formula for transitive actions of groups on pairs of sets proved 
in [2]. The two theorems can be translated to some quantitative 
statements related to the actions of the idele group and then connected by 
the class formula (see (2.9)). 

In Section 1 we introduce the basic notions and the terminology. In 
Section 2 we prove the general versions of the two theorems and explain 
relations between them. In Section 3 we extend the Latimer-MacDuffee 
theorem still further, obtaining a generalization to the case of arbitrary 
global fields. 
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1. PRELIMINARIES 

First, following [2], we recall some necessary facts concerning actions of 
groups on pairs of sets. 

Let Xx G + X and G x Y -+ Y be actions of a group G on two sets X and 
Y, that is, x(g, g2) = (xg, ) g, and xe = x when x E X, g,, g, E G and e is the 
neutral element of G. Similarly for the action of G on Y. We assume that 
both actions are transitive. 

Let 9 E Xx Y be a relation such that (xg, y) E 9 if and only if 
(x, gy) E 9. We shall say that .%?-(A’, G, Y) is a G-relation. If x E X, denote 
G(x)= {gEG:xg=x} and .3?(x)= (YE Y:(x,y)~&?}. Define similarly 
G(y)anda(y)whenyEY.LetE(x,y)=(gEG:(xg,y)E~}(weshallalso 
write E,(x, y) when necessary). If E is a subset of G consisting of whole 
double cosets AgB, where A, B are subgroups of G and g E E, then A\E/B 
denotes the set of all such double cosets in E, and IA\E/BI its cardinality. 

Let (x, y) E 9 and let N be a subgroup of G(x). It is easy to see that N 
acts on 66?(x). The orbits of N on .9?(x) are in a one-to-one correspondence 
with the elements of the set N\E(x, y)/G(y), whose cardinality will be 
denoted by e,(x, y). Similarly, if N is a subgroup of G(y), e,(x, y) will 
denote the cardinality of the set G(x)\E(x, y)/N, whose elements are in a 
one-to-one correspondence with the orbits of N on .3’(y). These remarks 
imply the following “duality”: 

(1.1) PROPOSITION. Let (x, y) E 9. Then the orbits of G(x) on W(x) and 
G(y) on 94?(y) are in one-to-one correspondences with the elements of 
G(x)\E(x, yW(y), that is, e,,,,(x, Y) = e,,,.,b, Y). 

We shall work with actions of groups related to algebras over quotient 
fields of Dedekind rings. Recall some relevant notions. Let R be a 
Dedekind ring with quotient field K, and let A be a finitely dimensional 
separable K-algebra. If M is an R-module, then M, will denote the comple- 
tion of M with respect to the topology defined by the non-zero prime ideal 
p of R. Let A be an R-order in A, that is, a subring of A containing R, 
finitely generated and projective as an R-module and such that KA = A. Let 
f(A) be the idele group of A, that is, ,f(A) consists of c( = (a,) such that 
aP belongs to the group of units A$ for non-zero n E Spec R and a,, E Ap* for 
almost all such p. The idele group acts on the R-orders in A: If 
c1= (a,)Ey(A), then CA-’ denotes the R-order such that (aAcr-‘), = 
a,fl,a;’ for each p E Spec R. The existence and uniqueness of CUICC - ’ 
follow from the “local-global principle”: For each R-order A there is a 
unique R-order A’ such that A;= A, for almost all p E Spec R and A; is 
equal to an arbitrarily chosen R,-order for the remaining p (see [4, (4.21)]). 
Two R-orders A and A’ such that A’ = ct/lcl~ ‘, u E d( A ), are said to belong 
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to the same genus of orders. It is well known that the maximal R-orders 
form one genus (see [4, (26 .23)] ). 

Let S be an R-order in a commutative K-algebra L. An R-embedding 
cp: S -+ /1 is called optimal (pure) if n/q(S) is R-projective. It is easy to see 
that cp is optimal if and only if K&S) n /1 = p(S). This condition is clearly 
satisfied if q(S) is a maximal commutative subring of A. If cp is optimal, we 
shall say that n contains q(S) optimally. 

The general situation described at the beginning of this section appears 
later in two special cases. 

(1.2) EXAMPLES. (a) Let S be a maximal commutative subring of a 
maximal R-order /1 in A, and let L=KS. Let G=y(A), X= the set of 
cp = (cp,) such that ‘pP: S, --) A, is given by q,(x) =u;ixaP, where 
CI = (a,) E y(A), Y = the set of the orders /1’ = ancr-‘, c1 E y(A), that is, the 
set of all maximal R-orders in A. The actions Xx G + X and G x Y + Y are 
defined by 

k?“4,(4=q3Ppb-) ql and Cl0A’=CrA’C’. 

Let 

w  = { (cp, A’): ‘pp: s, -+ /iI, and (pP is optimal}. 

It is easy to check that W-(X, G, Y) is a G-relation. Let x = (id,J and 
y= A. We shall write x = S for simplicity. Then G(S) = f(L) the ideal 
group of L, R(S) = the set of maximal orders optimally containing S, 
G(n) = {H E gZ(A):aAa-’ = A} = : N(n), and B(n) = the set of optimal 
embeddings cp = (cp,) such that ‘pP: S, + AP. Only the first equality needs 
an explanation. We have 

G(S)= {cr~y(A):V ,a,x=xa, for xES,) 

= B(A) n n,L; = Y(L), 

since up commuting with each element of the maximal commutative 
subring L, = K,S, of A, must belong to L,. Moreover, a, E L, n AZ = Sz 
for almost all p E Spec R. 

We shall apply (1.1) when A=M,(R). Let %(/1)=17,/1,*, pESpecR. 
Then eMc,,(S, A) = eacAl(S, A), since N(,4,) = (a E A,*:aA,a-’ = A,} = 
Kp*/lp* implies that the orbits of Jr/-(n) and %‘(A) are the same. Thus 

(1.3) e,&S, A) = euwcAj(ST A) = ey&X A) 

according to (1.1). 
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(b) Keeping the notations as above, let .4 = M,(R). Let G = A*, 
X= the set of all embeddings cp: S -+A such that cp(x)=a-‘xa, where 
a E A*, Y = the set of all orders A’ = &a-‘, a E A *. Define the actions of 
G on the two sets and 9 similarly as in (a) (removing p). Of course, 
9-(X, G, Y) is a G-relation. Now G(S)= L* and G(/1)=N(I1)= 
{u~A*:u~u~~=/i} = K*A*. Noting that the orbits of N(/i) and A* on 
a(/l) are the same and using (l.l), we now get 

(1.4) e,,(S, A) = e,(,,(S, A) = e,*(S, A). 

Finally, recall that there is a general relation between the numbers of 
orbits on optimal embeddings and the class numbers 

(1.5) 
k=l 

when all the components are finite. /Ik represent the isomorphism classes of 
maximal orders in A. H(/ik) is the two-sided class number of nk, that is, 
the order of the group of the two-sided .4,-ideals modulo principal two- 
sided /1,-ideals. e,,& S, A,) is the number of optimal embeddings of S into 
Ak modulo the action of A,*. /I(~)(S) is the locally free class group of S, 
that is, the order of the group of locally free S-ideals in L modulo the 
principal S-ideals. e sCnI(S, A) is the number of local optimal embeddings 
cp=((pP), cp,:S,+A, modulo the action of%(/i)=ZZ,nf, p~Spec R (see 
CL (2.2)1 J. 

2. THE LATIMER-MACDUFFEE THEOREM AND 
THE CHEVALLEY-HASSE-NOETHER THEOREM 

Let R be a Dedekind ring with quotient field K, and let S be an R-order 
in a semisimple commutative K-algebra L. By an S-ideal we shall always 
mean an S-ideal I in L such that KZ= L. Two S-ideals Z and I’ are in the 
same class if there is a EL* such that I’ = al. Z is locally free if there is 
E-E y(L) such that I= Sa. The cardinality of the multiplicative group 
formed by the classes of locally free S-ideals will be ‘denoted by h’-“(S) 
(compare (1.5)). An S-ideal Z belongs to S if O(Z)= {a~ L:uZEZ} =S. 
Denote by h(S) the cardinality of the set of classes formed by the S-ideals 
belonging to S. The classes of all S-ideals form a set whose cardinality 
is C,.h(S’), where S’ are all R-orders in L containing S. Occasionally, we 
call this sum the wide class number of S and denote it by ZzC’“)(S). Recall 
that S is called a Gorenstein order if Hom,(S, R) is S-projective (see 
C4, P. 7761). 
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(2.1) PROPOSITION. (a) h”)(S) = h(S) if and only if S is Gorenstein. 

(b) If R is a discrete valuation ring, then h(S) = 1 tf and only tf S is 
Gorenstein. 

(c) h(S) = hCf’(S) Z7,h(S,), where the product is over all non-zero 
peSpec R 

Proof: For (a) and (b) see [l, (2.3) and (2.7)]. For (c), let 
X= (p ~Spec R:p # (0) and S, is not Gorenstein}. X is finite (possibly 
empty) since S, is maximal in L, for almost all p E Spec R. Let Ik represent 
all classes of locally free S-ideals and let I+,, represent all classes of 
S,-ideals belonging to S, for p E X. Consider S-ideals equal to the product 
of Zk for some k by an S-ideal Z such that I+, = S, for p #X and I, = Z,,t for 
p EX and some 1. The existence and uniqueness of so defined S-ideals 
follow from the “local-global principle” for lattices over Dedekind rings 
(see [4, (4.21)]). The set of them has cardinality h’/‘(S) L!,h(S,) and it is 
easy to check that they represent all h(S) classes of the S-ideals belonging 
to s. 

The following lemma was used by Chevalley and Hasse in their proofs 
of (0.2) (see l-3, p. 87; 5, p. 143). The result is similar to the Skolem- 
Noether theorem and it can be proved in a similar way (see [4, (3.62)]). 
We give a short proof for completeness. 

(2.2) LEMMA. Let A = M,,(K) and let L be an n-dimensional commutative 
semisimple K-algebra. Then any two K-embeddings cpi: L -+ A, i= 1,2, are 
A*-equivalent, that is, there is a E A* such that cpJx) = acp ,(x) a-’ for x E L. 

Proof: Fix an isomorphism A g End,(K”) and let KS, be K” considered 
as an L-module via ‘pi. The two L-modules are L-isomorphic (to L) since 
each simple L-module must be represented in the decomposition of Kz, 
exactly once (dimension over K!). Choose as a the matrix of the 
isomorphism between the two L-module structures on K”. 

We are now ready to prove the Latimer-MacDuffee theorem: 

(2.3) THEOREM. Let A = M,(R), where R is a principal ideal domain and 
let S be an R-order in an n-dimensional commutative semisimple K-algebra 
L. Then there is a bijection between the classes of S-ideals in L and the orbits 
of A* on the R-embeddings of S into A such that a A*-orbit consists of 
optimal embeddings tf and only tf the corresponding ideal class consists of 
ideals belonging to S. 

Proof: Let cp: S--f A be an R-embedding. According to (2.2), there is a 
basis U= (u,, . . . . u”) for L over K such that IU= &p(l) when Ie L. Hence 
I, = Ru, + ... + Ru, is an S-ideal. If U’ is another basis satisfying 
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IU’ = U’cp(l), then U’ = aU for some a EL*, so I,, and I, are in the same 
class. In fact, there is XE G&(K) such that U’ = UX, so IU’ = Uq(Z) X= 
U’cp(l)= UXq(I). Hence q(Z) X=Xq(Z) for 1~ L. But q(L) is a maximal 
commutative subring of A, so XE q(L). If X= q(a), aE L*, then 
U’ = Ucp(a) = au. Define the class of I, as the class of S-ideals correspond- 
ing to cp. If cp’: S + A is another embedding A*-equivalent to cp, that is. 
q’(l) = M-Iv(l) M for some ME A* and all I E S, then IUM = Ucp( I) M = 
UMq’(l). But I,, = I,, so cp’ and cp define the same class of S-ideals. Thus, 
we have a mapping from A*-classes of embeddings to L*-classes of 
S-ideals. 

It is clear that for each S-ideal Z= Ru, + + Ru,, the equality 
1U = U&l) defines an R-embedding cp: S + A. If U is replaced by another 
basis U’ = UE, E E A*, then cp is replaced by cp’, which is A*-equivalent to 
cp. If I’= al, aE L*, then aU defines the same q, since l(aU) = (au) q(l). 
Thus each class of S-ideals defines a A*-class of embeddings. 

Clearly the two functions between the sets of A*-classes of embeddings 
and L*-classes of S-ideals are inverse to each other. It remains to prove the 
last statement concerning optimal embeddings and ideals belonging to S. 

Let cp be an optimal embedding and let U be a corresponding basis. If 
II, c I,, then lU= Uq(l) gives q(Z) E A n q(L) = q(S), so 1 E S, that is, I, 
belongs to S. Conversely, let Z belong to S and let U be an R-basis of I. 
If q(Z) E A, then lU= Uq(Z) gives 1Zc Z, so ZE S, that is, A n q(L) = q(S). 

(2.4) Remarks. (a) Using the notations of (1.2) (b), the last part of 
Theorem (2.3) says that e,,.(S, A)=h(S). This statement will be called 
the strong Latimer-MacDuffee theorem. If S’ denotes an R-order in L 
containing S, then the set of A*-orbits of all embeddings S + A has the 
cardinality Cs.e,,*(S’, A), and the set of classes of all S-ideals has the 
cardinality &h(S) = h’““(S). The Latimer-MacDuffee theorem, that is, 
the first part of (2.3), establishes the equality of the last two sums, which 
follows immediately from the strong version. 

(b) If R=7 and S=h[e], wheref(8)=0 for a manic separable 
polynomial f~ Z[X] of degree n, then the first part of (2.3) is the original 
version of the Latimer-MacDuffee theorem, since the embeddings 
H[0] + M,(Z) are in a one-to-one correspondence with the solutions to 
f(X) = 0 in M,(Z). Note that Z[e] is a Gorenstein order, since 
Hom,(E[B],Z)rZ[8]#=(1/~(8))B[e], where H[@#={xEQ[KJ: 
Tr(xE[e] E z} and Tr:Q [0] + Q is the trace function. Therefore, 
according to (2.1) (a), h(S) = hcf’(S). 

The dual of the Latimer-MacDuffee theorem is the following result: 

(2.5) THEOREM. Keeping the notations of (2.3) let L c A and S = L n A. 
Then there is a bijection between the classes of S-ideals in L and the orbits 
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of L* on the maximal orders containing S such that an L*-orbit consists or 
orders optimally containing S tf and only if the corresponding ideal class 
consists of ideals belonging to S. 

Proof According to (1.4) and (2.4) (a), e,,(S, /1) = e,.(S, /i) = h(S), so 
there is a bijection between the L*-orbits on maximal orders optimally 
containing S and the ideal classes of S-ideals belonging to S. Let S’ denote 
an R-order in L containing S. The set of all maximal orders containing S 
is the disjoint union of the sets of maximal orders optimally containing S’. 
Therefore, the set of orbits of L* on the maximal orders containing S has 
the cardinality &,eL,(S’, ,4) = &h(S’) = h’“‘(S). 

Of course, it is possible to prove (2.5) directly and then deduce the 
Latimer-MacDuffee theorem (2.3) by using (1.4). 

We now turn to the Chevalley-Hasse-Noether theorem. Let A be a cen- 
tral simple K-algebra, and let S be an R-order in a maximal commutative 
semisimple subalgebra L of A. Recall that two maximal orders /1 and A’ 
belong to the same S-bouquet if /1 n L = A’ n L = S and /1, = Ai, for each 
p E Spec R such that A, is not split over K,. 

(2.6) THEOREM. Let R be a Dedekind ring with quotient field K, and let 
A be a finitely dimensional central simple K-algebra. Let S be an R-order in 
a maximal commutative semisimple K-subalgebra L of A. Then all maximal 
orders in the same S-bouquet belong to the same f(L)-orbit tf and only tf S, 
is a Gorenstein order for each p E Spec R such that A, is split over K,. 

Proof. Let /1 and A’ be maximal orders belonging to a bouquet of S. 
We want to find a= (a,) Ed such that /i’= ~/la-‘. For almost all 
p, A+, = J,, and then one can take ap = 1. For a finite number of remaining 
p, A, is split and nk = ,4,. If S, is Gorenstein, then according to (2.5) and 
(2.1) (b), e,;(S,, /iP)= h(S,)= 1, so L,* acts transively on the bouquet of 
S,. Therefore, one can find a,E Lp* such that Ab=a,A,a;‘. If S, is not 
Gorenstein, then h(S,) # 1 by (2.1) (b), so there are at least two orbits for 
the action of Lp* on the bouquet of S,. If A’ is such that nb and /1, belong 
to different L,*-orbits, then ,4’ # Cma-’ for all a E x(L), that is, /1’ and n 
are in different orbits of j(L). The existence of /1’ with the above property 
follows from the “local-global principle” (see Section 1). 

(2.7) Remark. Note that f(L) acts on the set of all maximal orders 
optimally containing S. The action of d(L) can be replaced by an action 
of the group I(S) of locally free S-ideals. In fact, mapping an idele a E y(L) 
onto a locally free S-ideal Sa, one gets a surjective homomorphism with 
kernel UP Sz = a(S). Since a(S) acts trivially on any (maximal) order 
containing S, there is a natural action of I(S) on these orders. Thus the 
statement of (2.6) may be formulated in the language of ideals as in (0.2). 
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If A is a matrix algebra, then the Chevalley-Hasse-Noether theorem can 
be extended by a more specific quantitative result. 

(2.8) THEOREM. Keeping the assumptions of (2.6), let A = M,(R). Then 
the cardinality of the set of y(L)-orbits on the maximal orders optimally 
containing S, or equivalently, the cardinality of the set of %(A)-orbits on the 
optimal embeddings S, + A p, p E Spec R, is equal to IT, h( S, ). 

Proof. Let us show that egcLj(S, /1) = ZI,h(S,). S, is the maximal order 
in L, for almost all p E Spec R, and then h(S,) = 1. For each of the finitely 
many p such that h(S,) # 1 choose h(S,) orders representing all L,*-orbits 
on the S,-bouquet (see (2.5)). Consider Z7,h(S,) orders A’ such that n; is 
equal to one of the chosen R,-orders when h(S,) # 1 and /ib = /1, when 
h(S,) = 1. The existence and uniqueness of such orders A’ follow from the 
“local-global principle” (see Section 1). It is easy to see that the orders /1’ 
represent all orbits of y(L) on the S-bouquet. 

(2.9) Remark. If /i = M,(R), where R is a principal ideal domain, then 
the Latimer-MacDuffee theorem and the Chevalley-Hasse-Noether 
theorem are closely related by the duality of (1.1). In this case (1.5) reduces 
to 

e,.(S, A) = h(f)(S) e wf,(S? ‘4 ), 

since t = 1 and H(/i ) = 1. The strong Latimer-MacDuffee theorem says 
that en*(S, .4) = h(S). The Chevalley-Hasse-Noether theorem, as in (2.8), 
says that edcLj( S, /1) = 17,h(S,), p E Spec R. If the first of the theorems 
holds, then using (1.3) and (2.1)(c), we get 

Similarly, the second of the theorems implies the first. 

3. A FURTHER GENERALIZATION 

What can be said about e,.(S, A) when in the Latimer-MacDuffee 
theorem (2.3) the principal ideal ring R is replaced by a Dedekind ring? In 
this section, we give an answer to this question assuming, for simplicity of 
formulations, that K is a global field. But, in fact, all results and proofs 
which follow are valid for arbitrary Dedekind rings, when the cardinalities 
involved in (1.5) are finite. 

Keeping the notations of (2.3), let Nr: L -+ K be the norm map and 
Nr: A + K the reduced norm map (see [4, Sect. D] and observe that 
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Nr(a) = det(a) for a E A = M,(K)). If I is an S-ideal in L or a A-ideal in A, 
denote by Nr(Z) the R-ideal generated by Nr(x), XEZ. Let Cl(R) denote 
the class group of R, and let h,(R)= ICI(R)“l(h,(R)=h(R)). If a is an 
R-ideal, its class in Cl(R) will be denoted by [a]. Let Cl,(R) be the 
subgroup of Cl(R) generated by the classes [Nr(Z)], where I is an 
S-ideal belonging to S. Note that if a is an R-ideal, then Nr(aS) = an, so 
C1(R)n is a subgroup of Cl,(R). If P is a finitely generated projective 
R-module, let [P] denote the Steinitz class of P in Cl(R), that is, if 
Pra,@ ... @a,, where ak are R-ideals, then [P] = [a, ..’ a,] (see [4, 
(4.13)]). Note that if aEf(L), then [Sal = [S][Nr(Sa)] (see [4, Sect. 
Dl). 

The main result of this section is the following: 

(3.1) THEOREM. Let S be a Gorenstein R-order in L. Then there are 
h,(R)/h,(R) isomorphism classes of maximal orders A in A = M,(K) such 
that e,.(S, A) #O, andfor them e,.(S, A) = h(S)/h,(R). 

Proof First of all observe that by (2.1)(a) and (2.8), h’f’(S) = h(S) and 
e,%,,,(S, A) = 1, so the right hand side of (1.5) is h(S). In order to simplify 
the left hand side, note first that H(/ik) = h,(R) for k = 1, . . . . t. In fact, the 
two-sided A-ideals in any maximal R-order A are Aa, where a is an R-ideal 
(see [4, (26.23)]). It is well known that Aa is principal if and only if 
Nr(Aa) = a” is principal (see [8, p. 3861 where K need not be global). 
Therefore, the mapping Aa H [a”] induces an isomorphism of the two- 
sided class group of A with Cl(R)“. 

In order to simplify further the left hand side of (1.5) and to finish the 
proof of (3.1), we only need the following result, which we prove as 
Propositions (3.2) and (3.4): en&S, Ak) is the same for all k for which it is 
different from 0 and it happens for exactly h,(R)/h,(R) values of k. 

(3.2) PROPOSITION. e&S, Ak) # 0 for h,(R)/h,(R) values of k. 

Proof First of all, let us note that if Z is an S-ideal in L such that 
KZ= L, then the natural R-homomorphism S-r End,(Z) is an optimal 
embedding if and only if Z belongs to S. It follows easily from the proof of 
(2.3) using localizations at p E Spec R. 

Next observe that if S--t End,(P) is an embedding, where P is a projec- 
tive R-module of rank n, then P as an S-module is isomorphic to an S-ideal 
Z in L. In fact, KOR P is an L-module whose annihilator is trivial, so 
KOR Pr L as L-modules, since the dimensions of both modules over K 
are equal. Thus P considered as an S-submodule of KOR P is isomorphic 
to some S-ideal Z in L. 

We also need the following result: 
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(3.3) LEMMA. Zf P is a projective R-module of rank n, then there is an 
optimal embedding S + End,(P) if and only if [P] = [S][Nr(Z)] for some 
S-ideal Z in L belonging to S. 

Proof. Let S + End,(P) be an optimal embedding. Then according to 
the observations above, Pr Z, where Z is an S-ideal in L belonging to S. 
Since S is Gorenstein, Z is locally free, that is, there is cx E f(L) such that 
Z= SK Thus [P] = [Scl] = [S][Nr(Sx)]. Conversely, if the last equalities 
hold, then Pr Sa as R-modules. Hence P has a structure of an S-module, 
and as such, it is isomorphic with an S-ideal belonging to S. Thus the 
embedding S + End,(P) corresponding to this structure is optimal. 

We are now ready to finish the proof of (3.2). It is well known that 
/1, E End,(Pk), where Pk are projective R-modules of rank n such that 
[Pk] represent all cosets of C1(R)n in Cl(R) (see [4, (26.25; 8, Satz 3, 
p. 3861). As we have seen in (3.3), there is an optimal embedding S+ A, 
if and only if there is an S-ideal Zk belonging to S such that 
CPkl = CslPWk,)l. Let CSI, d enote the image of [S] in Cl(R)/Cl( R)“. 
Then the elements of Cl(R)/Cl(R)” corresponding to k for which there 
is an optimal embedding S + /i, are exactly the elements of the coset 
[S],(Cls(R)/C1(R)“) in Cl(R)/Cl(R)“. 

(3.4) PROPOSITION. Zf e,;(S, Ak) ~0, then its value does not depend 
on k. 

Proof. Let ,4 be a maximal order such that e,,(S, /1) # 0 and S c A. 
Then using (1.2)(b), e,,*(S, A) = IL*\E,*(S, n)/n*l. Let in the notations 
of U.Na)~ E>,,,( S,A)= {aE%(A):(S, a o /i ) E 9 and a/i is principal >. It 
is easy to check that the mapping 

given by L*aA * I--+ L*a%(A ), where a = (a), is well defined and injective. 
But it is also surjective. Indeed, if a E E>,,,(S, /i), then a/i = aA for some 
aEA*. It is easy to check that aEEA.(S,A), so L*a%(A)=L*(a)%(A) is 
the image of L*aA*. 

Now let /1, = a,Aa,’ be such that cp: S+ Ak, where q(x) = 
a;‘xa,, ak E A*, is an optimal embedding. As for A, e,,;(S, A,) = 
IL,*\E>(,,(S,, n,)/%(n,)l, where L,=cp(L) and S,= q(S). It is easy 
to see that mapping L*a%(A) onto L,*(a;‘atx;‘)+Y(A,), one gets a 
bijection between L*\E>,,,(S, /i)/%!(n) and L:\E>,,,(S,, Ak)/42(A,), so 
e,&S, Ak)=eAS A). 



32 J. BRZEZINSKI 

REFERENCES 

1. J. BRZEZINSKI, Riemann-Roth theorem for locally principal orders, Murh. Ann. 276 (1987), 
529-536. 

2. J. BRZEZINSKI, A combinatorial class number formula, 1. Reine AngeM,. Malh., to appear. 
3. C. CHEVALLEY, Sur certains ideaux dune algebre simple, Abh. Math. Sem. Hamburger Univ. 

10 (1934), 83-105. 
4. C. W. CURTIS AND I. REINER, “Methods of Representation Theory,” Vol I, Wiley, 

New York, 1981. 
5. H. HASSE, Uber gewisse Ideale in einer einfachen Algebra, Act. Sci. Ind. Paris 109 (1934), 

12-16. 
6. C. G. LATIMER AND C. C. MACDUFFEE, A correspondence between classes of ideals and 

classes of matrices, Ann. of Mafh. 34 (1933), 3133316. 
7. E. NOETHER, Zerfallende verschrankte Produkte und ihre Maximalordnungen, Act. Sci. Ind. 

Paris 148 (1934), 5-15. 
8. 0. SCHILLING, Uber gewisse Beziehungen zwischen der Arithmetik hyperkomplexer 

Zahlsysteme und algebraischer Zahlklirper, Math. Ann. 111 (1935), 372-398. 
9. 0. TAUSSKY, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 3W302. 


