Nitric Oxide and the Cardiovascular System
J. Loscalzo, J. A. Vita, Eds.

The recent discovery of nitric oxide in the cardiovascular system led to the award of the 1998 Nobel Prize in Medicine. The biology of nitric oxide and its clinical importance are rapidly evolving as more and more research papers are reported from different centres. This book provides an extremely useful update of the current status of nitric oxide and its many roles in a variety of cell and organ systems. The editors from Boston University Medical Center have collated the experience of 47 authors. Although the majority are from U.S.A., there are six European authors from Belgium, Germany and U.K.

The book is divided into three parts and 30 chapters. Part I (Biology of NO) consists of 12 chapters. Cellular Signal Transduction and NO contains important information for the vascular surgeons related to endothelial cells, platelets and smooth muscle cells. Cytotoxicity, Apoptosis, Vasomotor regulation, Platelet-mediated haemostasis and Leucocyte–endothelial Adhesion are very important for vascular surgeons who require a more complete understanding of vascular function and the fundamental role of NO. Part II (Cardiovascular Pathophysiology) consists of nine chapters. Endothelial dysfunction, atherosclerosis, stroke and ischaemia–reperfusion are presented and discussed in a variety of chapters. These related chapters make quite an easy read for vascular surgeons. Part III (NO in Cardiovascular Therapeutics) consists of nine chapters. An understanding of graft and endovascular devices, stenosis and thrombosis has become essential for vascular surgeons involved in the management of patients with vascular disease. For instance, Diazeniumdilat and L-arginine appear to exert a beneficial effect on venous graft stenosis. On the other hand, local coating of thrombogenic surfaces with NO-donating compounds will become an interesting research area in the near future. Given the recent rapid progress in technology development and gene transfer, the use of NO gene therapy will bring new horizons to the treatment of vascular disease.

My review has focused on vascular disease and NO. However, this book would be very useful for the cardiologist, transplant surgeon, genetic engineer and related scientists. Overall, the book seems excellent. The tables and figures are of excellent quality, and the references are up to date and accessible. Its price is reasonable and I recommend it to anyone who is interested in understanding more about the underlying pathophysiology of the cardiovascular system.

M. Bayazıt
Ankara, Turkey

Color Atlas of Vascular Diseases
C. Diehm, I. R. Allenberg, K. Nimura-Eckert, F. J. Veith

This is a relatively original and innovative cooperative atlas. The major aim of the authors was to focus on visual material relevant to the most important vascular diseases. Therefore the concept of the book was to provide as many pictures, angiograms, illustrations as possible, and a minimum of basic text consisting of legends and short presentation of essentials.

The book is divided into four parts: arterial system, venous system, lymphatic system and vascular malformations. Part I comprises nine chapters: arterial diseases in general, cerebro-encephalic disease, upper extremity, thoracic and abdominal aorta, visceral arteries, arteries of the leg, diabetic foot, Buerger’s disease, functional disorders and vasculitides.

The first chapter deals with essentials concerning