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Half of all patients with a disorder of sex development (DSD) do not receive a specific molecular diag-
nosis. Comparative genomic hybridization (CGH) can detect copy number changes causing gene hap-
loinsufficiency or over-expression that can lead to impaired gonadal development and gonadal DSD. The
purpose of this study was to identify novel candidate genes for 46,XY gonadal dysgenesis (GD) using a
customized 1 M array-CGH platform with whole-genome coverage and probe enrichment targeting 78

Keywords: genes involved in sex development. Fourteen patients with 46,XY gonadal DSD were enrolled in the
Array-CGH dy. Nine individual lyzed b CGH. All pati included in a foll i
C2ORFS0 study. Nine individuals were analyzed by array CGH. All patients were included in a follow up sequencing

study of candidate genes. Three novel candidate regions for 46,XY GD were identified in two patients. An
interstitial duplication of the SUPT3H gene and a deletion of C2ORF80 were detected in a pair of affected
siblings. Sequence analysis of these genes in all patients revealed no additional mutations. A large
duplication highlighting PIP5K1B, PRKACG and FAM189A2 as candidates for 46,XY GD, were also detected.
All five genes are expressed in testicular tissues, and one is shown to cause gonadal DSD in mice.
However detailed functional information is lacking for these genes.

© 2013 The Authors. Published by Elsevier Masson SAS. Open access under CCBY-NC-ND license.
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1. Introduction hormone (AMH) that causes regression of Miillerian structures

[5,6]. In absence of androgen signaling the external genitalia

During embryonic development, the gonad is initially formed as
bipotential. At gestational week 7—8 sex determination occurs,
when the somatic and primordial germ cells of the gonad differ-
entiate into ovarian or testicular cell types depending on the pre-
dominant activation of the RSPO1/WNT4 or SOX9/FGF9 signaling
pathways [1,2]. The SRY gene on the Y chromosome initiates the
differentiation towards testicular development by promoting SOX9
expression [3,4]. The testes secrete androgens that lead to the for-
mation of male internal and external genitalia, and antimiillerian
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develop into the female pattern [7].

Errors along this pathway will lead to different disorders of sex
development (DSD). One form of gonadal DSD is gonadal dysgen-
esis (GD) where testes or ovaries have failed to develop and in the
complete form, only streak gonads are present. Affected patients
present as females with normal female internal and external
genitalia regardless of chromosomal sex. Dysgenetic gonads in
46,XY subjects are at high risk of malignant transformation, thus
prophylactic gonadectomy needs to be considered [8—10].

There are several genes described that can cause 46,XY GD when
mutated. The most frequent genetic defects are SRY mutations/
deletions found in approximately 10—15% of all cases [11]. Muta-
tions of SOX9, NR5A1 and WT-1 are reported in GD [12—14], often in
association with other symptoms such as campomelic dysplasia,
adrenal disturbances, and kidney defects, respectively. NR5A1
mutations can present with a wide spectrum of DSD, from hypo-
spadias to complete GD [15]. Mutations of other genes, e.g. DHH and
TSPYL1 have been reported in a few cases [16,17]. In addition, copy
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number changes affecting NROB1, WNT4 and DMRT1 can cause GD,
either in isolated form, or with associated features depending on
the extent of the duplication/deletion [18—21].

Despite advances in the understanding of the genetic basis of sex
development and increased diagnostic possibilities, only approxi-
mately half of all DSD patients receive a molecular diagnosis [22,23].
It is therefore likely that several yet unknown factors are involved in
normal gonadal development. A common mechanism among factors
causing gonadal DSD is a dosage effect, where impaired or abnormal
gonadal development is caused by gene haploinsufficiency due to
inactivating mutations or gene deletions, or by gene over-expression
due to gene duplications. Genes found to affect gonadal develop-
ment are located not only on the sex chromosomes, like SRY and
NROB1, but also on autosomes [24]. Therefore, array-comparative
genomic hybridization (CGH) represents a useful and powerful
technique to identify submicroscopic genomic imbalances that could
cause GD, on a genome wide scale. In addition to genes already
known to be involved in gonadal development, identified gains or
losses could also include novel genes, thus unraveling new factors
involved in gonadal development.

The purpose of this study was to identify new potential candi-
date regions involved in gonadal development by detecting sub-
microscopic genetic imbalances in patients with complete 46,XY
GD. Using a customized 1 M array-CGH platform with whole
genome coverage and 2.2 kb average probe spacing, we expected to
find very small copy number alterations. The high resolution is
important as even small, single or partial gene dosage alterations
can cause gonadal DSD [25,26]. Our platform is enriched with
probes targeting 78 genes involved in gonadal development. This
allows for rapid screening of known candidate genes at increased
resolution. This array-CGH platform has the highest resolution
compared to other platforms for detection of copy number changes
that have previously been applied to patients with XY GD. In
addition to single reports [18,27], also three studies with larger
groups of patients presenting with various forms of DSD have been
described [23,28,29], resulting in the identification of known and
potentially causative aberrations in approximately a third of the
patients (36%, 22% and 21.5% respectively).

Using a customized 1 M array-CGH platform, we investigated a
selected group of patients with complete GD for novel copy number
changes potentially causing gene haploinsufficiency or over-
expression. Candidate genes identified by array-CGH, where the
patient has a likely haploinsufficiency, were further investigated by
sequencing in the entire group to identify possible loss of function
mutations.

2. Materials and methods
2.1. Patients

14 patients with 46,XY gonadal DSD were selected for inclusion
in the study among the DSD patients referred to the clinical genetic
laboratory of Karolinska University Hospital, Stockholm, Sweden.
The group consisted of 13 patients with 46,XY GD, including a pair
of affected siblings. We also investigated one patient with 46,XY
ovotesticular DSD. Of these 14 patients, DNA samples of good
quality for array-CGH analysis were available from nine unrelated
patients with 46,XY GD. All 14 patients were included for the follow
up study of candidate genes. The regional Ethics Committee at the
Karolinska Institutet, Sweden, approved the study and all partici-
pants gave written informed consent.

The clinical diagnosis of GD was based on a XY karyotype, fe-
male external genitalia, internal Miillerian structures (uterus) and
hypergonadotropic hypogonadism. In addition to GD, one patient
also presented with neuropsychiatric problems, cleft palate and

juvenile chronic arthritis. The other patients had isolated complete
GD. The patient with 46,XY ovotesticular DSD presented with an XY
karyotype, female external genitalia as well as a small phallus,
uterus, one gonad resembling a testicle, and one gonad with both
testicular and ovarian tissue.

Sex chromosome mosaicism was excluded using fluorescent in
situ hybridization (FISH) with DNA probes from chromosome X and
Y on peripheral blood smears and when available, on touch prep-
arations from gonadal tissue. Sequence analysis of SRY, NR5A1, WT1,
and MLPA analysis targeting the 9p24 region, NR5A1, SRY, SOXO9,
WNT4, DHH, WT1, NROB1 and other DSD genes [25,30,31] were
performed in all patients.

2.2. DNA extraction

DNA was extracted from peripheral blood lymphocytes. All
samples were analyzed for concentration and quality using a
Nanodrop 1000 spectrophotometer. Some samples were further
purified using the QiAmp DNA minikit (QIAGEN), to achieve
acceptable values for array-CGH analysis.

2.3. Array-CGH

Nine unrelated patients with 46,XY GD were analyzed using our
customized 1 M oligomarkers array-CGH platform developed at
Oxford Gene Technology (OGT). In addition to whole genome
coverage, the platform is enriched with probes targeting 78 genes
implicated in sex development (Supplementary Table 1).

Preparation of labeled DNA and subsequent hybridization were
performed according to the “Agilent oligonucleotide array-based
CGH for genomic DNA analysis” protocol (v6.2). In short, 2.5 pg of
patient or control DNA were labeled with Cy5-dUTP or Cy3-dUTP
respectively, using the ENZO labeling kit (AH diagnostics) with
Klenow Exo-DNA polymerase. Labeled DNA was cleaned using the
QiaQuick PCR purification kit (QIAGEN). Patient and control DNAs
were pooled, 50 pg of Human Cot-1 DNA (Invitrogen) were added
together with blocking agent and 2x hybridization buffer (Agilent
Technologies) prior to hybridization for 48 h at 65 °C in the hy-
bridization oven (Agilent G2545A). A commercial DNA sample with
pooled human genomic DNA from 10 male controls (Promega) was
used as reference DNA.

Data was analyzed using the Cytosure interpret software v3.4.3
(OGT). Circular Binary Segmentation analysis to detect copy num-
ber changes was performed using the following parameters; min-
imum probe count: 5, threshold for gains: 0.35, threshold for
losses: 0.65, chromosome average method: median segment.

By comparing data with the online Database of Genomic Vari-
ation (DGV) [32,33], common copy number variants (CNV) found in
normal controls were excluded from further investigation. How-
ever, aberrations only partially overlapping with rare reported
CNVs were not excluded. Small intronic variations and aberrations
not affecting genes were excluded after verification that they were
not located just upstream or downstream a known gene causing
DSD as a positional effect should then be considered.

2.4. Database search

For all identified candidate genes the following databases were
searched for information. Data, when available, is presented in the
discussion section.

NCBI (http://www.ncbi.nlm.nih.gov/) including PubMed, UCSC
(http://genome.ucsc.edu/) [34], GeneCards (http://www.genecards.
org/), The Human Protein Atlas (http://www.proteinatlas.org/) [35],
Gene expression profiles during sex determination by Dr. Serge Nef
(http://nef.unige.ch/microarrays.php) [36], DECIPHER (Database of
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Table 1
Array-CGH results.
Pat. no. Chr. band Start End Size (kb) Probe count Del/dup Gene(s) Inheritance
1 — — — — — — — —
2 2p23.1 31452728 31707641 255 85 Dup XDH, SRD5A2* Paternal
3 6p21.1 44996834 45215062 217 104 Dup SUPT3H" Maternal®
2q34 208743127 208765512 22 10 Del C20RF80 Maternal®
4 — — — — — — — —
5 12921.31 79153498 79256353 103 36 Del OTOGL N.D.
6 9q21.11 70736778 71197088 454 175 Dup PIP5K1B, PRKACG, FXN, TJP2, FAM189A2° N.D.
7(1 _ _ _ _ _ _ _ _
8 — — — — — — — —
9 — — — — — — — —

All coordinates given in NCBI36/hg18 build Chr. Band., chromosomal band; N.D., not determined.

¢ Previously reported as normal variant.
b Ppartially overlapping with CNV.
€ Also detected in affected sister with 46,XY GD.

4 Presenting with neuropsychiatric problems, cleft-palate, juvenile chronic arthritis in addition to 46,XY GD.

Chromosomal Imbalance and Phenotype in Humans Using Ensembl
Resources) (http://decipher.sanger.ac.uk/) [37].

2.5. MLPA (multiplex ligation-dependent probe amplification)

All copy number variations that remained after exclusion
criteria were confirmed by MLPA [38]. Probes were designed ac-
cording to the recommendations by Stern et al. [39] using two
probes per aberration. Probes were combined in several probe sets,
all including four control probes (RELN2, PCLN16, RB1 and CREBBP)
and a sex chromosome specific probe (Supplementary Table 2).

MLPA reactions were performed according to the EK1 reagent
kit (MRC-Holland) recommendations using 200 ng of DNA and the
in-house designed probe set. The commercial DNA sample used for
array-CGH and a sample from one healthy 46,XX female were used
as controls.

PCR products were separated by capillary electrophoresis on an
ABI 3100 genetic analyzer and trace data analyzed using Gene-
Mapper v3.7 software (Applied Biosystems).

Trace data were exported and analyzed in an Excel 2007
spreadsheet. Each sample’s peak heights were normalized to the
average peak height of the reference probes and subsequently
normalized to the average peak height of the control samples. The
analysis was accepted if the ratio for reference probes was between
0.8 and 1.2. Threshold values for deletions and duplications were
set at 0.75 and 1.25 respectively.

2.6. RNA extraction and RT-PCR analysis

Total RNA was extracted from EBV-transformed lymphocytes us-
ing the RNeasy kit (QIAGEN) including the DNAse digestion step. First
strand synthesis was performed with the First-Strand cDNA synthesis
kit (Amersham Biosciences) with 1 pg of total RNA and random
hexamer primers in a final reaction volume of 15 pl. The DNA/RNA
strand was subjected to PCR reaction with DyNAzyme EXT polymer-
ase (Fischer Scientific) using different primer pairs (Supplementary
Table 3) designed with Primer 3 software (v0.4.0) [40].

RT-PCR products were cleaned with Exonuclease 1 and Shrimp
Alkaline Phosphatase (Thermo Scientific) and sequenced using the
ABI BigDye Terminator v3.1 kit (Applied Biosystems) according to
the manufacturer’s instructions. Fragments were separated on a
3730 DNA Analyzer (Applied Biosystems).

2.7. Sequencing of C2ORF80 and SUPT3H

The 9 exons of the C20RF80 gene and the 13 exons of the SUPT3H
gene, including intron/exon boundaries, were amplified by PCR

using DyNAzyme EXT polymerase. Primers were designed using
Primer 3 software [40] (Supplementary Table 4).

PCR products were cleaned and sequenced as described above.
Electropherograms were analyzed against the reference sequence
NM_001099334.2 for C20RF80, NM_181356.2 and NM_003599.3
for SUPT3H using the SeqScape v2.5 program (Applied Biosystems).

3. Results
3.1. Array-CGH

DNA samples from nine unrelated patients with 46,XY GD were
analyzed by array-CGH. A total of 455 aberrations were detected,
with an average of 51 changes per patient (range 27—78) with size
ranging from 3 kb to 1266 kb. Of these, 450 were excluded because
they constituted common CNVs, intergenic changes or intronic
variations. Four of the nine analyzed patients had novel copy
number alterations, with a total of five rearrangements (Table 1).
Four rearrangements constitute candidate regions for gonadal
dysgenesis (Fig. 1). The fifth is a previously described duplication of
the SRD5A2 gene that is inherited from the patient’s father, and is
considered a benign variant [30].

3.2. MLPA

Novel copy number alterations were confirmed by MLPA. When
available, parental samples were analyzed for inheritance pattern.
The findings in patient 3 were also confirmed by MLPA to be pre-
sent in her affected sister, and been inherited from the mother.

3.3. SUPT3H expression and duplication characterization

The duplication within the SUPT3H gene was detected in the pair
of siblings. By MLPA, we established that it extends from exon 5 to
12. Due to the large intron size, MLPA was not considered appro-
priate for further characterization. We hypothesized an interstitial
duplication and verified this by RT-PCR (Fig. 2). SUPT3H is present in
two isoforms. Using isoform specific primers we verified the
expression of both in control EBV-immortalized cell lines (data not
shown). Subsequently we attempted to amplify the mRNA that an
interstitial duplication of exon 5—12 would generate using a for-
ward primer within exon 11 and a reverse primer within exon 5.
Only an allele with the interstitial duplication would result in a
product. As hypothesized, fragments were obtained from EBV-
immortalized lymphocytes from the patient and her carrier
mother, but not from the father or the male control. The fragments
were sequenced, and confirmed to originate from a SUPT3H mRNA
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Fig. 1. Novel candidate regions. Images from Cytosure software v3.4.3 using the NCBI36/hg18 assembly. Black dots dispersed along blue horizontal lines represents oligonucleotide
markers. Detected duplicated/deleted regions are marked by blue background and offset of horizontal blue line. Blue horizontal arrows on bottom of each image represent genes.
Red regions below genes indicate reported CNVs in DGV. A, Interstitial duplication of the SUPT3H gene on 6p21.1; B, Deletion of C20RF80 on 2q34; C, Deletion of OTOGL on 12q21.31;

D, Dup9q21.11.

where exon 11 is followed by exon 12 and subsequently exon 5,
without intronic sequences.

3.4. Sequencing of C20RF80 and SUPT3H

Sequencing of the C2ORF80 and SUPT3H genes in 14 patients
with 46,XY gonadal DSD revealed no mutations.

4. Discussion

Using a customized 1 M array-CGH platform with whole
genome coverage, we have analyzed nine unrelated patients with
complete 46,XY GD for submicroscopic genomic imbalances. Some
samples had previously been analyzed using a BAC array-CGH
platform where a NROB1 duplication and a 9p24 deletion were
identified, and these patients were not included in this study
[18,31]. All patients had also undergone MLPA analysis for detection
of dosage imbalances in several known gonadal DSD genes.
Therefore it was not surprising that no rearrangements affecting
already known genes causing GD were detected. Of the identified
dosage alterations, most represented common CNVs, intergenic
changes or small intronic variations. However, to distinguish be-
tween a benign CNV and a pathogenic alteration in patients with
DSD is more difficult than in patients with dominant/de novo dis-
orders as the effect of gene dosage alteration can act in a sex-
chromosome dependent way. For example NROB1 duplications
cause 46,XY GD but have no effect on XX subjects [41]. Thus rare
CNVs in the Database of Genomic Variation (DGV) must be inter-
preted with caution and the sex of the control material, if available,
should be taken into account. In addition, CNVs affecting known
gonadal genes like NROB1 (variation_3265), SOX9 (variation_5028),
WTT1 (variation _4753) are found in the DGV.

4.1. SUPT3H duplication on 6p21.1

A duplication within the SUPT3H gene (suppressor of Ty 3 ho-
mologue Saccharomyces cerevisiae) was detected in the affected
pair of siblings. Also, a deletion affecting the C2ORF80 gene, dis-
cussed below, was identified in both sisters. Both changes are
inherited from the healthy mother. The inheritance does not
exclude these regions from follow-up as gene dosage alterations
causing GD in XY subjects do not necessarily affect development of
female gonads. It is possible that one of these changes is a benign
variant, or that the causative mechanism in this pair of siblings is by
an interacting or additive effect. However, at the moment no
interaction with common pathways, are known between SUPT3H
and C20RF80.

Expression data from the UCSC genome browser indicates high
SUPT3H expression in testicular cells (Leydig, insterstitial and germ
cells), and the Human Protein Atlas shows moderate expression of
SUP3TH in cells in seminiferous ducts.

The detected duplication is 217 kb long and spans from exon 5 to
12 of the SUPT3H gene (Fig. 1A). The two CNVs partially overlapping
this region are smaller and only reported in one out of 270 controls,
without information on sex chromosome complement (varia-
tion_3610 and variation_2627). Therefore, the duplication was not
excluded from further study. Using RT-PCR we have shown the
duplication to be interstitial, placing exons in the order 1-12 fol-
lowed by 5—13. There are two major isoforms of SUPT3H and the
duplication affects both isoforms. The theoretical consequence on
protein translation is that the two wild type proteins of 317 and 328
amino acids (aa) would be replaced by two proteins of 308 and 329
aa, where the last normal 14 aa are substituted by 4 aa (VFFR). The
SUPT3H protein is well conserved in mammals, including the C-
terminal region. It is therefore very difficult to predict if the
detected terminal change affects protein function or stability.
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Fig. 2. SUPT3H expression and duplication characterization. A, SUPT3H gene, exon organization. Yellow exons are not present in mRNA variant 1. Exon 5 and exon 12 have been
colored in pink and green respectively, to help to understand the duplication structure; B, SUPT3H mRNA variants. The exons in gray are not coding. ATG indicates the initiation of
translation; C, Duplication structure; D, RT-PCR results. C, male control; P, patient; M, mother; F, father; B, blank; L, GeneRuler 1 kb Plus DNA Ladder (Thermo Scientific, Malmo,

Sweden).

The SUPT3H protein is the human homolog of the yeast tran-
scription factor Spt3 that is a part of the SAGA transcription com-
plex [42]. Mutations in this gene have been shown to cause defects
in mating and sporulation with a variable phenotype [43]. The
transcriptional control of Spt3 is believed to be conserved from
yeast to human [44] where the SAGA like complex STAGA, including
SUPT3H, is conserved in humans and is a transcriptional co-
activator [45].

As the indentified interstitial duplication would most likely, if
causative, act through a haploinsufficiency mechanism, we
sequenced the SUPT3H gene in all patients included in the study to
identify possible inactivating mutation leading to hap-
loinsufficiency. No mutations were found. However, due to the
small group size this negative result must be interpreted with
caution. Considering the likelihood that no mutation of any new
gene will be more common than SRY mutations which have a fre-
quency of 10—15% [11], this is not enough to exclude this genes as a
candidate gene for XY GD. In conclusion, we consider SUPT3H to be
an interesting candidate gene for 46,XY GD that should be studied
further.

4.2. C20RF80 deletion on 2q34

A 22 kb deletion of almost the entire C2ORF80 gene (chromo-
some 2 open reading frame 80) was detected in the same pair of
siblings, also maternally inherited. The deletion spans the first eight
of a total of nine exons, thus leading to loss of one allele (Fig. 1B).
The gene is not characterized. C2Z0ORF80 is a 193 aa long protein and
data from the Human Protein Atlas shows moderate expression in
testicular cell types (Leydig cells and cells in seminiferous ducts)
and ovarian stroma cells, among others. The protein does not
contain any known functional domain, and does not present ho-
mology with any known protein. It is highly conserved in other

species down to frog and fish, with a 47% sequence homology with
Danio rerio.

A patient described in the Decipher database carries a deletion
of the same gene, together with three other changes. This patient
has a 46,XY karyotype and cryptochidism, along with intellectual
disability, macrocephaly, muscular hypotonia, megalocornea and
tall stature. The deletion is inherited from the healthy mother and
has also been seen in an additional patient with a 46,XX karyotype
in the same DECIPHER contributing centre [46]. This, together with
the fact that both sisters share the deletion, lead us to consider
C20RF80 a candidate gene, and we sequenced C20RF80 in all the
other DSD patients included in the study. No mutations were
detected. However, these results are not sufficient to exclude
C20RF80 as a candidate gene for XY GD, and further characteriza-
tion of C20RF80 is thus necessary.

4.3. OTOGL deletion on 12q21.31

An almost complete gene deletion spanning exon 9 to 41 of the
58 exons of the OTOGL gene was detected in patient 5 (Fig. 1C).
OTOGL mutations have been found causing moderate sensorineural
hearing loss in both fertile females and males (OMIM nr 614925)
[47,48]. This contradicts OTOGL as a candidate gene for XY gonadal
dysgenesis.

44. Dup9q21.11

In patient 6, a 454 kb duplication within 9q21.11, involving the
five genes PIP5K1B, PRKACG, EXN, TJP2 and FAM189A2, was identi-
fied (Fig. 1D). Regarding the PIP5K1B (Phosphatidylinositol-4-
Phosphate 5-kinase, Typel, Beta) gene, only the last four exons
are duplicated. The array-CGH method does not give positional data
so we can only make supposition about the position of the
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duplication. If it is in tandem, it is likely that the patient still has two
functional gene copies (although a positional effect cannot be
excluded). It is also possible that the duplication disrupts one gene
copy, thus leading to haploinsufficiency. The PIP5K1B gene encodes
a lipid kinase that produces a signaling phospholipid [49]. It is
highly conserved in the mammalian clade, and has a 67% sequence
homology with D. rerio. The PIP5K1B enzyme function is not
completely understood, but the produced bioactive lipid is an
active signaling molecule involved in, cytoskeleton reorganization,
cell survival and apoptosis, epithelial cell morphogenesis and more
[49]. It is also suggested to have a possible role in nuclear events
[49]. In the Human Protein Atlas nuclear staining for PIP5K1B in
three cell lines is shown. Furthermore a moderate level of expres-
sion in Leydig cells is described. A study of murine tissues shows a
very high expression of Pip5Ka (corresponding to human PIP5K1B)
in testis [50]. (There is a historic confusion of nomenclature be-
tween human and murine PIP5K isozymes where alpha corre-
sponded to beta and vice versa. In NCBI this is now addressed and
corrected.) Also, interesting mouse knock-out models have been
described for Pip5Ka and Pip5Kb (corresponding to human PIP5K1A)
and also for a double knock-out. Double deficient mice were
completely sterile due to decreased sperm number, and had a 25%
reduction in testes weight compared to WT mice. The Pip5Ka only
knockout mice were subfertile due to reduced motility and
abnormal morphology of sperm. Also, both Pip5Ka and Pip5Kb
were found to be widely distributed in other testicular cell types
such as germ, Sertoli, and Leydig cells [49]. Although it is not certain
if the PIP5K1B gene function is disrupted in our patient this gene
should be considered an interesting candidate gene for testicular
development and function.

The PRKACG gene (homo sapiens protein kinase, cAMP-
dependent, catalytic, gamma) encodes the gamma form of the
catalytic subunit of cAMP-dependent kinase, also called protein
kinase A. The gamma gene is thought to be a retrotransposon
derived from the alpha form. In contrast to the widely expressed
alpha and beta forms, the gamma form is highly tissue-specific.
Early studies have only detected expression in human testis,
however ovarian and brain tissues were not included in the analysis
[51]. A later study pinpoints the expression to germ cells in human
and primate testis [52]. According to the Human Protein Atlas there
is strong expression in testis seminiferous duct cells and ovarian
follicle cells among a few others.

Activation of protein kinase A by cAMP leads to activation of the
catalytic subunit which phosphorylates a large number of cytosolic
and nuclear proteins. The gamma subunit is 351 aa long and has
79% identity to the D. rerio Prkacab protein. The different functions
of the three catalytic subunits are not yet understood, but due to
the tissue specific expression profile, a localized specific function
for the gamma form in testicular tissue has been hypothesized [51].
We consider this an interesting candidate gene for XY GD.

The Frataxin (EXN) gene encodes a mitochondrial protein that
regulates iron transport and respiration. FXN gene mutations lead
to Friedriech ataxia, a neurological disease (OMIM nr 606829 and
229300) [48]. We believe it is a less likely candidate for GD.

The fourth gene in the duplicated region is TJP2. This gene is
included in a previously described duplication on chromosome
9qg21.11 associated with autosomal dominant deafness-51 [53] and
is carried by both fertile males and females, thus excluding TJP2 as a
candidate for gonadal dysgenesis.

The last gene encompassed by the duplication is the FAM189A2
gene (Homo sapiens family with sequence similarity 189, member
A2). The Human Protein Atlas shows a wide expression pattern
with strong staining in epididymis and fallopian tube with mod-
erate expression in testicular cell types. The gene encodes a 450 aa
membrane protein that has 87% identity in mouse (Mus musculus)

and 58% in D. rerio. No function is so far described, but the protein is
distantly related to the CD20-like protein family. The FAM189A2
gene needs to be characterized further, also as a candidate gene for
XY GD.

Finally proving causality for identified variants is challenging.
In vitro functional characterizations comparing mutant and wild
type proteins are important and should ideally be undertaken.
However, this requires substantial experimental efforts for each
identified variant as well as detailed mechanistic knowledge of
each affected pathway. Animal models are helpful but even more
laborious, costly and time consuming. Species differences may also
preclude accurate conclusions from such experiments. We believe
that an important way forward is through collaboration between
groups working with these rare patients, by sharing of data and
knowledge. The finding of recurrent and related genetic variants in
larger groups patients with carefully documented phenotypes
should enable the identification of additional critical molecules and
pathways involved in each subtype of DSD.

4.5. Conclusion

With our platform we have identified five novel candidate genes
for gonadal dysgenesis in two out of nine patients (22%). This is at
an expected level when comparing with previous studies for CNV
detection in gonadal DSD [23,28,29], and constitutes a valuable
contribution to the diagnostic arsenal for these patients where
today only half receive a molecular diagnosis. Array-CGH is a
powerful technique with high potential resolution, capable of
detecting diagnostic genomic imbalances as well as novel candi-
date genes in patients with gonadal DSD. We therefore recommend
that all patients with 46,XY GD without established molecular di-
agnoses should undergo testing using a high-resolution array-CGH
platform.
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