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SUMMARY

Fusion of haploid cells of Saccharomyces cerevisiae
generates zygotes. We observe that the zygote mid-
zone includes a septin annulus and differentially
affects redistribution of supramolecular complexes
and organelles. Redistribution across the midzone
of supramolecular complexes (polysomes and
Sup35p-GFP [PSI+]) is unexpectedly delayed relative
to soluble proteins; however, in [psi-] 3 [PSI+]
crosses, all buds eventually receive Sup35p-GFP
[PSI+]. Encounter between parental mitochondria is
further delayed until septins relocate to the bud
site, where they are required for repolarization of
the actin cytoskeleton. This delay allows rationaliza-
tion of the longstanding observation that terminal
zygotic buds preferentially inherit a single mitochon-
drial genotype. The rate of redistribution of com-
plexes and organelles determines whether their
inheritance will be uniform.
INTRODUCTION

Asymmetric cell division can occur if the two ends of the spindle

reside in compositionally distinct regions of the cytoplasm (Bar-

ral and Liakopoulos, 2009; Knoblich, 2008; Pereira and Yama-

shita, 2011; Rando, 2006; Rujano et al., 2006). The present study

is concerned with the causes of such inhomogeneity, using as

a model the elongated zygotes of Saccharomyces cerevisiae

that result from fusion of haploid cells. When buds form at the

termini of zygotes, buds that emerge at the corresponding end

preferentially inherit the mitochondrial genomes contributed by

a single parent (Birky, 1975; Dujon, 1981; Lukins et al., 1973;

Nunnari et al., 1997; Okamoto and Shaw, 2005; Strausberg

and Perlman, 1978). A partial explanation of this asymmetry is

provided by the observation that, although nuclei congress and

fuse soon after cell-cell fusion (Melloy et al., 2007; Molk and

Bloom, 2006; Tartakoff and Jaiswal, 2009), parental mitochon-

dria encounter and fuse with each other in the midzone of the

zygote significantly later (Hoppins et al., 2007; Nunnari et al.,

1997; Okamoto et al., 1998). Mechanisms underlying this genetic

and cell biological puzzle have not been investigated.
C

These considerations also provide a point of reference for

understanding the distribution and mitotic inheritance of supra-

molecular complexes, including the prion form of Sup35p.

When in the [psi�] conformation, Sup35p acts as a translation

termination factor. In an alternate (‘‘aggregated’’) conformer

prion form(s), [PSI+] self-associates and allows read-through

of termination codons. [PSI+] can template the conversion of

[psi�] to [PSI+], and monomeric-oligomeric forms of Sup35p

interconvert in [PSI+] cells (Cox et al., 1988; Liebman and Chern-

off, 2012; Paushkin et al., 1996; Serio and Lindquist, 1999; Wick-

ner et al., 2007). Several prions, both in fungi and in mammalian

cells, are toxic (Halfmann et al., 2011; Mathur et al., 2012;

McGlinchey et al., 2011; Vishveshwara et al., 2009; Wickner

et al., 2010). Moreover, some can formmacroscopic aggregates

that reduce mitotic inheritance, as do certain oxidized proteins

(Aguilaniu et al., 2003; Bagriantsev et al., 2008; Derdowski

et al., 2010; Erjavec et al., 2007; Tyedmers et al., 2010; Uptain

et al., 2001). By visualizing Sup35p tagged with green fluores-

cent protein (GFP) contributed by one parent during zygote

formation, one can investigate the timing of its aggregation and

its transmission. Barriers within the zygote could restrict these

events.

In mitotic yeast, a cortical patch or ring of five septins (Cdc3,

Cdc10, Cdc11, Cdc12, and Shs1) accumulates along with the

myosin, Myo1p, at the site of the incipient bud. This unit then

forms an hourglass-like structure that encircles the bud neck.

Prior to cytokinesis, the hourglass is replaced by two rings;

a further ring of actin forms between these rings, and contraction

of this unit promotes cytokinesis (Bi et al., 1998; Caudron and

Barral, 2009; Lippincott et al., 2001; Longtine and Bi, 2003; Spi-

liotis andGladfelter, 2012). A ‘‘fence’’ function of septins in which

they limit diffusion of cortical proteins has been described at

the bud neck (Caudron and Barral, 2009; Longtine and Bi,

2003). The present study considerably extends the significance

of septins by showing that a septin-containing partition subcom-

partmentalizes noncortical portions of the zygote cytoplasm.

Moreover, relocation of septins to the site of bud formation

promotes polarization of the actin cytoskeleton.

The nonuniform distribution of components of mammalian

cells could be limited by barriers equivalent to those that we

characterize in this study. Moreover, the yeast bud neck resem-

bles the cytokinetic bridge of animal cells. Both structures

include septins and actin (Balasubramanian et al., 2004; Estey

et al., 2010; Hurley and Hanson, 2010; Liu et al., 2012; Seshan

and Amon, 2004; Steigemann et al., 2009).
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Figure 1. Septin Morphogenesis

(A) Septin distribution in mating projections. Cells

expressing the tagged septin, GFP-Cdc3p, were

treated with 30 mM a-factor for 3 hr. A through-

focal series (z1–z3, 0.4 m each) shows that the

cortical signal extends toward but does not reach

as far as the apex of the cell. S, septin; V, vacuole.

Strain: ATY3432. Scale bar represents 5 microns

in all figures.

(B) cis-trans redistribution of septins. A strain ex-

pressing the tagged histone, Htb2p-mRFP, as well

as GFP-Cdc3p (lower cell) was crossed with

a strain expressing Htb2p-mRFP (upper cell). Note

the transfer of the diffuse cytoplasmic GFP-Cdc3p

signal (1 min time point, *), and the progressive

appearance of the labeled collar at the cell cortex

in the trans parental domain (4–12min time points).

In the final images, the medial annulus begins

to appear perpendicular to the long axis of the

zygote. Strains: ATY3432 3 ATY2289.

(C) Appearance of the annulus. As in Figure 1B,

a strain expressing the tagged histone, Htb2p-

mRFP, as well as GFP-Cdc3p was crossed with

a strain expressing Htb2p-mRFP. Note the collar

at early time points and the medial transverse

GFP-positive annulus (arrow) through which the

nuclei fuse. At later time points (24 and 32min), the

collar becomes weaker and a patch of Cdc3p-

GFP appears at the site of formation of a terminal

bud (*). The insert in the first panel shows a face

view of the annulus from an early time point.

Strains: ATY3432 3 ATY2289.

(D) Themyosin, Myo1p, is present in the midzone. Two strains expressing GFP-Myo1p (one of which expresses Htb2p-mRFP) were crossed. Note the transverse

medial signal and the lack of cortical signal. Strains: ATY3431 3 ATY3437.

(E) Model of septin morphogenesis. We propose that the initial cortical signal progressively is replaced by themedial annulus and finally by septin accumulation at

the bud neck.

(F) Position of the nuclear envelope after consolidation of chromatin. Two strains expressing the tagged nucleoporin, Nup49p-GFP, and Htb2p-mRFP were

crossed. Zygotes were examined whenmost of the chromatin hadmoved aside from themidpoint, which is designated by the arrows. A significant amount of the

nuclear envelope lies in the opposite lobe from chromatin. Note that the exact midpoint (arrowheads) generally lacks nuclear pore complexes. The images that

include histones have been separated from those that illustrate the nuclear pores. Strains: ATY2594 3 ATY3358.

(G) Distribution of septins when the nuclear envelope spans the midpoint. A cross equivalent to that illustrated in (F) was conducted between a strain expressing

Htb2p-mRFP and Nup49p-GFP (lower cell) and a strain expressing the tagged septin, Cdc10p-CFP (upper cell). The three images are of the same zygote. Note

that when chromatin is on one side of the midpoint, the narrowed midpoint (circled) coincides with the blue septin annulus. Strains: ATY3358 3 ATY4003.

See also Figure S1.
A further point of interest in studying zygotes pertains to

transgenerational inheritance. In cells that result from fusion of

distinct precursors, if mitosis occurs before thorough mixing of

parental complexes and organelles, distinct characteristics can

be passed to subsets of progeny (i.e., from an initial generation

to the third generation).

RESULTS

Five Steps of Septin Morphogenesis during Zygote
Formation
When haploid yeast of opposite mating type are mixed at room

temperature, zygotes form after 1.5–2.0 hr. To establish the rela-

tive timing of cis-to-trans redistribution of parental proteins and

organelles, we used time-lapse microscopy and visualized fluo-

rescent marker proteins. Population-based estimates of relative

timing agree with time-lapse observations, but the temporal

dispersion of these events makes it more informative to use

time-lapse, which also can illustrate the suddenness of redistri-
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bution. The selected images and time-lapse series illustrated

below are in all cases representative of examination of at least

twenty cells.

We initially observed that redistribution of distinct organelles

and supramolecular complexes is by no means synchronous.

We therefore have inquired whether cytoskeletal barriers parti-

tion the cytoplasm, beginning with septins.

After treatment of MAT a haploid cells with mating factor for

2–3 hr, the tagged septin, GFP-Cdc3p, forms a collar at the

cell cortex distal to the tip of the mating projection, as previously

described (Ford and Pringle, 1991; Kim et al., 1991; Longtine

et al., 1998) (Figure 1A). This collar has a composite organization

in which lobes are joined at their apical ends and become

increasingly splayed as they extend distally. A pool of diffuse

cytoplasmic fluorescence is also evident.

When a mating pair meets, the two plasma membranes form

a flattened ‘‘zone of contact’’ (Byers and Goetsch, 1975). In

crosses in which one partner expresses GFP-Cdc3p, contact

is followed by entry of a diffuse signal into the acceptor cell.



Within 5 min, the collar in the acceptor cell then becomes

symmetrically labeled (Figure 1B, 4–6 min time points). Such

behavior is expected if a soluble pool of GFP-Cdc3p permeates

cis to trans, and if assembly of the collar is dynamic.

Just prior to nuclear contact, a GFP-Cdc3p-positive structure

appears at the interface between the two parental domains (e.g.,

Figures 1B and 1C). It can also be detected in cells expressing

other tagged septins (GFP-Cdc10p, GFP-Cdc11p, or GFP-

Cdc12p) (not shown). In face view, it appears as an annulus (Fig-

ure 1C, insert). Its diameter is somewhat greater than the septin

hourglass at the bud neck, which is brighter and wider. In typical

experiments in which cells expressingGFP-Cdc3p are examined

2 hr after mixing, this structure is evident in >90% of zygotes for

which plasma membrane fusion has occurred. Parental nuclei

congress and fuse with each other when it is already in place

(Figures 1B and 1C). The concentration of GFP-Cdc3 at the mid-

zone is obvious for�15 min. A patch of GFP-Cdc3p at the site of

future bud emergence then appears (Figure 1C).

GFP-Myo1p is not detected at the cortex of the mating pro-

jection; however, it also forms an annulus in the midzone (Fig-

ure 1D). Judging from the distribution of GFP-tagged Act1p,

and the actin-binding protein, Abp140/Trm140, and from stain-

ing fixed preparations with rhodamine-phalloidin, actin patches

and cables arewidespread but are not characteristically concen-

trated or oriented in the midzone at this time (see below).

Fluorescence recovery after photobleaching (FRAP) of GFP-

Cdc3 in zygotes shows that the cortical collar, annulus, patch,

and bud neck filaments are all dynamic. Because the estimates

of half-time for recovery (13.5 ± 3.4 s to 27.1 ± 8.7 s, n = 5–21)

and mobile fraction (28% ± 2.8% to 38% ± 8.5%, n = 5–21,

SD) are relatively uniform among these structures, the succes-

sive redistribution of septins is likely to result from the progres-

sive elimination and/or appearance of binding sites. Additional

evidence of the dynamic nature of the annulus comes from

fluorescence loss in photobleaching experiments: repeated

photobleaching of the diffuse pool of GFP-Cdc3p in the zygote

cytoplasm (avoiding the annulus itself) progressively weakens

the signal in the annulus (Figure S1).

We therefore suggest the following sequence of septin mor-

phogenetic intermediates (Figure 1E): (0) the collar of the mating

projection, (1) the symmetric collar of early zygotes, (2) the

annulus, (3) the patch at the site of bud formation, and (4) the

bud neck itself. As explained below, these events are concurrent

with changes in the actin cytoskeleton.

Because the medial concentration of septins becomes most

obvious when parental nuclei establish contact, we explored

the possibility that the annulus has a continuing association

with the nucleus. In support of this possibility, we observe that

(1) a narrowed segment of the nuclear envelope spans the

midpoint of the zygote even after karyogamy and displacement

of the chromatin mass to one side (Figure 1F), (2) nuclear pores

are generally not detected at this point (Figure 1F), and (3) the

annulus encircles the narrowed segment (Figure 1G).

Flux of Polysomes across the Midzone Is Delayed
Relative to Soluble Tracers
Shortly after cell-cell contact is established, soluble DsRed

(�120 kDa)—like GFP-Cdc3—suddenly redistributes from the
C

donor to acceptor cell. Surprisingly, at this point, polysomes

(including Rps3p-GFP or Rpl25p-mCherry) remain in their initial

parental domain (Figure 2A). In fact, they begin to redistribute

only when nuclei are about to establish contact—well after

rupture of the plasma membrane—as judged by the apical elim-

ination of the plasma membrane protein, Mid2p-GFP (Figures

2B–2D) that is present at the zone of contact prior to rupture.

The equilibration of polysomes then requires �10 min. The

slow pace of these events suggests the presence of a barrier,

given the apparent full disruption of the plasma membrane, the

significant mobility of polysomes (t1/2 for recovery after photo-

bleaching �16 s [Figure S2]), and electron micrographs that

show a 0.5–1 micron gap between the nuclear envelope and

the cortex of the zygote (Byers and Goetsch, 1975).

As illustrated above, while fluorescent polysomes gradually

shift from cis to trans, there is a sharp discontinuity in their signal

intensity. To learn whether the nucleus is responsible for this

discontinuity and impedes transit through the midzone, we

studied kar1 3 wild-type (WT) crosses, in which nuclei do not

congress (Molk and Bloom, 2006) (Table 1). The presence of

the nucleus at the midzone does not appear to contribute,

because a sharp discontinuity in polysome distribution is evident

in such crosses (Figure S3), and there is no significant accelera-

tion of the rate of polysome redistribution in kar1 3 WT crosses

in comparison toWT3WT crosses. Moreover, the redistribution

of polysomes still precedes redistribution of the mitochondrial

signal, as for WT 3 WT crosses (Figure S4).

Because septins concentrate at the zygote midzone, we also

asked whether they contribute to the slow pace of flux. Indeed,

a temperature increase from 23�C to 37�C causes a modest

increase in the rate of flux in crosses between temperature-

sensitive (ts) conditional septin mutants (cdc12-6), whereas no

comparable increase is seen when WT control crosses are

studied at the same temperatures (Table 1).

Flux of the Prion, Sup35 [PSI+], Is Delayed Relative to
Sup35 [psi�]
To learn whether Sup35p [PSI+] readily traverses the midzone,

we followed Sup35p-GFP in crosses in which onemating partner

expresses a functional integrated copy of Sup35p-GFP from the

MFA1 promoter, which is turned off upon cell fusion. The same

partner also expresses soluble DsRed or Rpl25-mCherry. In

[psi�] cells, cytoplasmic Sup35p-GFP is smoothly distributed

and can diffuse freely, whereas the signal is generally inhomoge-

neous in [PSI+] cells (Greene et al., 2009; Kawai-Noma et al.,

2006; Satpute-Krishnan and Serio, 2005). In the ‘‘strong’’ [PSI+]

strains that we use, Sup35-GFP has a mottled/irregular appear-

ance at steady state. The designation ‘‘strong’’ signifies that

translation termination defects are suppressed more efficiently

than by ‘‘weak’’ forms.

Redistribution of aggregated Sup35p-GFP in crosses

between [PSI+] cells is restricted at the midzone, judging from

examination of intermediate time points (Figure 3A). This is remi-

niscent of previous studies of the [HET-s] prion (Mathur et al.,

2012). The restriction is not simply due to the position of the

nucleus, because an equivalent discontinuity is also evident in

WT 3 kar1 crosses in which the lack of karyogamy is ensured

by following a marker of the endoplasmic reticulum (ER)/nuclear
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Figure 2. Redistribution of Polysomes

(A) Cytoplasmic DsRed transfers before polysomes. Time course of a cross between a strain expressing cytoplasmic DsRed (lower cell) and a strain expressing

the tagged ribosomal protein, Rps3p-GFP (upper cell). Note that the flux of DsRed starts at the 0/1min time point and that, by contrast, no transit of Rps3p-GFP is

seen until after the 14min time point. Rps3p-GFP is essentially entirely polysomal (Seiser et al., 2006). Rps3p-GFPwas preinduced overnight. The two colors have

been separated for clarity, while the insert in the first panel shows both signals. Strains: ATY3162 3 ATY2872.

(B) Polysome transfer starts when nuclei are about to contact each other. Time course of a cross between a strain expressing Htb2p-mRFP (upper cell) and

a strain expressing both Htb2p-mRFP and Rps3p-GFP (lower cell). Rps3p-GFP was preinduced overnight. Strains: ATY2835 3 ATY3192.

(C) Polysome transfer starts as the spindle pole bodies (SPB) contact each other. Time course of a cross between a strain expressing both Rps3p-GFP and the

tagged SPB protein, Spc42p-mRFP (lower cell), and a strain expressing Spc42p-mRFP (upper cell). The two SPBs contact each other at the 1 min time point and

flux of Rps3p-GFP begins at this time. Strains: ATY1774 3 ATY3190.

(D) Rupture of the plasma membrane does not initiate immediate flux of polysomes. Cross between a strain expressing the plasma membrane marker, Mid2p-

GFP, and Rpl25p-mCherry-tagged polysomes (lower right) with an unlabeled strain (upper left). Note that although the plasma membrane is interrupted at t = 0,

the flux of polysomal signal (*) is delayed and occurs only slowly. Strains: ATY2835 3 ATY4252.

See also Figures S2, S3, and S4.
envelope (mRFP-HDEL) (Figure 3B). Moreover, in such crosses,

redistribution of Sup35 still occurs before redistribution of mito-

chondria (not shown).

Further experiments help characterize the medial barrier and

the in vivo hydrodynamic properties of Sup35p. First, Sup35p-

GFP (91 kDa) [psi�] and soluble DsRed (�120 kDa) have similar

hydrodynamic properties in vivo: both transfer over the same

period of time in crosses between [psi�] cells (Figure 3C). Trans-

fer of Sup35p-GFP is essentially complete before initiation of

polysome equilibration (Figure 3D).

Moreover, progressive coalescence of diffuse Sup35p can be

detected, possibly as a reflection of conformational maturation.

Thus, when Sup35p-GFP from a [psi�] ‘‘donor’’ enters a [PSI+]

‘‘acceptor’’ environment, tiny just-discernable foci appear in

the acceptor cell domain during the initial 30 min. At this resolu-

tion, these foci provide a first suggestion of conformational
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change and possible oligomer/aggregate formation. The donor

cell domain, as in studies of heteroallelic conversion of the

HET-s and HET-S proteins (Mathur et al., 2012), could receive

nonfluorescent seeds of [PSI+] Sup35 in such experiments. We

do not, however, see progressive changes in the donor compart-

ment over the same period of time, perhaps because the size

of any seeds precludes their rapid exchange (Figure 3Ea).

More visible foci and extensive ‘‘mottling’’ do appear in both

domains, but this occurs only gradually over 1–2 hr (e.g., Figures

3Eb and 3Ec). Curiously, an earlier study has described more

rapid Sup35-GFP conversion during zygote formation (Sat-

pute-Krishnan and Serio, 2005).

Furthermore, the overall polydispersity of Sup35p in a [PSI+]

environment appears comparable to that of polysomes; i.e., in

[PSI+] 3 [PSI+] crosses in which both Sup35p-GFP and tagged

polysomes are expressed by one parent, the transfer of



Table 1. Impact of Septin Mutants and Nuclear Congression on

Polysome Flux

Strains

Slope at t1/2 (%/min)

23�C 36�C

WT 3 WT ATY4158 3 ATY2871 5.4 ± 2.2

(n = 10)

4.6 ± 1.7

(n = 6)

cdc12-6 3

cdc12-6

ATY4203 3 ATY4223 5.1 ± 0.9

(n = 6)

10.4 ± 1.6

(n = 6)

kar1 3 WT ATY4187 3 ATY1920 6.0 ± 2.2

(n = 13)

Mixtures (MAT a, MAT a) of the indicated cells in log phase were spotted

on an agar surface in growth medium. In each case, one partner ex-

pressed a tagged ribosomal protein. After 1.5 hr at 23�C, theywere recov-

ered and observed by DeltaVision microscopy at either 23�C or 36�C, as
appropriate. Images were collected every 2min through the period of cis-

trans transfer of the fluorescent signal (�15 min). Image projections were

deconvolved and pixel intensity was estimated at six to eight points in the

cytoplasm per parental domain (Softworx). Average pixel intensity was

then calculated. After curve fitting (Origin), the half-time for flux and corre-

sponding slope (percent/min ± SD) were estimated. The increment of

slope in the cdc12-6 cross (37�C versus 23�C) has a p-value of < 0.05.

cdc12-6 was used for these experiments, because we have found that it

is especially effective in causing septins at the bud neck to disperse at

the restrictive temperature (data not shown). Flux of labeled polysomes

also increased in cdc11-6 crosses (3.2 ± 1.5 at 23�C versus 4.7 ± 2.6 at

36�C; n = 5–7); however, the increase was of marginal significance.
Sup35p-GFP aggregates extends over at least as long a period

as for polysomes (Figure 3A).

Mitochondrial Encounters and Fusion
Progressive Sequestration of Septins to the Bud Neck

Parallels Mitochondrial Encounters

After polysome and prion flux and completion of nuclear fusion,

tagged mitochondria extend precisely up to the midzone, as

though abutting on an invisible barrier (Figures 4A and 4B).

During this period, however, their position is not further

restricted—as in haploid cells, they can move extensively. Only

after a 15–30 min delay do matrix markers contributed by one

parent quickly access much of the mitochondrial labyrinth of

the trans domain of the zygote (Figures 4A and 4B), presumably

as a result of sudden fusion between the parental mitochondria

(Hermann et al., 1998; Nunnari et al., 1997; Okamoto et al.,

1998) (see also Figure S5). In Figure 4B, note that, prior to redis-

tribution of the mitochondrial marker, a patch of GFP-Cdc3

appears at the site of bud formation (asterisk), as in Figure 1C.

The consistency of this order is evident in experiments in which

a parent that expresses GFP-Cdc3p was crossed with a parent

that expresses the matrix marker, Cox4-DsRed: At a time point

when redistribution of the matrix marker had occurred in half of

the zygotes, a GFP-Cdc3-positive cortical patch or bud neck

was evident in all zygotes (83/83).

The timing of redistribution of DsRed-Cox4 and the sequen-

tial morphogenesis of septin-containing structures suggests

a ‘‘sequestration’’ hypothesis: The zygote midzone initially im-

pedes encounter of parental mitochondria, the site of incipient

budding then recruits components from the midzone (including

septins), and the integrity of the midzone becomes so impaired
C

that cis-trans encounter of parental mitochondria can occur.

Relocation of selected proteins from the midzone to the bud

neck could also cause secondary changes that promote redistri-

bution, as is further discussed below.

Encounters of Mitochondria Require Actin

Polymerization and Recruitment of Septins to the Bud

Neck

To learn whether septin integrity affects encounter of parental

mitochondria, we first evaluated redistribution of Cox4-DsRed

in crosses between cdc12-6 strains. These ‘‘two-step crosses’’

were initiated at 23�C and then reincubated for up to 40 min at

37�C versus 23�C. As shown in Figure 4C, redistribution is little

affected at 37�C versus 23�C for the cdc12-6 cross, and the

rate is nearly identical at both temperatures for WT cells. In these

experiments, multiple pools of septins are perturbed; i.e., any

medial barrier could be weakened and any role for septins at

the site of bud emergence could also be compromised.

We therefore studied redistribution of Cox4-DsRed in crosses

of mutants that inhibit bud emergence (Figure 4C). In each case,

one of the parents also expressed GFP-Cdc3p. Relevant

mutants are sec1-1, an exocytosis ts mutant that stops budding

(Togneri et al., 2006), and cdc28-13, the ts cyclin-dependent

kinase mutant that stops both budding and deposition of septins

at the site of bud formation in haploid cells (Cid et al., 2001). As

expected, no zygotic buds formed in either cross at 37�C.
In sec1-13 sec1-1 two-step crosses, a cortical patch of GFP-

Cdc3p appeared in approximately two-thirds of zygotes within

40 min during the reincubation at 37�C, and the annulus became

less evident with time (Figure 4D, left). Moreover, redistribution

occurred at essentially the same rate at both 37�C and at 23�C
(Figure 4Cd). The annulus is readily detected in cdc28-13 3

cdc28-13 crosses, , but there was no cortical patch of GFP-

Cdc3p after incubation at 37�C (Figure 4D, right). Moreover,

the cdc28-13 crosses consistently showed slower redistribution

at 37�C than at 23�C (Figure 4Cc).

Parallel two-step crosses show that actin polymerization is

required in order for redistribution of Cox4-DsRed, and addition

of latrunculin A during the second incubation halts redistribution

(Table 2). This treatment does not cause an obvious change in

the distribution of GFP-Cdc3 (not shown).

Thus, encounter and fusion of parental mitochondria are

delayed when the septin annulus is conspicuous and bud neck

filaments have not formed. In this sense, by checking on the

progress of bud formation, the timing of encounters between

parental mitochondria is adjusted.

The Nucleus Impedes Redistribution

To learn whether the presence of the nucleus at the midzone

delays the encounter of parental mitochondria, we evaluated

redistribution of Cox4-DsRed in kar13WT crosses, by compar-

ison to WT 3 WT crosses, and observed that redistribution

occurs earlier in the kar1 3 WT crosses (Figure 4Ce). Both sep-

tins and the nucleus thus contribute to the delay of mitochondrial

encounter and fusion.

Entry into Buds
Sup35p [PSI+] Enters All Buds

Some forms of Sup35p are not efficiently inherited during mitotic

growth. Nevertheless, time-lapse observations of individual
ell Reports 3, 223–236, January 31, 2013 ª2013 The Authors 227



Figure 3. Redistribution of Sup35p-GFP

(A) Transit of Sup35p-GFP between [PSI+] cells occurs concurrently with polysomes. Time course of a cross between a cell that expresses both Sup35p-GFP and

Rpl25-mCherry (upper cell) and a nonfluorescent cell (lower cell). For Sup35p-GFP, note that although there can be initial transfer of very limited amounts of

a diffuse pool (evident upon enlargement of the image), aggregates in the acceptor cannot be seen until the 4min time point. Moreover, as for polysomes, there is

a discontinuity of abundance of Sup35p-GFP aggregates at the midzone at intermediate time points. The slow transfer of Sup35p-GFP aggregates is concurrent

with transfer of tagged polysomes. Strains: ATY4847 3 ATY4519.

(B) Transit of Sup35p-GFP aggregates is restricted at the midpoint even when nuclei do not span the zygote midzone. The cross is between a [PSI+] cell (upper

cell) that expresses both Sup35p-GFP and the mRFP-HDEL luminal marker of the ER and nuclear envelope, with a kar1mutant (lower cell). An intermediate time

point is illustrated. The visibility of the mRFP-HDEL throughout shows that the two cells have fused. Note that the nuclei have not fused and that the concentration

of Sup35p-GFP aggregates (*) diminishes abruptly at the midpoint of the zygote. The two colors have been separated for clarity. N, nucleus. Strains: ATY31983

ATY4826.

(C) Comparison of the rate of redistribution of Sup35p-GFP and DsRed. Both parents are [psi�]. One expresses both Sup35p-GFP and cytoplasmic DsRed,

whereas the other is not labeled. As shown, diffuse Sup35p-GFP (91 kDa) equilibrates over the same period of time as DsRed (120 kDa). Strains: ATY4901 3

ATY4928.

(legend continued on next page)
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[PSI+] 3 [PSI+] and [PSI+] 3 [psi�] zygotes in which aggregated

Sup35p-GFP is introduced from a [PSI+] parent show that all

buds—including the smallest that are encircled by septins—

receive aggregated Sup35p-GFP (e.g., Figures 3Eb and 3Ec),

a process that is favored by fragmentation of prion units

(Liebman and Chernoff, 2012; Paushkin et al., 1996). This is

also true in [psi�] 3 [PSI+] crosses in which Sup35p-GFP is

contributed by the [psi�] parent. Indeed, there is no visible

distinction between buds originating at the two distinct ends in

[psi�] 3 [PSI+] crosses. Thus, although these aggregates of

Sup35pstrong-GFP are delayed at the midzone, and although

there can be quantitative differences in the relative abundance

of aggregates among cells, they are transmitted to all progeny.

It will be of interest to investigate the extent to which the

[RNQ+]/[PIN+] status of cells and other forms of Sup35

(e.g., weak versus strong) influences transit between parental

domains and entry into buds.

Nucleoids Enter Nascent Terminal Buds and

Mother-Bud Continuity of Mitochondria Continues

Until Telophase

To learn whether delayed fusion of parental mitochondria causes

terminal buds to be enriched in a single parental mitochondrial

genome, we conducted crosses in which one parent expressed

tagged proteins of mitochondrial nucleoids—Abf2p-GFP or

Mgm101p-GFP (Kucej et al., 2008; Meeusen et al., 1999; Oka-

moto et al., 1998)—and the other expressed Cox4-DsRed.

Indeed, tagged nucleoid(s) consistently associate with adjacent

nascent terminal buds well before cis-trans fusion of mitochon-

dria (e.g., Figures 5A and S6).

The biased inheritance of mitochondrial genomes could

signify that there is only a brief time window for association of

mitochondria with terminal buds. Alternatively, mitochondria

could retain continuity into the bud for an extended period of

time, but nearby (cis) nucleoids that enter early might outnumber

nucleoids derived from the distant parent, or associate with

a finite number of binding sites. It is therefore important to learn

for how long mitochondria remain continuous across the bud

neck. Published images show continuity when buds are present

(Boldogh et al., 2005; Garcı́a-Rodrı́guez et al., 2009; Weisman,

2006).

Because buds form before entry of the nucleus, we have used

two protocols to take this analysis a step further, showing that

continuity of Cox4-GFP into buds continues when the nucleus

spans the bud neck: (1) when the cell cycle is arrested by inacti-

vating the mitotic exit network kinase, Dbf2p (Figure 5B), and (2)

after depletion of the activator of the anaphase promoting

complex, Cdc20p (Komarnitsky et al., 1998) (Figure 5C). In the

latter case, we have used FRAP to assess functional continuity.
(D) Transit of Sup35p-GFP precedes polysomes in crosses of [psi�] cells. One par

other is unlabeled. Note that Sup35p-GFP enters the acceptor well before polys

(E) Entry of diffuse Sup35p-GFP from a [psi�] cell into a [PSI+] environment leads

crossedwith [PSI+] cells. (a) When Sup35p-GFP (lower cell) enters the [PSI+] cell (u

cytoplasm. In this case, the first aggregates are seen at the 10 min point (*). Strain

for longer, and obvious extensive aggregation/mottling was seen throughout. In th

[UGA]DsRed) to verify the [PSI+] status of the environment (Satpute-Krishnan and

expressing strain with a strain that expresses Cdc3p-mCherry show that even sma

and diploid buds, the zygotic bud neck is encircled by septins. Strains: ATY4840

C

When the bud is bleached, the signal can (1) diminish in the bud

but not change in the zygote, (2) immediately diminish in both

bud and in the zygote, or (3) recover in the bud only after a delay.

Each outcome is observed with comparable frequency. Thus,

although mother-bud continuity can be intermittent, it persists

until after entry of the nucleus.

Mitochondria Enter Medial Buds before Fusing

Both parental types of mitochondria are present in most diploid

cells that originate from medial buds, although one type is lost

(at random) within a few generations (Birky et al., 1978; Dujon

et al., 1974; Okamoto et al., 1998; Thomas and Wilkie, 1968).

Because there has been no indication of whether parental mito-

chondria fuse with each other before entry into buds, we have

studied early stages of medial bud emergence using parents

that express Cox4-DsRed versus Cox4-GFP. One readily finds

examples in which both types of mitochondria extend to the

bud neck but have not fused, suggesting that the two types of

parental mitochondria generally fuse with each when they enter

the bud (Figure 5D). Thus, as for nonmedial events, fusion occurs

when bud formation is already underway. Interestingly, fusion of

parental vacuoles also does not occur before entry into medial

buds (Weisman, 2006).

The Septin Ring at the Bud Neck Is Required for Actin

Polarization

Why do parental mitochondria not fuse with each other long

before bud formation? Is a medial barrier strongly restrictive, or

do bud formation, the arrival of septins at the neck, and actin

polarization also have a positive effect? To explore this issue,

we first localized mitochondria along with actin cables by

following Cox4-DsRed and a GFP-tagged copy of the actin fila-

ment-binding protein, Abp140 (Yang and Pon, 2002) (Figure 5E).

Prior to cell-cell fusion, actin cables and mitochondria orient

toward the zone of contact. Upon fusion, actin orientation

becomes less obvious, the midzone often appears depleted of

filaments, and, as detailed above, mitochondria extend only to

the midpoint of the zygote. When buds become visible, actin

has reorganized to generate cables that extend from the bud

neck and extend either in roughly symmetric fashion toward

each parental domain (when budding is medial), or along the

long axis of the zygote (when budding is nonmedial). In each

case, mitochondria appear to align with cables.

In mitotic cells, septins and the formin Bnr1p localize to the

bud neck and are required for nucleating linear actin filaments

in the mother cell. A second formin, Bni1p, localizes to the bud

tip and plays a similar role for organization of actin in the bud

(Buttery et al., 2007; Pruyne et al., 2004). We therefore investi-

gated the interdependence of septin localization, Bnr1p, and

actin polarization in zygotes.
ent expresses both Sup35p-GFP and Rpl25p-mCherry (lower cell), whereas the

omes. Strains: ATY4848 3 ATY4928.

to its slow aggregation. In all cases, [psi�] cells expressing Sup35p-GFP were

pper cell), fine foci form during the first 20–30min, especially in the acceptor cell

s: ATY48413 ATY4519. (b) In a parallel experiment, the incubations extended

is cross, the acceptor strain included a fluorescent reporter (pRS304-PGPDGST

Serio, 2005). Strains: ATY4841 3 ATY4973. (c) Crosses of the Sup35p-GFP-

ll zygotic buds receive Sup35p-GFP [PSI+] aggregates, and that, as for haploid

3 ATY5457.
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Figure 4. Encounter of Mitochondria
(A) Karyogamy precedes transfer of the mitochondrial signal. Time course of a cross between a strain that expresses Htb2p-GFP (lower cell) and a strain that

expresses the mitochondrial matrix marker, Cox4-DsRed (upper cell). Karyogamy is indicated by the increase in nuclear volume between the 0 and 2 min time

points. The distribution of red mitochondria appears to be limited by an invisible barrier (white line). Karyogamy precedes the sudden arrival of the red mito-

chondrial signal in the trans cell (between the 28 and 30 min time points). Strains: ATY2707 3 ATY2673.

(B) Timing of mitochondrial encounters compared to septin morphogenesis. Time course of a cross between a strain expressing GFP-Cdc3p and Htb2p-mRFP

(left) and a strain expressing Cox4-DsRed (right). Note that the redmitochondria (m) from the lower right abut on the septin annulus (arrow) at early time points. The

site of incipient bud formation then develops a patch of GFP-Cdc3p (* at 16 min). When the site of budding is well defined (28 min), the red mitochondrial signal

suddenly enters the upper volume of the zygote. Strains: ATY3432 3 ATY3129.

(C) Quantitation of redistribution of mitochondrial proteins. All panels concern crosses in which one partner expresses Cox4-DsRed. For (a)–(d), pairs of wild-type

(a), cdc12-6 (b), cdc28-13 (c), or sec1-1 (d) strains were crossed for 1.5 hr on plates, recovered (to), and then incubated at 23�C or 37�C for the indicated times

before fixation and quantitation to determine the percent of zygotes for whichCox4-DsRed extended into both parental domains. The values at to do not start from

0%because the initial incubation inevitably already allows limited redistribution. As expected, the sec1-1 and cdc28-13 zygotes did not bud at 37�C.Note that the
temperature increase has little effect on the speed of Cox4-DsRed redistribution in WT, sec1-1, and cdc12-6 crosses. The effect on cdc28-13 crosses is more

distinct. (Because the parent of this mutant was not available, the temperature dependence of redistribution should be noted, rather than comparison to rates of

redistribution in a.) Redistribution accelerates when the nucleus is absent from the midzone (e). In this case, a WT 3 WT cross and a kar1 3 WT cross were

compared. One parent expressed cytoplasmic GFP to estimate its time of permeation. In both cases, the flux of cytoplasmic GFPwas designated t0. Note that the

half-time for redistribution of the mitochondrial signal is advanced by about 20min in the kar1 cross, relative toWT. For (a)–(e), 200 zygotes were counted for each

of three to ten experiments. Data are expressed as means ± SD. For (b) and (c), the differences between the final data points have a p value of < 0.1 (Student’s t

test). For (e), the p-values between the data points for the two lines range from0.05 to 0.1 (Student’s t test). Strains: (a) ATY27073ATY2112, ATY40543ATY4059,

and ATY4250 3 ATY4291; (b) ATY3459 3 ATY4028; (c) ATY4051 3 ATY2773; (d) ATY4052 3 ATY4058; (e) ATY2869 3 ATY3129 and ATY2869 3 ATY4017.

Because the parent of the cdc28-13 strains was not available, the WT data that are compared to cdc28-13 illustrate an average from several parental strains.

(D) Localization of GFP-Cdc3p after arrest. Left two panels show an isogenic pair of sec1-1 strains crossed at 23�C. One expressed Htb2p-mRFP, while the other

expressed GFP-Cdc3p. After 1.5 hr, they were reincubated 40 min at 37�C. As shown, zygotes accumulate GFP-Cdc3p at the site of imminent bud formation.

sec1-1 does not block nuclear fusion (Tartakoff and Jaiswal, 2009). Strains: ATY4031 3 ATY3842. Right three panels show an isogenic pair of cdc28-13 strains

crossed at 23�C. One expressed Cox4-DsRed, while the other expressed GFP-Cdc3p. After 1.5 hr, they were reincubated at 37�C for 40 min. Note the

conspicuous annulus and the lack of redistribution of the mitochondrial signal. In parallel WT crosses, 40 min is sufficient to allow redistribution of mitochondrial

proteins in the large majority of zygotes. Strains: ATY3773 3 ATY2773.

See also Figure S5.
In crosses between WT cells, we observe that GFP-tagged

Bnr1p becomes visible only when zygotic buds emerge; i.e.,

approximately when actin becomes repolarized and parental

mitochondria fuse. At this time, it colocalizes with septins at

the bud neck (Figure 5F).

To learn whether septins at the bud neck are required for co-

localization of Bnr1p and for actin polarization throughout the
230 Cell Reports 3, 223–236, January 31, 2013 ª2013 The Authors
zygote, we allowed bud formation to begin and then inactivated

one septin at the bud neck. In these experiments, we formed

cdc11-6 zygotes at 23�C, using a pair of temperature-sensitive

strains that express mCherry-tagged Cdc3p and GFP-tagged

Bnr1p. When the zygotes were then shifted to 36�C–37�C,
both tagged Cdc3p and tagged Bnr1p disappeared from the

bud neck (Figure 5G, panel 1). Moreover, in equivalent protocols



Table 2. Impact of Latrunculin A on Redistribution of

Mitochondria

Experiment

% Redistribution

t0 +60 min +60 min with LTA % Inhibition

1 27 ± 7.2 63.3 ± 3.8 29.7 ± 2.5 94%

2 27.5 ± 3.5 73 ± 4.2 37.5 ± 3.5 77%

3 43.7 ± 4.0 65.7 ± 3.2 40.5 ± 3.5 100%

One parent expressed soluble GFP in the cytoplasm, whereas the other

expressed Cox4-DsRed. Typical crosses were harvested when cell

fusion was first detected (t0). At this point, redistribution of the Cox4-

DsRed had occurred in 27%–43% of the zygotes that already showed

flux of cytoplasmic GFP. The samples were then diluted 53 and reincu-

bated for 1 hr in growth medium ± 15 mM latrunculin A before fixation.

DMSO 1% was present in all samples. For each condition, 400–600

zygotes showing flux of cytoplasmic GFP were scored according to

whether Cox4-DsRed was evident in both parental lobes. The per-

centage that showed redistribution was expressed as an average ± SD.

Three representative experiments are tabulated. Strains: ATY4697 3

ATY3817. LTA, latrunculin A.
in which one of the haploid parents expressed tagged Abp140,

actin cables became dramatically concentrated in the elongated

buds and remarkably absent from the rest of the zygote (Fig-

ure 5G, panels 2–4). No such changes occurred in parallel exper-

iments with WT zygotes. Because bnr1D strains do not form

conventional zygotes with good efficiency, it has not been

possible to inquire whether Bnr1p itself is needed (unpublished

data).

There is thus a close connection between arrival of septins at

the bud neck and the polarization of actin in the body of the

zygote. We propose that this repolarization of actin facilitates

fusion of parental mitochondria in zygotes.

DISCUSSION

The Importance of the Midzone
The ultimate redistribution of parental constituents during

zygote formation occurs asynchronously (Figure 6A). Why is

this? During the mitotic cell cycle, septin filaments that encircle

the bud neck contribute to the restricted diffusion of cortical

proteins between mother and bud. The present observations

indicate that septin-containing structures serve a broader

‘‘gatekeeper’’ function, in that they can also control the flux of

entities that are not primarily associated with the cortex. Poly-

somes and Sup35-GFP [PSI+], as well as mitochondria, are

delayed at the level of the zygotemidzone, which includes a sep-

tin annulus. Subcompartmentalization of the cytoplasm in the

absence of membrane barriers is in fact characteristic of many

cell types (Caudron and Barral, 2009; Galiano et al., 2012; Kissel

et al., 2005; Lin et al., 2009; Merisko et al., 1986; Mollenhauer

and Morré, 1978; Song et al., 2009; Wolosewick and Porter,

1979).

Interestingly, the septin annulus continues to encircle the

nucleus well after karyogamy, and one report concludes that

septins at the bud neck restrict transit of nuclear pores into

buds (Shcheprova et al., 2008). Therefore, the efficacy of

the midzone barrier could be promoted by its association
C

with both the nuclear envelope and the plasma membrane,

perhaps due to binding of septins to phosphoinositides (Casa-

mayor and Snyder, 2003). Nevertheless, constriction around

the nucleus does not account for all barrier function of the mid-

zone: significant delay in redistribution persists even when nuclei

do not congress. The functional significance of this barrier could

normally be to buffermotion and thereby promote the surely intri-

cate multistep process by which nuclei fuse (Melloy et al., 2007;

Tartakoff and Jaiswal, 2009). Further interesting possibilities are

that the populations of ribonucleoproteins on either side of the

midzone are distinct and that, given the restricted transit of

Sup35 [PSI+], the fidelity of translation termination is different

within different parts of the cytoplasm.

Encounters of Parental Mitochondria
Parental mitochondria contact each other and fuse long after the

flux of polysomes and Sup35p-GFP. What causes this delay?

Fusion is linked to relocalization of septins to the bud neck and

polarization of the actin cytoskeleton. Most strikingly, in septin

mutant zygotes, at the restrictive temperature, actin cables

vanish from the body of the zygote and become dramatically

concentrated in emerging buds. The present observations thus

strongly reinforce the concept that septins coordinate the orga-

nization of other components of the cytoskeleton (Kusch et al.,

2002; Pruyne et al., 2004; Spiliotis and Gladfelter, 2012). More-

over, the rearrangement of actin filaments that occurs in septin

mutants is likely to contribute to their inability to accomplish

cytokinesis (Hartwell, 1971).

We suggest that slight translocation of both types of parental

mitochondria across the midzone is normally required for their

encounter, and that this step requires reorganization of the actin

cytoskeleton. Concurrent remodeling of the midzone—including

removal of septins—may facilitate these encounters.

Prior to cell fusion, actin cables in parental cells run antiparallel

relative to each other (Slaughter et al., 2009) (Figure 6B). After cell

fusion, cables in the body of the zygote have a less defined orien-

tation until they extend either from the neck of medial buds into

each parental domain, or from the neck of lateral or terminal buds

along the full length of the zygote. In both situations, the actin

filament nucleator, Bnr1p, localizes to the bud neck. Judging

from our observations, mitochondrial fusion occurs in the middle

of the zygote in both situations. This could signify that parallel

alignment of linear actin filaments is required for in vivo mito-

chondrial fusion to occur.

We therefore suggest that several parameters determine

which mitochondrial genomes are inherited by terminal buds.

These include the timing of alleviation of the medial impasse

and the timing of repolarization of the actin cytoskeleton.

Because the progressive sequestration of septins away from

the midzone to the bud neck couples these events, encounter

and fusion of parental mitochondria is expected to be delayed

but efficient. Further considerations also oppose entry of cis

nucleoids into trans buds: (1) nucleoids are tethered to trans-

membrane proteins (Boldogh and Pon, 2007), and (2) nucleoids

would likely encounter significant difficulty if they were to enter

the transmitochondrial reticulum of tubules after cis-trans fusion

and then need to pass beyond nucleoids of the other parent to

gain access to the bud.
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Generality
The uniparental inheritance of mitochondria that is character-

istic of many organisms suggests that there is an advantage

to protecting at least some copies of the mitochondrial genome

from recombination. Alternatively, mitochondrial-nuclear inter-

actions could become deleterious in the presence of more

than one mitochondrial genome (Birky, 2001; Lewontin, 1971),

or consequences of possible genetic incompatibilities could

become manifest (Saupe, 2011). Interestingly, several condi-

tions affect both the inheritance of mitochondria in humans

(Dimauro and Davidzon, 2005) and the segregation of distinct

mitochondrial genomes when they coexist (Jokinen and

Battersby, 2012). Moreover, septin integrity is critical for proper

differentiation of spermatozoa and compartmentalization of

their mitochondria (Ihara et al., 2005; Kissel et al., 2005; Lin

et al., 2009), and cell polarity defects and formin mutations

have been linked to several diseases (DeWard et al., 2010; Stein

et al., 2002).

Spatially separate cytoplasmic characteristics of cells can

be differentially passed to daughter cells if the ends of the
Figure 5. Entry into Buds

(A) Nucleoids enter the bud before cis-trans mitochondrial fusion. A strain expre

a strain expressing Cox4-DsRed (upper cell). The first and last panels include brigh

0, well before Cox4-DsRed redistributes. In experiments in which the bud emerg

buds well before cis-trans transit of Abf2p-GFP. Strains: ATY3576 3 ATY3129.

(B) Mitochondria extend across the neck until after entry of nuclei into the bud.

incubated for 3 hr at 37�C and examined at 37�C. In cells in which the nucleus span

occurred), mitochondria can be traced from mother to daughter in most cells. T

through fourth panels are single planes showing that both the nuclear envelope an

have been made with zygotes. Strain: ATY4818.

(C) Photobleaching assessment of mitochondrial continuity upon arrest of the cell

free medium for 2 hr. Each had been engineered to allow depletion of Cdc20p upo

mRFP and Cox4-GFP. The mating mixture was then transferred to methionine-co

for which the nucleus (red) spanned the bud neck. After photobleaching the buds,

the zygote. The graph indicates three distinct behaviors: (a, upper) lack of recover

bud and unchanged intensity in the zygote, and (c and c0, lower) initial bleaching o

with roughly equal frequency. Strains: ATY4672 3 ATY4698.

(D) Entry of mitochondria into medial buds. To monitor the relative position of the

Cox4-GFP and cells expressing Cox4-DsRed were examined. Projections are illus

(a), only one type of mitochondrion (green) extended into the bud. In the example

had not fused. In the example at the right (c), fusion had occurred. Brightfield im

(E) Localization of actin cables during zygote formation. Cells expressing the GF

Cox4-DsRed. Projections of 0.1 m sections are illustrated. Note that prior to cell fu

After fusion, the polarity of actin is less clear (2a/b); however, as buds appear, cab

for nonmedial budding, mitochondria appear to associate with a subset of the cab

and without (b) the mitochondrial signal. Strains: ATY3072 3 ATY3129.

(F) Distribution of the formin-like protein, Bnr1p-GFP, in zygotes. A strain express

mCherry. No GFP signal was seen in prezygotes or early zygotes, although GFP-ta

Bud6p) do concentrate at the zone of contact just prior to cell fusion (not shown).

septin signal at the bud neck. A through-focal series (0.5m per section) is illustrated

and green (lower) have been separated for clarity. Strains: ATY5527 3 ATY5471

(G) Control of actin polarization. (1) Localization of Bnr1p upon inactivation of Cdc

was crossed at 23�C until zygotes formed and budding was evident. At this time,

The preparation was then maintained at 23�C or shifted to 37�C to evaluate the s

37�C, the proportion of budded zygotes showing both signals at the neck (blue

increased. At intermediate times, a minority of zygotes was found in which only C

same period, both labels persisted at the neck (not shown). Strains: ATY5535 3 A

strain expressing GFP-tagged Abp140 was crossed at 23�C with a cdc11-6 stra

shifted to 36�C–37�C for 90 min and then imaged. Representative projections ar

accentuated cables in the buds, cables that extend from buds into the body of the

zygote. WT zygotes do not show such relocalization of Abp140 in parallel experi

See also Figure S6.

C

mitotic spindle extend into these distinct regions. For such

a mechanism to function, the underlying characteristics could

either be locally tethered (Spokoini et al., 2012) or restricted by

barriers.

EXPERIMENTAL PROCEDURES

Cells, Plasmids, and Drugs

Yeast strains were primarily derivatives of W303 or S288C (Table S1). Table

S2 lists yeast plasmids. Cells were grown in complete synthetic medium

or appropriate drop-out media at room temperature, supplemented with

adenine sulfate. As needed, cells were precultured overnight, or induced for

1–2 hr, in medium supplemented with 1% galactose and 1% raffinose, as

indicated in the figure legends. All chemicals were from Sigma-Aldrich,

except for latrunculin, which was from Millipore. Drug stocks (1003) were

prepared in DMSO.

Protocols to Generate Zygotes

Strains (MAT a, MAT a) grown to OD600 �2 were diluted 203 in medium

and allowed to regrow with shaking for 2–3 hr before mixing equal numbers

of appropriate pairs at OD �4 in fresh medium. Then, 50–100 ml samples

were applied to the surface of CSM-glucose plates at 23�C. When the
ssing the tagged nucleoid protein, Abf2p-GFP (lower cell), was crossed with

t-field images to show that labeled nucleoids are adjacent to the bud even at t =

es from the end of the zygote that expresses Cox4-DsRed, this marker enters

A MEN mutant (dbf2-2) that expresses both mRFP-HDEL and Cox4-GFP was

s the bud neck (proving that bud formation is advanced but cytokinesis has not

he first panel (prj) is a projection showing both signals, whereas the second

dmitochondria extend across the neck (white circles). Equivalent observations

cycle by depleting Cdc20p in zygotes. Two strains were crossed inmethionine-

n transfer to methionine-containing medium, and each expressed both Htb2p-

ntaining medium for 4 hr and used for photobleaching. Zygotes were selected

images were collected to follow GFP fluorescence in the bud and in the body of

y in the bud and lack of change in the zygote, (b, middle) instant recovery of the

f the bud followed by delayed recovery in two zygotes. Each behavior was seen

two parental populations of mitochondria, crosses between cells expressing

trated in which individual colors have been separated. In the example at the left

in the middle (b), both types of mitochondria contacted the base of the bud, but

ages are in blue. Strains: ATY2707 3 ATY2708.

P-tagged actin-binding protein, Abp140, were crossed with cells expressing

sion (1a/b), actin cables and mitochondria polarize toward the zone of contact.

les are evident, some of which are oriented toward the bud. Both for medial and

les (3–5a/b). In each pair of images, we illustrate the Abp140-GFP signal with (a)

ing functional GFP-tagged Bnr1p was crossed with a strain expressing Cdc3p-

gged versions of other proteins involved in actin guidance (e.g., Abp1p, Bni1p,

When buds emerge (either medial or nonmedial), foci of Bnr1p-GFP overlap the

, showing half of a zygote that bears a terminal bud. The two colors: red (upper)

.

11. A pair of cdc11-6 strains expressing GFP-tagged Bnr1p or Cdc3p-mCherry

tagged Bnr1p and Cdc3p were visible at the bud neck of >90% of all zygotes.

ignal at the bud neck (percent). As indicated in the graph for zygotes at 36�C–
line) progressively diminished, while the percent lacking both signals (red line)

dc3-mCherry was still detected at the neck. Upon incubation at 23�C over the

TY5529. (2–4) Actin cables reorganize upon inactivation of Cdc11. A cdc11-6

in expressing Cdc3p-mCherry. When buds appeared, the preparations were

e shown for cells in which Cdc3-mCherry can no longer be detected. Note the

zygote, and the nearly complete disappearance of filaments from the rest of the

ments. Strains: ATY5539 3 ATY5529.
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Figure 6. Overview

(A) Timeline. From top-to-bottom, the rows outline (1) sequential changes at the cell surface; (2) the redistribution of tagged soluble proteins, polysomes,

aggregated Sup35 and mitochondria; (3) changes in septin organization; and (4) changes in actin polarization. The designation (cis) signifies that mitochondria

contact the cortex at one end of the zygote where buds will subsequently form. The timing of fusion of parental mitochondria overlaps with the first signs of bud

emergence per se. There is considerable polydispersity in the timing of these events. In general, upon mixing the two cell types at room temperature on the

surface of an agar plate, zygotes first become visible after 1.5–2 hr. Soluble proteins then redistribute within�20min, polysome flux and nuclear fusion follow over

�20 min, and parental mitochondria fuse �20 min later. Under the circumstances studied, the majority of buds emerge at terminae of the zygote.

(B) Model of actin polarization. The red arrows indicate the suggested direction of polarization, with the tail of the arrows corresponding to the site of nucleation. At

the right, nonmedial (upper) and medial (lower) budding options are diagrammed. Green designates septins, as in Figure 1E.
samples had dried (�15 min), the plates were covered and incubated for 1.5–

2.0 hr to generate early, unbudded zygotes. To quantitate redistribution of

mitochondria (Cox4-DsRed), samples washed off plates were either fixed at

once or first reincubated at OD600 = 1 in appropriate medium at 23�C or

37�C. For fixation, an equal volume of 4% formaldehyde in PBS was added

on ice. After 5 min, the samples were washed with water and examined by

epifluorescence.

Zygotes that were sufficiently mature to have a smooth concave contour

at the middle and lacking any demarcation of the midpoint were scored in

blinded fashion according to whether the mitochondrial marker was con-

fined to a single parental domain. In selected experiments (see text), one

partner expressed cytoplasmic GFP so that attention could be restricted to

those zygotes for which the GFP was certain to have equilibrated. In fact,

equilibration was seen in >85% of zygotes, as identified by strictly anatomic

criteria.

Microscopy

For time-lapse microscopy of zygotes, samples of mating mixtures were

rinsed off plates with complete medium at the indicated times and sedi-

mented. Samples of the pellet (1 ml) were applied to 1.5% agarose pads

including medium and additives of interest. After overlaying a coverslip and

sealing with Vaseline, they were examined by DeltaVision microscopy at

23�C (unless specified otherwise).

For DeltaVision microscopy, we used a 1003 oil immersion objective

without binning (Olympus UPlanApo 1003/1.40; N/0.17/FN26.5). z stacks

were deconvolved using Softworx and processed minimally. At least 20 cells

were observed for each condition and the selected illustrations are represen-

tative of the large majority (>80%). Brightfield images are in blue. Successive

z-planes were generally collected at 0.2–0.4 m intervals and complete through-

focal series were examined in all cases. Images were collected at 15 s to

30 min intervals, as appropriate. For most experiments, single planes are illus-

trated to optimize resolution. Other relevant information was not evident in

alternative planes or in projections. Any use of entire z stack projections is

specified in the legends.

To visualize actin, cells were fixed 10min in ice-cold 70% ethanol, washed in

PBS, stained for 2min at room temperature with 0.14 mM rhodamine-phalloidin

(Sigma 77418), washed repeatedly with PBS, and examined.

Photobleaching was performed with a Zeiss 510 confocal microscope

using a Plan-Apochromat 1003 oil-immersion objective (NA 1.4). After

bleaching �80% of the signal at 50% laser intensity, cells were imaged at

1% laser intensity using the acquisition software LSM510 (Carl Zeiss MicroI-

maging). When transformants that express Cox4-DsRed (ATY3129) were

entirely photobleached and then followed over the next hour at room temper-

ature, only minimal recovery of signal was seen (data not shown). Therefore,
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the contribution of new synthesis of Cox4-DsRed is equally minor over this

period of time.

Quantitation and Statistics

All quantitative experiments are expressed as mean ± SD. P values were

calculated using Student’s t tests. The illustrated time-lapse series are repre-

sentative of at least 20 independent cells or zygotes.
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