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Abstract

Recently, conformal field theories in six dimensions were discussed from the twistorial point of view.
In particular, it was demonstrated that the twistor transform between chiral zero-rest-mass fields and co-
homology classes on twistor space can be generalized from four to six dimensions. On the other hand,
the possibility of generalizing the correspondence between instanton gauge fields and holomorphic bundles
over twistor space is questionable. It was shown by Sdémann and Wolf that holomorphic line bundles over the
canonical twistor space Tw(X) (defined as a bundle of almost complex structures over the six-dimensional
manifold X) correspond to pure-gauge Maxwell potentials, i.e. the twistor transform fails. On the example
of X = CP3 we show that there exists a twistor correspondence between Abelian or non-Abelian Yang—
Mills instantons on CP3 and holomorphic bundles over complex submanifolds of Tw(CP3), but it is not
so efficient as in the four-dimensional case because the twistor transform does not parametrize instantons
by unconstrained holomorphic data as it does in four dimensions.
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1. Introduction and summary

Let us consider an oriented real four-manifold X* with a Riemannian metric g and the prin-
cipal bundle P(X*, SO(4)) of orthonormal frames over X*. The (metric) twistor space Tw(X %)
of X* can be defined as an associated bundle [1]

Tw(X*) = P xsow) SO4)/U(2) (1L.1)

with the canonical projection Tw(X*) — X*. This space parametrizes the almost complex struc-
tures on X* compatible with the metric g (almost Hermitian structures). It was shown in [1,2] that
if the Weyl tensor of (X*, g) is anti-self-dual then the almost complex structure on the twistor
space Tw(X?) is integrable. Furthermore, it was proven that the rank r complex vector bundle E
over X* with an anti-self-dual gauge potential A over such X* lifts to a holomorphic bundle E
over complex twistor space Tw (X H11,3].

The essence of the canonical twistor approach is to establish a correspondence between four-
dimensional space X* (or its complex version) and complex twistor space Tw(X*) of X*. Using
this correspondence, one transfers data given on X* to data on Tw(X*) and vice versa. In twistor
theory one considers holomorphic objects h on Tw(X &) (Cech cohomology classes, holomorphic
vector bundles, etc.) and transforms them to objects f on X* which are constrained by some dif-
ferential equations [1-4]. Thus, the main idea of twistor theory is to encode solutions of some
differential equations on X* in holomorphic data on the complex twistor space Tw(X*) of X*.

The twistor approach was recently extended to maximally supersymmetric Yang—Mills theory
on C° [5]. It was also generalized to Abelian [6,7] and non-Abelian [8] holomorphic principal
2-bundles over the twistor space Qs C CP’ \ CP?3, corresponding to self-dual Lie-algebra-
valued 3-forms on CO. These forms are the most important objects needed for constructing
(2, 0) superconformal field theories in six dimensions, which are believed to describe stacks of
M5-branes in the low-energy limit of M-theory [9]. Thus, it is worthwhile to analyze the twistor
transform in six dimensions in more detail.

We point out that there are some problems in generalizing the twistor approach to higher
dimensions. Namely, let X 21 be a Riemannian manifold of dimension 2n. The metric twistor
space of X 2n is defined as the bundle Tw(X?") — X2 of almost Hermitian structures on X2
associated with the principal bundle of orthonormal frames of X, i.e.

Tw(X?") := P(X*",SO(2n)) xso(@n) SO(2n)/U(n). (1.2)

It is well known that Tw(X?") can be endowed with an almost complex structure 7, which is
integrable if and only if the Weyl tensor of X>" vanishes when n > 2 [10]. This is a strong
restriction on the geometry of X" allowing only conformally flat spaces, e.g. flat spaces and
spheres, which may be not so interesting. The restriction can be overcome if the manifold X% has
a G-structure (not necessary integrable). In this case one can find a submanifold Z of Tw(X 2ny
associated with the G-structure bundle P(X?", G) for G C SO(2n), such that an induced almost
complex structure (also called ) on Z is integrable. Many examples were studied in [10-14].
Further problems can appear when considering the twistor transform of holomorphic objects on
Tw(X2") or on Z < Tw(X?2") to solutions of differential equations on X 21 We will discuss this
for the case of n = 3.

The papers [6,7] (see also references therein) show that twistor methods can be useful in de-
scribing conformally invariant massless fields on the flat space R® = C3 and its complexification
C® with the twistor space
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Tw(RS) = 0 =R® x CP?. (1.3)

On the other hand, Sdmann and Wolf have shown [6] that holomorphic line bundles over TW(R6)
trivial on all (CP;’ — Tw(R®) correspond to pure-gauge Maxwell potentials on RS, i.e. the
twistor transform fails for the metric twistor space Tw(R®). This was partially cured in [15]
where it was shown that instantons on the six-sphere S® = R® U {oo} correspond to complex
vector bundles over the reduced twistor space Z= G2/U(2) — Tw(S®) with flat partial connec-
tions, where

Tw($®) = Spin(7)/U(3) (1.4)

is a compactification of the twistor space (1.3). For the definition of the instanton equations in di-
mensions higher than four and for some instanton solutions see e.g. [ 16-23]. Hence, constructing
instanton configurations in six dimensions is a task more complicated than one might expect.

Instanton equations on the six-sphere S® are not quite standard since S° is a nearly Kihler
space with a nonintegrable almost complex structure. In fact, instantons on S° are connections on
pseudo-holomorphic bundles satisfying the Donaldson—-Uhlenbeck—Yau (DUY) equations [17].
Hence, for checking the power of the twistor approach it is worthwhile to consider a Kihler
6-manifold. We choose the complex projective space C P3 which can be considered as yet another
compactification of R® = C3.

On CP? the DUY equations are the standard Hermitian Yang—-Mills (HYM) equations [17].
They are SU(3) invariant but not invariant under the SO(6) Lorentz-type rotations of orthonormal
frames. Therefore, one should describe them with reduced twistor spaces. The DUY equa-
tions are well defined on six-dimensional Kéhler manifolds X (as well as on nearly Kéhler
spaces [24-26]), and their solutions are natural connections .A on holomorphic vector bundles
€ — X [17]. As reduced twistor spaces of C P3 one can consider

SUM4)/U(2) x U(1) =: Z — CP3 = SU®4)/U(3) (1.5)
or
Sp(2)/U(1) x U(1) =: 2’ — CP3 = Sp(2)/Sp(1)xU(1) (1.6)

which both are complex submanifolds of Tw(C P3), with fibres CP? and CP', respectively.
We will show that bundles (£, A) over CP3 with HYM connections A are pulled back to holo-
morphic vector bundles (£, A) over the reduced twistor spaces (1.5) or (1.6), depending on the
choice for CP3, being trivial along the fibres of the fibrations (1.5) or (1.6), with a Hermi-
tian Yang-Mills connection A on £. Thus, contrary to the four-dimensional case, the twistor
transform in six dimensions does not parametrize instantons by unconstrained holomorphic data
on the twistor space, since the corresponding holomorphic bundles over Z and Z’ have to be
polystable. In other words, in four dimensions the twistor transform establishes a correspondence
between solutions of the instanton equations in d = 4 and solutions of holomorphic Chern—
Simons theory on d = 6 twistor space, but in six dimensions the twistor transform establishes a
correspondence between solutions of the instanton (HYM) equations in d = 6 and solutions of
the HYM equations on the twistor space. The latter does not facilitate solving the d = 6 instanton
equations. This is the outcome of our study of instantons in six dimensions.

The structure of the remainder of this paper is as follows. In Section 2 we portray the space
CP3 as a homogeneous space SU(4)/U(3) and Sp(2)/Sp(1) x U(1), with Kéhler structures
in both cases and allowing for the introduction of a quasi-Kihler structure in the second case.
In Section 3 we describe the geometry of the twistor spaces Z and Z’ for SU(4)/U(3) and
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Sp(2)/Sp(1) x U(1). In Section 4 we study the twistor correspondence between instanton bundles
over CP3 and holomorphic bundles over the proper twistor spaces.

2. Kibhler and quasi-Kiihler structure on C P3

In this section we describe the geometry of the space CP> as a homogeneous manifold
M = Sp(2)/Sp(1) x U(1) fibred over the four-sphere S*. We find it useful to describe or-
thonormal coframes on S4, $2 and M in local coordinates. First, we choose a representative
element Q € Sp(2) of the coset space S* = Sp(2)/Sp(1) x Sp(1). Then, expanding the flat con-
nection Ay = Q' dQ into a basis of the Lie algebra sp(2), we obtain local (1,0)-forms 6!
and 62 on an open subset U of $* as well as self-dual and anti-self-dual connections (A™ resp.
A7) on Sp(1)-bundles over S*. Using a representative element g € SU(2) of the coset space
$2 =SUQR)/U(1) = Sp(1)/U(1), we get a local (1, 0)-form 63 on S? and the monopole con-
nection a on the Hopf bundle $3 — $2. After this, we combine Q and g into a representative
Q of the coset M and arrive at local (1, 0)-forms ' on this coset, together with their Maurer—
Cartan relations (2.25). Finally, changing an almost complex structure on M via (2.29), we find
a quasi-Kihler structure on the considered coset space.

Coset representation of S*.  Let us consider the group Sp(2) fibred over §* = Sp(2)/Sp(1) x
Sp(D),

Sp(2) — s* 2.1

i.e. consider Sp(2) as the fibre bundle P(S*, Sp(1) x Sp(1)) with the structure group Sp(1) x
Sp(1). Local sections of the fibrations (2.1) can be chosen as 4 x 4 matrices

_1 1, X

o _1 12 —X 1 _ Af_
Q:=f2 (x* 1 ) and Q9 '=Q0'=f"2 <—xT 12) eSp(2) cSUH), (2.2)
where
x=xtr,, xT:x“‘r;, fi= l+xTx= 1+r2:1+8wx“x”, 2.3)
and the matrices
(ty) = (—=io;, 1) and (r;) = (io;, 1) 2.4)

obey

T =8 - Lo+ 007 =: 8y - 1o+ My,

(ot ={-n, )=l n=jv=ks, n=jv=4}

Tty = 8 - L2+ 7 i0i =180 - 1o + il

(i) ={-i) = (e n=Jv=k -8, n=jv=4 2.5)

Here {x*} are local coordinates on an open set i/ C S*. The matrices (2.2) are representative
elements for the coset space S* = Sp(2)/Sp(1) x Sp(1).
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Flat connection on S*.  Consider a flat connection .Ag on the trivial vector bundle $* x C* — §*
given by the one-form

_ A- —
Ao=0 1dQ=;<¢T A‘f), 2.6)
where from (2.2) we obtain
| r
A = fn,wx Mdx = <g— _5_)esu(2), Q.7
+_ 1 v ar —By
A —nuxt dx’ =: _ esu(2), (2.8)
f B+ —oq
o= Lar= dd +idxe* dx!—idx? \_ i [(dz dy
_f f de! +idx? —(dx®—idxh )T f\dy —dz
( %) 2s)
with
1
a+_ﬁ(ydy+zdz—ydy—zdz) ,3+=?(ydz—zdy), (2.10)
|
af—ﬁ(ydyﬂdz—ydy—zdz) ﬂ7=?(ydz—zdy), (2.11)
idy idz i idy 5 idz
ol .= ——, 6% :=— d ':=— , 6% = . 2.12
1472 1472 an 1472 1472 212

Here, the bar denotes complex conjugation.

Coset representation of S*.  Let us consider the Hopf bundle
$3 852 (2.13)

over the Riemann sphere S = CP! and the one-monopole connection a on the bundle (2.13)
having in the local complex coordinate ¢ € CP! the form

1 - -
=————(¢d¢ — ¢ d?). (2.14)
20+¢9)
Consider a local section of the bundle (2.13) given by the matrix
1 1 ¢ ~
- (( f) eSUQR) = 53 (2.15)
(1+¢8)2
and introduce the su(2)-valued one-form (flat connection)
14 _. ([ a —03
g dg=: <93 4 ) (2.16)
on the bundle §2 x C2 — $2, where
d 3 d¢
LN S R B S (2.17)
1+¢¢ 1+¢¢

are the forms of type (1,0) and (0, 1) on CP! and a is the one-monopole gauge potential (2.14).
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Twistor space Tw(S*). Let us introduce 4 x 4 matrices

G=(15 g) and Q= 0G €Sp(?2) C SU@4), (2.18)

where Q and g are given in (2.2) and (2.15). The matrix Q is a local section of the bundle

Sp(2) — Sp(2)/Sp(1) x U(1) =: M. (2.19)
Let us consider a trivial complex vector bundle M x C* — M with the flat connection

A A=14A ~1 ~1 A= =4

Ao=0"7"d0=G"AG+G dG =: ot A+ ) (2.20)
where

) g2 4 e - (&, —03

=¢g=:( "5 % Am=A"= AT = (%0 0,
¢ =g (_91 92> ) (:3— _a_)s H3 _a,
(2.21)

with ¢_, B_ givenin (2.11) and

1 - - _ 1 - _
0y = -1 - + — 4+ —(¢dt —¢do)y, 2.22
oy 1+§§{( {ay + By —EB+ 2@ ¢—¢ é“)} (2.22)
A 1 5 A 1 7
0l = ———— (0" —¢6?), 0% = ———— (0> +¢0'), (2.23)
(1+¢0)2 (1+¢2)2
N 1 _
3 2
Y= —————(d¢ + By —2Cay +E7B4). (2.24)
1+ H)( )
From the flatness of the connection (2.20), dflo + AO A flo = 0, we obtain the equations
41 —0y — o B- —ﬁé_ 41
d (é2> S A TS VO (é2> =0, (2.25)
63 A R . 63
£6r A6 24,

~ ~ 1 4 ~

0! - —0', 02— —0* and 6> - —0°.
724 To2a MU TR

We see that (2.25) defines the Levi-Civita connection with U(3) holonomy group (Kéhler struc-

ture) on M if R = A, where R is the radius of S2? and A is the radius of S*.

Note that the forms 6’ define on M an integrable almost complex structure 7 [1] such that

(2.26)

J0' =16 (2.27)

withi =1, 2, 3. In other words, the 0i’s are (1, 0)-forms with respect to 7 and the manifold M
with such a complex structure can be identified with the Kahler manifold CP3=SU4)/U@3)
with the Kihler form

W= L (é

: "N 462 N0+ 63 107, (2.28)
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Quasi-Kdhler structure on M. Recall that on the same manifold M one can introduce the
forms

Ol:=4!, ©2:=0> and ©3:=@, (2.29)

which are forms of type (1, 0) with respect to an almost comp}ex structure J_ [27], J_-O! =i©,
which is a never integrable almost complex structure. For ®' with the rescaling (2.26) we have

o! —by —a B 0 o! | CLINCE
d<@2>+< -B- —a;+a_ 0 ) (()2) IR @‘A@l

3 0 0 204 63 2R CIUNCE
(2.30)

The manifold (M, J_) is a quasi-Kihler manifold. Recall that an almost Hermitian 2n-manifold
with the fundamental (1, 1)-form w is called quasi-Kéhler if only (3, 0) 4+ (0, 3) components of
dw are non-vanishing [12,25]. In our case

=%(@1/\@I+@2/\@i+@3/\@3). 2.31)

One can check that for arbitrary ratio A/R the (1, 2) part of dw vanishes and therefore M is
quasi-Kéhler [24,27].

From (2.30) one sees that the manifold M = Sp(2)/Sp(1) x U(1) with an almost complex
structure J_ becomes a nearly Kéhler manifold if AZ? = 2R?. Recall that a six-manifold is called
nearly Kahler if [12,24,25]

do=3pImR2 for2:=0'AO*AE> and d2 =2pw Ao, (2.32)

where p € R is proportional to the inverse “radius” A = /2R of M.
3. Twistor spaces of CP3

Here we describe the geometry of the twistor spaces for the cosets SU(4)/U(3) and
Sp(2)/Sp(1) x U(1) by using the same approach as in Section 2. First, we choose a coset repre-
sentative V € SU(3) of CP? = SU(3)/U(2), introduce a coset representative Q QV € SUM#)
of SU4)/U(2) x U(1) and derive the Maurer—Cartan relations (3.18) for (1, 0)-forms 6% on
the twistor space SU(4)/U(2) x U(1) of CP3. Then we do the same for the twistor space
Sp(2)/U(1) x U(1) of the coset Sp(2)/Sp(1) x U(1) = cP3. Namely, we choose a represen-
tative Q of the coset Sp(2) /U(1) x U(1), construct (1, 0)-forms 64 on it via expanding the flat
connection Aj = Q 1'dQ into an sp(2)-basis and finally derive the Maurer—Cartan equations

(3.35) for 6.
Coset representation of CP?. Let us consider the projection

SU@3) — SU(3)/UQ2) =CP2. (3.1)
One can choose as a coset representative of CP? a local section of the bundle (3.1) given by the

matrix

i 1 oAb a2

11 Y 1 .

V=—A_y w)=5|-* W wpy|esuo), (3.2)
Y\ wa wa
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where

. = -5 1
y2i=14Y'y =142 +2222 and W:W*:y-lz—jw*. (3.3)
%

Here 1! and A2 are local complex coordinates on a patch of CP2. From (3.2) and (3.3) it is easy
to see that

WY=Y and W?=9y’—-YY' o Viv=1p=vvi (3.4)
Twistor space of SU(4)/U(3). Consider the coset space

Z:=SU4)/UQ2) x U(1) (3.5)
and the projection

7 :SU@)/UQ) x U(1) - SU@4)/U@B) = CP? (3.6)

with fibres CP2. Using the group element (3.2) to parametrize the typical CP2-fibre in (3.6),
we introduce a flat connection A on the trivial bundle Z x C* — Z as

AoV +Viav, (3.7)

0 1) with V € SU(3). (3.8)

The flat connection Ao is given in (2.20) but here we write it as

a —f- —6> 4!

A1 52

A= | P T =:<ﬁ. _‘AT>, (3.9)
62 -6 &y -0 Qs
6 6r 63 —ay

where

a_ —p_ —62 61

B=|p- -—o- 6! , T := é% and TTz(élézéS). (3.10)
62 —0' a 63

Using (3.7), we obtain the connection

¥ ~ - 1

AO:(VTBVT—TFVV dv __‘ZQZT)::(YQ __&7;) with T = g; (3.11)
and for the curvature fo =dflo + Ay A Ay we get

. dB+BAB—TATYT —dT —(B+ay -13)AT

Oz(dTT+TTA(1§+&+-13) —day —TTAT ) (3.12)
‘We have

B=ViBV +viav = ( a- w) (3.13)

-r X

with
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i—a_ —b 6*
2::<a boz —Zl+&+) and T=:<9~5>. (3.14)

Flatness .7?0 = 0 of the connection (3.11) yields

i G — Gy 0 0 ! G2 4 4
d(92>+ 0 —a+a_ —ay —b /\<92>=< -6 ) (3.15)

6° 0 b G — 2, 0’ —61
From
dB+BAB-TAT =0 (3.16)
it follows that
g a—2a_ —b 6* g12
d<55>+< b —a+&+—&_>A(é5>_<él3)' (3-17)
‘We obtain
6! —&_ — @y 0 0 0 0
6> 0 —a+& —ay  —b 0 0
al 6’ |+ 0 b a—-2a, 0 0
6 0 0 0 a—2a —b
63 0 0 0 b —a—G_ + &y
n24 Apf35
5 6 +~,{9
32 614
e = —-46" |, (3.18)
64 1512
45 4A2 )
1 A13
7ar?
where we rescaled our 8¢ witha =1,...,5 as in (2.26):
N 1~ - 1~ - 1 - s o -
6! > —6', 9 > —6%, 6> —6°, 6*—=6* and 67— 6. (3.19)
2A 2A 2R

The manifold SU(4) /U2) x U(1) is the twistor space for the Kiahler space CP3=SU#)/U(3)
for A% = R?. Forms 6 define on SU(4)/U(2) x U(1) an integrable almost complex structure
J+ such that

J0% =i6. (3.20)
In the Kihler case we choose A =R = %
Twistor space of Sp(2)/Sp(1) x U(1). Consider the coset space

Z':=8p(2)/U(1) x U(1) (3.21)
and the projection

7' :Sp(2)/U(1) x U(1) — Sp(2)/Sp(1) x U(1) = CP? (3.22)
with fibres CP! = Sp(1)/U(1). We choose the group element
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g:%(l _k>eSU(2)%Sp(1) (3.23)
(1402 \A 1

to parametrize the typical CP!-fibre in (3.22), where A is a local complex coordinate on the
Riemann sphere CP!. By the formula

N a —04
dg =: .24
g dg ( 04 _g ) , (3.24)
where
1 - _
a:=——+—(Adr—AdAr), (3.25)
2(1 +ar)
we introduce on CP! the forms
dx i dx
0% = _ and 6*= _ (3.26)
14+ Ar 14 AM

of type (1,0) and (0, 1), respectively.
Using the group element (3.23), we introduce a flat connection Aj, on the trivial bundle Z’ x
C*— Z as

Ay=0"1d0 =G"AyG + GTdG, (3.27)
where
0=0GeSpR) and G:= (g 102> € Sp(1) C Sp(2). (3.28)
The flat connection Ao is given in (2.20) and (3.9). Using (3.27), we obtain the connection
At A_ A At 1A ATA v v
r_(8'ATg+g'dg —g'¢\_ (AT —¢
A0—< P At )=\ g At (3.29)
with
Y 1 62— 20" 6!+ 342 g2 gl
_ 4t M T = (G 3.30
b=g¢= (1+M)1/2< —9' = g2 42— 241 —6' §2) 530
. vy —6° ap 63 - v a -0
At =% =% 7 )=A" A =% 31
o ) D) (s E) e
where
1 - _ _ 1 - _
0_ = — 1 (1l —AN)a_ +AB_ —AB_ 4+ =(Adr—Ad)L) ¢, 3.32
1+M{( ) B B 2( )} (3.32)
o 1 _ o7 -
0% = _{dr+ B — 20 + 228}, 6%:=64 3.33
TR * Al (333)

For the curvature Fj = dAj + Aj A Aj we get

, (dA—i—A/\A—J)/\Jﬂ —dJ)—AAJ)—q?/\A*)
.F():

3.34
dp"+ " AAT+ AT APT dAT+ AT AAT —pT A G (3-34)

From the flatness .7-'6 = 0 of the connection (3.29) we obtain the Maurer—Cartan equations
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g! —q — s 0 0 0 g1 —§% _ 932
62 0 G_—dap 0 0 62 g3l 4914
dlgs | F 0 o —2a, o |M#|T| 22 |
64 0 0 0 —2a 64 2612
(3.35)
which deﬁnfz the u(1) ®u (1) torsionful connection on the twistor space Z’ = Sp(2)/U(1) x U(1).
The forms 0 in (3.35) witha =1, ..., 4 define on Z’ an integrable almost complex structure I jr
such that
1.6 =i6". (3.36)

Its integrability follows from the vanishing (0, 2)-type components of the torsion on the right
hand side of (3.35).

4. Twistor description of instanton bundles over C P3

Instanton bundles over CP3.  Consider a complex vector bundle £ over C P? with a connection
one-form A having the curvature F. Recall that (£, A) is called an instanton bundle if A satisfies
the Hermitian Yang-Mills equations,’ which on CP? can be written in the form

F2=0=F" & QAF=0, (4.1
O F=0 & OAOAF=0, 4.2)

where the notation @. exploits the underlying Riemannian metric g = B&Ee&eb on CP3,
a,b,...=1,...,6. Here, ® given in (2.28) is a (1, 1)-form, and £ := ' A 62 A 63 is a lo-
cally defined (3,0)-form on CP3. Recall that, from the point of view of algebraic geometry,
(4.1) means that the bundle £ — CP? is holomorphic and (4.2) means that £ is a polystable
vector bundle [17]. In fact, in the right hand side of (4.2) one can add the term So A @ A @
with 8 proportional to the first Chern number ¢ (£), but we assume ¢ (£) = 0 since for a bundle
with field strength F of non-zero degree one can obtain a degree-zero bundle by considering
F=F- }(tr]—') -1,, where r =rank €.

Pull-back to Z. Consider the twistor fibration (3.6). Let (

:, fl) = (r*&, w*A) be the pulled-
back instanton bundle over Z with the curvature F =dA + A A

A. We have
A A N ST VN S SR R S
]—'=5]—'ab9 NO”+F ;0% NO +§}—a59 ANO” =a*F 4.3)
witha,b,...=1,...,5. Using the relation between 6% and H¢ described in Section 3, we obtain
Fij=C{CiFy and Fij=CfCL R, (4.4)
where C = VT with
ciol MLl ¥
Iy 2 y 3 Y
CQ_E 5 y+1+a%2 5 A2l
Loy 2 yy+Dh oy +1y

1 These equations are also called the Donaldson-Uhlenbeck—Yau equations.
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s A2 3 AlR2 3 142150
C%:—, ng—i, Cg’ziy_'_ + 4.5)
Y Yy +1D Yy +1D
and C is the complex conjugate matrix. Thus, more explicitly, we get
- 1y +14ald] AlR2 -5 }
s = — o5 — F57 — A" F53 ¢ 4.6
12 y{ v+ 1 2T e 23 (4.6)
-1 [y 122 A2l _:
3i = —{y Fi————7n —llféﬁ}’ @)
Y y+1 y+1
o Lr e 2
23—3/{]:234')‘]:31"‘)“]:12}’ (4.8)
Fa=7F5=0, (4.9)
FitIntFa+tFut+Fs=r1+Fn+ /s (4.10)

The vanishing of }33 for all values of (Al_, 1%) € CP? is equivalent to the holomorphicity
equation (4.1). In homogeneous coordinates y' on CP? (o' = y2/y!, A2 = y3/y!, y! #£0), this
condition can be written as

.7}§3=0 < yi8ijk]:jk=0, (4.11)

where the indices 7, j, ... are raised with the metric 8'/. From (4.6)—(4.10) we see that solutions
A of the HYM equations (4.1), (4.2) on CP? correspond to solutions A = 7* A of the HYM
equations on the twistor space Z of CP>, and A are flat connections along fibres (CP)? — Z.
In other words, from (4.6)—-(4.9) we see that the bundle Eis holomorphic for holomorphic £ as
well as polystable due to (4.2), (4.10), and it is holomorphically trivial after restricting to the
fibres CPX2 < Z of the projection 7 for each x € CP3. Vice versa, polystable holomorphic
bundles over Z trivial on any fibre CP2 < Z over CP? correspond to solutions .A of the HYM
equations on CP3. The only difference from the canonical twistor correspondence is that the
bundle £ is not only holomorphic” but also polystable, which is equivalent to imposing on A the
additional equation

Fii+ Fps + Faz + Fug + Fes =0. (4.12)

Hence, the twistor transform does not help in solving the instanton equations in six dimensions.

Pull-back to Z'.  Consider now the twistor fibration (3.22) and the pulled-back instanton bundle
&, A) = (%€, 7"*A) over Z’ with the curvature F' = dA + A A A'. We again have the

relation (4.3) with a, b, ... =1, ..., 4. For the matrix C in (4.4) we now find
x x)k O _
C= (—xk x O) with % = (1 4+ AA)™ 2, (4.13)
0 0 1

where X is a local complex coordinate on CP! used in (3.23)~(3.26).
Using (4.13), we obtain

2 Meaning it is defined by the equation 534 = 0 of holomorphic Chern—Simons theory for A.
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.7:{2 = Fi3, ‘Féi =x(F51+ )_».7:23), .7:%3 =x(F33 — AF37), fl_lz-‘ =0, 4.14)

Fii+Fos+Fos+ Fy=Fi1+ Fps + Faz (4.15)

Therefore, instanton bundles (€, A) over the nonsymmetric Kéhler coset space Sp(2)/Sp(1) x
U(1) = CP? are pulled back to holomorphic polystable bundles (£’,.A") over the complex
twistor space Z’ = Sp(2)/U(1) x U(1). Furthermore, £ is flat along the fibres (CPX1 of the
bundle (3.22), and one can set the components of A" along the fibres equal to zero. Thus, the
restrictions of the vector bundle £’ to fibres (Cle <> Z’ of the projection ' are holomorphically
trivial for each x € Sp(2)/Sp(1) x U(1) = CP3. Note that (4.14) and (4.15) can be obtained
from (4.6)~(4.10) by putting A' = —1 and A2 = 0. Then (3.11) will coincide with (3.29) after the
substitution 84 — —54, 9> — —52, b— —671, etc. This correspondence follows from the fact
that Z’ is a complex (codimension one) submanifold of the twistor space Z.
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