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SUMMARY

Phytochromes are photoreceptors in phototropic
organisms that respond to light conditions by
changing interactions between a response regulator
and DNA. Bacterial phytochromes (BphPs) comprise
an input photosensory core domain (PCD) and an
output transducing domain (OTD). We report the
structure of a BphP containing both PCD and the
majority of its OTD, and demonstrate interaction
with its cognate repressor. The OTD of RpBphP1,
from Rhodopseudomonas palustris, is composed
of a PAS/PAC domain and, to our knowledge, a
hitherto unrecognized two-helix output sensor (HOS)
domain. Unlike canonical BphPs, it does not transmit
phosphorelay signals but forms a complex with the
transcriptional repressor RpPpsR2 on photoconver-
sion with far-red light. We show that HOS is essential
for complex formation and that the anti-parallel
dimer geometry is crucial in achieving HOS domain
activation and protomer swapping under the control
of light. These results provide insights into the steps
taken by a two-component signaling system.

INTRODUCTION

Phytochromes are photoreceptors that respond to environ-

mental light conditions and in so doing control a variety of photo-

morphogenic responses. They use a covalently bound linear

tetrapyrrole molecule that reversibly photo-converts between

the Pr (red) and Pfr (far-red) absorbing states. The light-depen-

dent signal usually initiates phosphotransfer to a response regu-

lator which, in turn, mediates differential expression of target

genes. Phytochromes, initially discovered in plants, have now

been described in many organisms such as cyanobacteria, fungi

and bacteria (Bhoo et al., 2001; Davis et al., 1999; Giraud et al.,

2002; Hughes et al., 1997; Lamparter et al., 2002). Bacteriophy-

tochrome photoreceptors (BphPs) are bacterial homologs

employing the chromophore biliverdin IXa (BV) and can be

divided into two families; those with a dark stable Pr, and those

with a dark stable Pfr state or as they are sometimes called

bathy-BphPs (Giraud and Verméglio, 2008; Rottwinkel et al.,

2010). The molecule can be divided into an input light-sensing
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N-terminal photo-sensory core domain (PCD) and a C-terminal

output transducing domain (OTD). The PCD is composed of

a Per/Arnt/Sim (PAS) domain followed by the cyclic di-GMP

phosophodiesterase/adenyl cyclase/Fhla (GAF) domain and the

phytochrome-associated (PHY) domain which is unique to

phytochromes. The BV chromophore is found in the GAF domain

and is covalently linked to a Cys residue at the N-terminus of the

PASdomain. TheC-terminal OTD showsmore variability than the

PCD because it depends on the particular response regulator it

interacts with in the two-component regulatory system. The

OTDs of canonical BphPs are homologues of the cytoplasmic

domain of a histidine kinase (HK) (Bhoo et al., 2001; Davis et al.,

1999; Rottwinkel et al., 2010) however other types of BphP exist

with OTDs composed of a GGDEF/EAL domain (Kyndt et al.,

2005; Tarutina et al., 2006) and are probably involved in second

messenger signaling while the PAS/PAC domain variants are

believed to bind directly to a repressor preventing its interaction

with DNA (Giraud et al., 2002; Giraud and Verméglio, 2008). The

OTDs composed of a PAS/PAC domain also have an�90 amino

acid sequence, at the C-terminus, which does not have a recog-

nized homology with other structures (Giraud and Verméglio,

2008). Three-dimensional structures exist for the PCD (Essen

et al., 2008; Yang et al., 2008) and the smaller chromophore

binding domain (CBD) (Ulijasz et al., 2010; Wagner et al., 2005;

Yang et al., 2007), but a structure of a complete BphP, containing

both the PCD and associated OTD, has yet to be determined. In

this study we describe the structure of the bathy-BphPRpBphP1

from Rhodopseudomonas palustris, which plays a central role in

the expression of a large cluster (>30) of photosynthetic genes

(Giraud et al., 2002). The structure we present comprises

a PCD and a major part of the OTD composed of PAS/PAC.

Into this structure we have modeled, to our knowledge, the

hitherto unassigned 90 amino acid C-terminal domain, which

we name 2-Helix Output Sensor (HOS) domain, and we also

show that it is essential for RpBphP1 binding to the cognate

repressor RpPpsR2 on far-red light illumination. The structure

gives an insight into a two-component regulatory system that

involves only protein-protein interactions with a repressor

molecule and not through the usual phosphor-relay mechanism.

It is interesting to note that although RpBphP1 is an atypical

BphP, it shares a domain organization with the N-terminal part

of plant phytochromes that possess two PAS domains following

the PCD; the N-terminal domain organization is therefore PCD-

PAS in both. RpBphP1 may provide clues to plant phytochrome

structures and also to the function of the PAS domains that are

believed to be responsible for signal transduction.
l rights reserved
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Table 1. Determination of Structure

Data Collection Peak Inflection

Remote

Low

Remote

High

X-ray source DLS I03 DLS I03

Space group P21 P21

Cell dimensions

a, b, c (Å) 102.66 102.94

143.00 146.86

139.51 139.55

a, b, g (�) 90.00 90.00

101.71 101.17

90.00 90.00

Wavelength (Å) 0.97911 0.97949 0.98244 0.97000

Resolution (Å) 66.5–3.4 61.9–3.4 64.4–3.4 73.4–2.9

(3.5–3.4)a (3.5–3.4)a (3.5–3.4)a (3.0–2.9)a

Rsym (%) 7.4 (27.3) 7.9 (31.5) 8.6 (38.7) 6.3 (28.8)

I / s 11.9 (2.3) 11.9 (2.3) 11.1 (2.1) 9.2 (2.8)

Data

completeness (%)

99.2 (96.5) 99.0 (97.8) 99.3 (98.4) 97.9 (96.5)

Multiplicity of

reflections

6.8 (6.6) 6.5 (6.7) 6.7 (6.9) 3.4 (3.1)

Refinement Statistics

Resolution

range (Å)

15–2.9

Number of

reflections

83,855

Number of atoms 19,771

R-factor/

R-free (%)

19.8 / 24.4

Mean atomic

B-factors (Å2)

72.4

Coord error on

R-free (Å)

0.35

Bond R.m.s (Å) 0.015

Angle R.m.s (�) 2.17

Chiral volume

R.m.s (Å)3
0.10

Core

Ramachandran

region (%)

76.7b

Refined chains A(8–635), B(8–451,

458–634), C(8–452,

457–633), D(8–443,

457–635)

Refined Hetero

molecules

4 Biliverdin IXa

and 320 H2O

See also Table S1 and Figure S6.
aValues in parentheses are for highest resolution shell.
bA typical value, at a resolution of 2.9 Å, is 68.7%, PROCHECK (Laskow-

ski et al., 1993).
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RESULTS

RpBphP1 Is an Antiparallel Dimer
The full length RpBphP1 (�80 kDa) contains an unstable

C-terminal domain (�10 kDa), which is usually lost by proteolysis

within a week of sample preparation. Crystals grew only when

the C-terminal domain was lost and the structure of the 70 kDa

protein (RpBphP1-N70) was determined by the Se-Met MAD/

SAD method (Table 1; Table S1 available online). Other than by

visualization of the structure, the size and position of the missing

fragment was identified bymolecular mass determination and an

inability of the C-terminal His6-tagged RpBphP1 to bind to a

Ni-affinity column implying the loss of a C terminus fragment.

Four molecules were refined in the asymmetric unit containing

residues �8–635 with missing loops around �451–458 within

protomers B, C, and D. Analysis for oligomeric assemblies,

with the program PISA (Krissinel and Henrick, 2007), points to

two identical dimers formed between chains AD and BC. Dimers

are antiparallel aligned protomers with a crossover angle �135�

and contacts made predominately between PAS/PAC (506–635)

and PHY (320–505) domains in opposing protomers (Figure 1A).

We are confident that they are molecular rather than crystal

dimers based on size exclusion chromatography that confirms

dimers in solution, in both the dark and on illumination with

760 nm light (Figure S1A); a high crystal solvent content

(�66%), which provides good contrast between dimers; and

a dimer interfacing surface area of 1909 Å3, which is comparable

to that of PaBphP-PCD of Pseudomonas aeruginosa dimers,

which is �2081 Å3. These dimers are strikingly different from

canonical BphP dimers (Figure S5D), which possess a cyto-

plasmic HK domain at the OTD and show up in EM images as

dimers formed from parallel protomers (Li et al., 2010). Unrelated

HK structures also form parallel dimers and it has been proposed

that this geometry is necessary for auto-phosphorylation (Casino

et al., 2009; Marina et al., 2005; Yamada et al., 2009). The struc-

ture of the RpBphP1-N70 protomer shows that PHY and PAS/

PAC domains are isolated from one another by a slender

�30 Å helix hI but the antiparallel dimer geometry ensures that

a large number of atomic contacts can be made between these

domains, which can facilitate signal transmission. The overall

structure of PCD in RpBphP1-N70 is similar to that of PaBphP-

PCD (Yang et al., 2008) from Pseudomonas aeruginosa, both

having disordered regions at PHY residues 443–459, leading to

a short PHY helix hG (residues 460–463) which caps the BV

binding pocket. A structural difference is found in RpBphP1-

N70 at residues 126–131 which are stretched due to a four

residue deletion that shortens helix hA to 132–143 (Figures

S2A and S2B). This is significant because helices hA and hE

have been implicated in signal transduction (Ulijasz et al.,

2010; Yang et al., 2008). Topologically there are obvious similar-

ities between the PHY and PAS/PAC domains, which are both

formed by long helices (hE and hI) followed by a domain that

has a PAS-like topology (Figure 1B). Formally helix hE is shared

between GAF and PHY domains and hI between PHY and PAS/

PACbut structurally it makesmore sense to pair themas hE-PHY

and hI-PAS/PAC. At the dimer interface the two helices hI make

extensive Van der Waals contacts between residues 504–528

and are tethered by hydrogen bonds Thr510-Ala520, Gln523-

Arg506, Gln523-R509 at both ends (Figure 2A). Other dimer
Structure 20, 1436
interactions are the salt bridge Glu515-Arg613 and hydrogen

bonds Asp609-Gln504 formed between hI and PAS/PAC domain

and Met528-Asp427, His428-Gln523, Glu367-Gln523, Arg509-

Glu367, Ser527-Asp427 hydrogen bonds between hI and PHY
–1446, August 8, 2012 ª2012 Elsevier Ltd All rights reserved 1437



Figure 2. Dimerization Interface of RpBphP1-N70

Protomers are colored green and salmon.

(A) dimer hydrogen(H)-bonding network is formed between hI helices and

between the PAS/PAC and helix hI.

(B) amino acid Gln523 is positioned near the C-terminal of hI and forms several

H-bonds with residues Glu367, His428, Arg506, and Arg509, locking together

PAS/PAC and PHY domains of opposing protomers.

Figure 1. Structure of the RpBphP1-N70 Dimer

(A) Structure of the dimer colored by domain: PAS, orange; GAF, green;

PHY (phytochrome-associated), magenta; PAS/PAC (or PAS/S2-box), yellow;

Biliverdin IXa, cyan.

(B) A single protomer rotated �90� relative to (A) shows domain organization

with helices discussed in the text marked hA to hI. The core PAS b strand

topology is (e2-e1-e5-e4-e3) with a helices between e2 and e3. This forms the

core of a repeatedmotif marked P, Q, S, and T in domains PAS, GAF, PHY, and

PAS/PAC.

(C) Domain organization ofRpBphP1 andRpPpsR2. The chromophore binding

domain (CBD) with biliverdin IXa (BV) located in the GAF domain covalently

linked to PAS-Cys20. Domains are colored as in (A) and (B) with the HOS

domain colored blue. RpPpsR2 is composed of three PAS domains (yellow)

followed by the DNA binding HTH domain colored purple.

See also Figures S1, S2, and S5.
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domain. The residue Gln523 is important as it makes several

hydrogen bonds between protomers stabilizing hI with each

other and the PHY domain (Figure 2B). This rather surprising

antiparallel geometry probably arises from a very different

structural requirement for binding to RpPpsR2 rather than

phosphotransfer. The structure also raises the interesting possi-

bility that BphPs, with different OTD domains, may also have

atypical dimer organizations.

HOS Domain Structure
We will show that the C-terminus (635–730) is required for

binding to RpPpsR2. Unfortunately most sequence homology

search programs cannot identify homologous domains for the

fragment (Giraud et al., 2002; Giraud and Verméglio, 2008).

Although the fragment is easily degraded, it is by no means

disordered and secondary structure predictions point to two

long a-helical segments. We used the pair-wise Hidden Markov

Model search program HHPred (Söding, 2005), which has supe-

rior sensitivity to homologous structures with low sequence

identity. A high similarity was found between the C-terminal

fragment and Dhp dimerization domains of cytoplasmic HK,
1438 Structure 20, 1436–1446, August 8, 2012 ª2012 Elsevier Ltd Al
composed of a helix-loop-helix motif (Tables S2A and S2B).

The low sequence identity (�10%) and missing His residue,

that renders it incapable of phosphorylation (Giraud et al.,

2002), suggests that it is only a distant relative of Dhp. The high-

est alignment score is with ThkA (Yamada et al., 2009), which

also has a PAS domain preceding Dhp. We propose that the

OTD of RpBphP1 evolved from PAS/PAC containing cyto-

plasmic HK domain (PAS/PAC-Dhp-KD) and then followed a

deletion of the kinase domain resulting in the present OTD

composed of PAS/PAC-Dhp. Because the Dhp-like domain in

RpBphP1 is sufficiently dissimilar in sequence and function to

other Dhp domains, we propose the name 2-helix output sensor

(HOS) domain. To obtain a full length model of RpBphP1, HOS

was remodelled (Sali and Blundell, 1993) to the correct sequence

and docked (Ritchie et al., 2008) into RpBphP1-N70 by an

exhaustive geometry search and energy minimization. The

procedure was essentially a six-dimensional rigid body search
l rights reserved



Figure 3. View of RpBphP1 Dimer

(A and B) Protomers determined by X-ray diffrac-

tion are green and salmon, the modeled HOS

domains in blue and BV cyan: top view (A), front

view (B).

(C) and (D) are close views of the HOS region

colored by domain as for Figure 1; looking down

the four-helix heterodimer hA1E1-hJ2K2 formed by

protomer 1 and HOS domain of protomer 2 (C) and

from the front (D).

See also Tables S2 and S3 and Figure S4.
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(rotation and translation) that docked HOS into RpBphP1-N70,

producing negligible changes inRpBphP1-N70 andHOS confor-

mation. The top three docking solutions deviated from one

another by an RMS of �3.6 Å. The resulting complete RpBphP1

dimer has lower solvation energy,more hydrogen bond contacts,

larger dimer dissociation energy, and a doubling of interfacing

surface area (4325 Å) in comparison to RpBphP1-N70 dimers

(Table S3). Dhp domains normally form four-helix homodimeric

bundles but HOS helices hJ and hK are too far from one another

and instead take part in heterodimeric four-helix bundles with

helices hA and hE (Figures 3A–3D). HOS helices hJ and hK

interact with helices hA and hE at the beginning and the end of

the GAF domain placing HOS at the heart of CBD and close to

BV. As previously noted, helix hA is shortened in comparison to

other PCD and CBD structures, allowing it to accommodate

the formation of a hAEJK bundle, which requires only a short

a-helix at this position. The interactions are further assisted by

complementary shapes and electrostatic charges in the GAF/

PHY and HOS surfaces (Figure S4). The modeling is a rigid

body procedure, but in the real structure, additional conforma-

tional changesmayalso optimize the fit ofHOS toRpBphP1-N70.
Structure 20, 1436–1446, August 8, 2012 ª
The BV Binding Site and the
Photoconversion Mechanism
Progress has been made on determining

the photoconversionmechanism and sig-

nal transduction in BphPs (Ulijasz et al.,

2010; Wagner et al., 2008; Yang et al.,

2009) and it has been proposed that,

during photoconversion, BV undergoes

a ‘‘flip and rotation’’ conformation change

initiated by twisting of the pyrrole ring

backbone (Yang et al., 2011) (Figure 4E).

Photoconversion is therefore a complex

process and the Pfr and Pr UV/visible

absorption spectra characterize the start

and end states only (Figure 4A). Because

crystals are grown in the dark it is reason-

able to assume that the RpBphP1-N70

structure is of the Pfr state, and because

dark spectra of RpBphP1-N70 and

RpBphP1 are identical (Figures 4A and

4B), the overall structure probably also

resembles RpBphP1. There are differ-

ences in dark reversion times, from Pr to

Pfr, for RpBphP1 and RpBphP1-N70. A

dark reversion half-life of �50 min is
found for RpBphP1 but is significantly faster (�3 min) for

RpBphP1-N70 and a Pr spectrum cannot be fully captured (Fig-

ure 4B). Interestingly, dark reversion kinetics of canonical BphP

PCDs and their full length constructs are identical while trun-

cated CBD constructs exhibit reduced photoconversion as

judged by their spectra (Wagner et al., 2005; Yang et al., 2007,

2009), indicating that the PHY domain is important for stabilizing

the conformation responsible for the Pr spectrum, while the

spectrum of RpBphP1-N70 is aberrant despite a larger structure

containing both PCD and PAS/PAC. For the canonical structure

PaBphP-PCD (Yang et al., 2008) it has been proposed that the Pr

state is stabilized when the BV pocket is capped by the PHY loop

(453–459) with particular contributions from Arg453 and Ser459;

Arg453 hydrogen bonds to Asp194, which then hydrogen bonds

to the nitrogen atom in the D pyrrole and Ser459. In RpBphP1-

N70 this Arg is now Asp462 and is rotated away from the pocket

so does not contribute to hydrogen bonding. Stabilization of the

Pr conformation only occurs when the HOS domain is present.

Variability in dark reversion kinetics is an interesting subject

that may relate to light intensity sensing requirements within

species and very fast (seconds) reversions have been reported
2012 Elsevier Ltd All rights reserved 1439



Figure 4. The Red/Far-Red UV/Visible

Spectra and BV Binding Pocket

(A and B) RpBphP1 (A) and RpBphP1-N70 (B)

showing the dark Pfr state centered on 760 nm

(black), Pr state (blue) centered on 680 nm and the

dark reversion spectrum (red) taken 30 min after

photoconversion. Because of rapid dark reversion

in RpBphP1-N70 it is difficult to capture a pure Pr.

(C) The BV H-bonding network for RpBphP1-N70

(black and cyan) and the PaBphP-PCD domain

from Pseudomonas aeruginosa (3C2W, red and

salmon) both are in the Pfr state, for clarity only

changes in PaBphP-PCD that differ to RpBphP1-

N70 are shown.

(D) The Pr H-bonding network of DrBphP-

CBD (1ZTU) from Deinococcus radiodurans. NMR

measurements on the GAF domain of SyB-Cph1

(Ulijasz et al., 2010) indicate a large movement,

during photoconversion, of Arg101 from the pro-

pionate on ring B to Gln185 on helix hE. The

equivalent residues are Arg216/Glu300, Arg209/

Gln283 and Arg222/Glu306 in RpBphP-N70,

PaBphP-PCD, and DrBphP-CBD, respectively.

Arrows indicate direction of movement of Arg.

(E) BV ‘‘flip and rotation’’ conformation change

on photoconversion, Pfr (green) and Pr (orange).

‘‘Flip’’ is isomerization around C15 = C16 and

‘‘rotation’’ around an axis normal to the A pyrrole

PDB ID 3G6O (Yang et al., 2009).
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for some cyanobacteriochrome domains (Chen et al., 2012). The

differences in stability may originate at the dimer interface, which

is mostly intact in PaBphP-PCD due to parallel protomer align-

ment (Yang et al., 2008) but is disrupted in RpBphP1-N70

because of the missing HOS domains. In canonical BphPs spec-

tral aberrations, such as quenching, can only be observed for the

shorter CBD constructs in which the dimer interfacing helix hE is

truncated by �20 amino acids (Wagner et al., 2005; Yang et al.,

2007). In RpBphP1-N70 the loss of HOS helices hJ and hK

destroys the four-helix bundle (hA-hE-hJ-hK), which may affect

Pr stability and the corresponding spectrum.

An alternative explanation of fast dark reversion kinetics may

be disruption to the BV hydrogen bonding network; however,

comparison of structures PaBphP-PCD and RpBphP1-N70

does not support this. The BV hydrogen bonding network of

PaBphP-PCD is rearranged to accommodate the ‘‘flip and rota-

tion’’ motion of BV during photoconversion and analysis of

RpBphP1-N70 shows it to be similar in its H-bonding organiza-

tion (Figures 4C and 4D). Hydrogen bonding in RpBphP1-N70

BV pocket can be grouped into four distinguished clusters of

interactions: (1) pyrrole nitrogen interactions with a water mole-

cule, Asp201 carbonyl, and His254; (2) anchoring of the ring B

propionate by Arg248 and Arg216; (3) anchoring of the ring C

propionate by Tyr210, Thr248, and His248; and (4) anchoring

of the ring D carbonyl by Asp201, Tyr257, and Ser468. In

PaBphP-PCD additional H-bonds, between BV and residues

Arg453 and Gln188, provide further stability to the Pfr conforma-

tion, while the equivalent residues in RpBphP1-N70 are Asp462

and Asn195 and do not H-bonds with BV. Mutations R453A and
1440 Structure 20, 1436–1446, August 8, 2012 ª2012 Elsevier Ltd Al
Q188L, in PaBphP-PCD, slow down dark reversion times rather

than increasing them suggesting that these differences are not

the cause rapid dark reversion in RpBphP1-N70. A mutation of

residue Ser261 in PaBphP-PCD does produce rapid dark rever-

sion times (Yang et al., 2009), presumably because this residue

stabilizes the Pr state as observed for DrBphP-CBD-Pr (Fig-

ure 4D). In the structure of RpBphP1-N70 the equivalent residue

is the non H-bonding Val268 which, despite this, does not result

in fast dark reversion times in the full length RpBphP1 and it

seems that the nearby Thr266 provides sufficient H-bonding

constraints to the C ring propionate. The only other significant

difference is that helix hE, in RpBphP1-N70, is displaced away

from the BV pocket by �3 Å, which may be caused by the

absence of the HOS domain. Helix hE is adjacent to b strand

e4, which contains Thr266 and Val268, and the displacement

of hE may provide the freedom for these residues to move

away from BV during photoconversion destabilizing the Pr state.

Disruption of the neighboring b strand e3 has been reported in

the NMR Pr and Pfr structures of the GAF domain belonging to

SyB-Cph1 of Synechococcus OSB0. These NMR structures

show a large movement of Arg101 from the propionate on ring

B to Gln185 on hE during photoconversion (Ulijasz et al.,

2010). The equivalent residues in RpBphP1-N70 are Arg216

and Glu300 on hE (Figure 4C) and the displaced helix hE may

prevent the formation of an efficient salt bridge, which also

may cause the destabilization of Pr. A caveat concerning SyB-

Cph1 is the different chromophore (phycocyanobilin) that is

used and a dark stable Pr rather than Pfr, but in other respects

the bilin H-bonding networks are comparable. PCDs appear to
l rights reserved
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be conserved motifs in BphP and so the Arg to Gln/Glu motion,

between the bilin and the signaling helix hE, may be a parsimo-

nious solution to the mechanism of signal transduction that is

used by all BphPs irrespective of the OTD. The importance of

long helices has been recognized in other signaling proteins

and a consensus 40 residue signaling S-helix motif has been

proposed for signal transmission between modules in prokary-

otic signaling proteins (Anantharaman et al., 2006).

Protomer Swapping in RpBphP1 during
Photoconversion
In Rps. palustris photosynthesis is activated by far-red light

(Evans et al., 2005; Giraud et al., 2002) and it has been proposed

that RpBphP1 is the antirepressor of RpPpsR2 (Braatsch et al.,

2006, 2007; Giraud et al., 2002). Before investigating this interac-

tion, we measured the behavior of RpBphP1 dimers on illumina-

tion with 760 nm light. Size exclusion chromatography measure-

ments show that, in the dark and on illumination with 760 nm

light, only RpBphP1 dimers are present (i.e., no monomeric

forms were detected), with an apparent molecular mass of

�225 kDa (Figure S1A). Elongated molecular shapes explain

a larger than expected molecular mass and values of 250 kDa

are common for other BphPs (Wagner et al., 2007). The most

surprising results were observed during light induced Ni-affinity

chromatography binding experiments. The purity of tagged

and untagged RpBphP1 was high in these experiments as

both were overexpressed by Escherichia coli, from tagged and

untagged plasmids, at 40 mg per liter and Ni-affinity or ion-

exchange chromatography followed by gel filtration resulted in

SDS-PAGE gels showing a single band for RpBphP1. A dark

incubated sample, containing an excess of untagged RpBphP1

mixed with N-terminal His6-tagged RpBphP1, elutes at an imid-

azole concentration of �10 mM for untagged and �430 mM for

His6-tagged protein (Figures S3A and S3B). After incubation with

760 nm light, elution data show a reduction of the untagged peak

and a gain in the His6-tagged peak observed as a double profile

at 365 and 430 mM (Figures 5A–5C). This can be interpreted as

monomer swapping between tagged and untagged dimers

making hetero-tagged dimers eluting at 365 mM due to one

His-tagged protomer in the heterodimer. The fact that some of

the 430 mM peak is still present points to some doubly His-

tagged molecules failing to photo-convert to Pr because of

high sample absorption at 760 nm and a relatively long optical

path. When the 365- to 430-mM eluted peaks (P2 and P3) are

reloaded onto a Ni-affinity column, after further illumination

with 760 nm light, it is observed that untagged homodimers

are formed from a sample containing only singly and doubly

His-tagged dimers (Figure S3D). Similar experiments with

untagged RpBphP1-N70 and His6-RpBphP1 protein showed

that hetero-tagged dimers do not form on illumination with light.

RpBphP1-N70was obtained from a previously purified full length

C-terminal His-tagged RpBphP1 which was allowed to degrade

so that it lost its ability to bind to a Ni-affinity column. This sample

was also used for the crystallization of RpBphP1-N70. The re-

sulting structure establishes that RpBphP1-N70 is a fragment

containing residues 8–635. These two results establish that the

missing HOS domain is (635–730). The inability of RpBphP1-

N70 to protomer swap with a full length N-terminal tagged

RpBph1, on illumination, strongly suggests that HOS plays an
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active role in protomer swapping. Taken together these ex-

periments show that: (a) far-red light and therefore the Pr confor-

mation is essential for protomer swapping, (b) the C-terminal

HOS (635–730) domain is required to stabilize the Pr state and

may also play an active role in the exchange mechanism, and

(c) tetramers or free monomers are absent, or present in very

low amounts, since dark and 760 nm light illumination gel chro-

matography results superimpose (Figure S1A). The results

suggest that hetero-tagged dimers are formed on photoconver-

sion through a rapid exchange of protomers (or swapping)

between dimers. Whether it proceeds by the formation of tetra-

mers or by dissociation into monomers is to be determined,

however the absence of either, in gel filtration chromatography

experiments, indicates that this must be a quick and efficient

process.

RpBphP1-RpPpsR2 Complexes Are Formed after
Photoconversion
In most phototropic bacteria photosynthesis is optimal at low

oxygen levels or microaerobic conditions. Binding of the gene

repressor PpsR2 to DNA is controlled, in Rb. capsulatus and

Rb. sphaeroides, by the formation of intra disulfide bridges (Ma-

suda and Bauer, 2002; Masuda et al., 2002). However RpPpsR2

contains a sole cysteine at position 439 in the predicted helix-

turn-helix (HTH) DNA-binding domain and can only form inter

protomer disulfide bonds, as revealed by combining the results

fromSDSPAGEgels (Figure S5A) and size exclusion chromatog-

raphy (Figure S1B); both oxidized and reduced forms are dimeric

despite a broken disulfide bond in the reduced form. It is known

that in Rps. palustris strain CGA009 (Braatsch et al., 2006) low

cellular oxygen is one of the important factors in removing the

repression of gene transcription by PpsR2 and for this reason

experiments were carried out in the presence of dithiothreitol.

RpPpsR2 in other strains of Rps. palustris do not possess Cys

residues or when they do they are at unconserved positions,

which indicates that PpsR2 in these strains may not be redox

sensitive and respond only to light through interactions with

RpBphP1. To investigate this Ni-affinity chromatography was

performed with 760 nm illuminated samples, containing

N-terminal His6-tagged RpPpsR2 and an excess of untagged

RpBphP1 or untagged RpBphP1-N70, and revealed the forma-

tion of a complex between RpPpsR2 and RpBphP1 but not

with RpBphP1-N70 (Figures 5E–5G); because elution was moni-

tored at two wavelengths, 400 nm and 280 nm, complexes

composed of both proteins or dimers containing only RpPpsR2

could be differentiated. The experiments clearly show that an

untagged RpBphP1 is only retained by the Ni-affinity column

when in complex with RpPpsR2 and it can be calculated from

absorption to be in the molar ratio of 1. The fraction bound to

the Ni-affinity column also shows the presence of bothRpBphP1

and RpPpsR2 in SDS-PAGE electrophoresis gels (Figure S5C).

The 400nm wavelength is sensitive to the presence of even the

smallest amount of complex and the complete absence of

RpPpsR2-RpBphP1-N70 indicates that the shortened lifetime

of the Pr state cannot be the only reason for this and points to

an essential role played by HOS in complex formation. It is prob-

able that the HOS domain is tightly bound within an hA-hE-hJ-hK

helix bundle in the dark but less tightly bound or labile in the

Pr state making it available for interaction with RpPpsR2. This
–1446, August 8, 2012 ª2012 Elsevier Ltd All rights reserved 1441



Figure 5. Protomer Swapping, as Observed on an Ni-Affinity Column, Monitored at the BV Absorption Wavelength 400 nm

(A–C) Tagged and untagged protein was mixed in the ratio�1:4. In 760 nm light protomer swapping is seen for RpBphP1 but not for RpBphP1-N70 dimers; (A) in

the dark untaggedRpBphP1 dimers elute at 10mM Imidazole (peak area P1 = 181) and His6-RpBphP1 at 430mM (P2 = 39); (C) after illumination with 760 nm light

the 10 mM peak is reduced and a new peak P3, composed of a heterodimer His6-RpBphP1/RpBphP1, elutes at 365 mM (P1 = 161, P2+P3 = 57); (B) is the

difference of (C)�(A) showing the increase and decrease of peaks; (D) elution of untagged RpBphP1-N70 dimers + His6-RpBphP1 dimers (blue), after 760 nm

illumination, shows no protomer swapping between dimers despite the presence of a full length protein RpBphP1. For comparison the elution of only His6-

RpBphP1 is shown in black. Elution in (A)–(D) were measured at the BV absorption wavelength of 400 nm.

(E–G) Elution profiles of untagged RpBphP1 or untagged RpBphP1-N70 mixed with His6-RpPpsR2 (�4:1), monitored at 280 nm and corrected for imidazole

absorption (blue) and at 400 nm (magenta); in the dark His6-RpPpsR2 elutes at 380 mM imidazole and untagged-RpBphP1 at 10 mM (E); after illuminating with

760 nm lightRpBphP1/His6-RpPpsR2 complexes elute at�280mMand is indicated by the presence of 400 nm absorption and an increase in 280 nm absorption

(F); a similar experiment with RpBphP1-N70 in light shows no complex formation, which indicates that HOS is essential for complex formation (G). Molar ratios of

complex formation were calculated from integrated peak absorption values in spectra (E) and (F) at wavelengths 400 nm and 280 nm, using ε(280nm)RpBphP1 =

59,800; ε (280nm)RpPpsR2 = 39,200; and ε (400nm)RpBphP1 = 26,900, and are as follows OD(RpBphP1(400))/OD(RpPpsR2(280)) and OD(RpBphP1(280))/

OD(RpPpsR2(280)) are 1.14 and 0.80, respectively.

See also Figures S3 and S5.
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correlates with a propensity for HOS proteolysis when strict

darkness is not maintained during sample preparation.

DISCUSSION

Anti-Repressor Mechanism
To our knowledge, this is a report of the first structure of a BphP

including the CBD, PHY, and OTD domains. The structures of

canonical PCD and CBD fragments, and EM images of full length

BphPs, all belonging to the HK family, indicate that the RpBphP1

dimer geometry presented here is radically different (Figure S5D)

and points to the OTD in RpBphP1 exerting a major influence on

dimer formation. Different OTDs can provide new functionalities

to BphPs and now it is also clear that new oligomer geometries
1442 Structure 20, 1436–1446, August 8, 2012 ª2012 Elsevier Ltd Al
arise that can make use of photoconversion changes in novel

ways. Domain swapping has been well documented (Bennett

et al., 1995) but protomer swapping, as observed between

RpBphP1 dimers and under the control of light, to our knowledge

has not been observed before. This could also be the mecha-

nism utilized for the formation of the RpBphP1-RpPpsR2

hetero-complexes, as is observed by Ni-affinity chromatog-

raphy; however to experimentally establish the nature of this

hetero-interaction (i.e., to estimate the molecular ratios in the

hetero-complex) has proved to be technically challenging

because of a combination of effects such as low solubility of

RpPpsR2, dark reversion ofRpBphP1, and overlapping gel filtra-

tion peaks. Although indirect evidence exists in vivo suggesting

that RpBphP1 may interact with the DNA-binding repressor
l rights reserved



Figure 6. Protomer Swapping Stimulated by 760 nm Light

Swapping between (A) RpBphP1 and RpPpsR2 dimers to form RpPpsR2-

RpPpsR2 complexes and (B) between two RpBph1 dimers. The HOS domains

(cyan and blue) are made active when RpBphP1 is in the Pr state enabling the

subunits of one dimer to swapwith the subunits of another dimer. In (B, center),

protomer swapping continues until it is halted in the absence of light and dark

reversion to Pfr.

See also Figures S3 and S5.
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RpPpsR2 (Braatsch et al., 2006, 2007; Evans et al., 2005; Giraud

et al., 2002), our results directly show the interaction between

a bacteriophytochrome and its cognate repressor and provide

a plausible explanation of how RpBphP1 could disrupt RpPpsR2

transcription repression by the formation of heterodimers. It is

interesting to note that if RpBphP1-RpPpsR2 complexes are

formed by protomer swapping, as is observed in the case of

RpBphP1 with itself, the reduced form of RpPpsR2 allows this

because the absence of an inter protomer disulfide bond makes

protomers separable. Thus a hetero-complex formation through

protomer swapping would provide a mechanism accounting for

RpPpsR2 ability to respond to both light and redox environ-

mental changes (Figure 6A). The fact that cysteine residues are

absent in PpsR2 of other Rps palustris strains suggests that

PpsR2 may not have redox sensing capabilities in all strains

and for those cases they are probably only under the control of

far-red light.

Role of OTD in Complex Formation
PAS domains are often involved in hetero-complex formation

(Taylor and Zhulin, 1999) and it is likely that both PAS/PAC and

HOS domains make atomic contacts with RpPpsR2. Modeling

of RpPpsR2 indicates the presence of a long helix that could

also be the site of interaction with HOS helices (Figure S5B).

An example of helices, adjacent to PAS domains, that transmit

signals is the circadian clock Drosophila period protein (PER)

which is a dimer composed of monomers made from a pair of
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PAS domains and protruding a helices that unlatch switching

association of PER to its partner Timeless (King et al., 2011).

We conclude that HOS is a labile domain designed to move

betweenRpBphP1 andRpPpsR2 facilitating complex formation.

The labile nature ofHOSmayalsoprovide adegradation pathway

for a more responsive light-sensing system. Degradation can

be important for modulating light-sensing as has been observed

in the plant phytochrome phyA which forms the conjugate phyA-

ubiquitin for proteolysis by the 26S proteasome pathway

removing it from the system (Clough and Vierstra, 1997).

Cell Signaling by Protein-Protein Interactions
Mechanisms in cell signaling usually include a wide range of

interactions such as phosphorelay (pTyr, pSer, pHis), chemical

second messengers (cGMP, cAMP, IP3), binding of factors to

receptors, modification of proteins in the cascade by ubiquitina-

tion, or post-translational modification (e.g., glycosylation). In

eukaryotes they often involve a complex cascade of transfers

and other interactions before gene responses are modified,

which makes the study of the complete process difficult. Less

well studied signaling mechanisms are those by protein-protein

interactions (Kim et al., 2002). These may be an important class

of signaling protein as they represent a more direct mechanism

of controlling transcription. On the simplest level the study of

such mechanisms requires the sensor, transducer, output

domains and the response regulator which binds to DNA. The

system we present here has these components and therefore

allows the study of signaling from the sensor event (light) through

to changes in repressor behavior. The important feature of the

mechanism is the modification of oligomeric interactions on

far-red light. By activation of the OTD and specifically HOS, pro-

tomer swapping is induced between homodimers resulting in

heterodimer complexes that inactivate RpPpsR2. Response

regulators usually bind to DNA as dimers or tetramers, and the

disruption of these oligomeric forms could be a common mech-

anism of signal control in protein-protein disruption signaling.

Plant Phytochromes
Plant phytochromes contain two PAS domains between the

PCD and the HK domain and share a 26% amino acid sequence

identity with RpBphP1 over the region covered by RpBphP1-

N70 (i.e., PCD-PAS/PAC). The partial OTD of RpBphP1-N70 is

a long helix hI followed by PAS/PAC and this is mirrored in the

hE-PAS organization of the preceding PHY domain which has

a PAS like domain at its core. This then appears to be a common

repeating motif in phytochromes. A homology search with hI-

PAS/PAC as the template pulls out the two hX-PAS signaling

motifs in plant phytochromes phyA and phyB of Arabidopsis

thaliana. This search also finds many hits in other signaling

proteins other than BphPs and suggests it is a prevalent and

important motif for signal transduction. It is interesting to

speculate why this domain appears in tandem within RpBphP1

while in plant phytochromes as three motifs h-PHY-h-PAS-h-

PAS. One explanation could be that these multiple domains

provide a mechanism for transmitting signals over longer

distances by ‘‘daisy’’ chaining together these modules. The

plant phytochromes and RpBphP1 may have evolved from

a common ancestral phytochrome composed of an OTD made

of a PAS containing HK, with the overall phytochrome domain
–1446, August 8, 2012 ª2012 Elsevier Ltd All rights reserved 1443
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organization PCD-PAS-Dhp-KD; the dimerization domain (Dhp)

and kinase domain (KD) together making the canonical cyto-

plasmic histidine kinase domain. RpBphP1 was then formed

by deletion of KD to make PCD-PAS-Dhp and Dhp then evolved

to HOS with a new function while the canonical plant phyto-

chromes duplicated PAS to make PCD-PAS-PAS-Dhp-KD.

RpBphP1 could therefore be a model for investigating the

N-terminal photosensory and signal tranducing domains of plant

phytochromes and may be thought of as the ‘‘missing link’’

between bacterial and plant phytochromes. The gene rpbph1

is a repaired gene rpa1537 with closest relationship to

B3Q7C0 of Rps. palustris in strain TIE-1.

EXPERIMENTAL PROCEDURES

Cloning and Purification

The gene rpa1537 encodes for the baceriophytochrome RpBphP1 from

Rhodopseudomonas palustris strain CGA009 and is frame shifted but is other-

wise intact in other strains and has been shown to be functional when cor-

rected and inserted into CGA009 (Braatsch et al., 2006, 2007). The corrected

gene rpbph1 was used in this work and has closest relationship to B3Q7C0 of

Rps. palustris in strain TIE-1. The gene was designed in silico, to have an NdeI

restriction site at the 50 end and a HindIII site, a stop codon and a XhoI site, in

this order, at the 30 and was made by Genscript inserted in pUC57. Using the

STRU-cloning protocol (Bellini et al., 2011), bphP1 was sub-cloned into

pET28a (using NdeI and HindIII sites), pET24a (using NdeI and HindIII sites)

and pET24a (using NdeI and XhoI sites) to obtain expression constructs for

N-terminal His6-tagged, C-terminal His6-tagged and untagged protein,

respectively. Transformed E.coli BL21 (DE3) were induced with 0.02 mM

IPTG and left growing overnight at 18�C. Se-Met protein was expressed by

the metabolic inhibition method, using 1L of LB medium enriched with

50 mg of leucine, isoleucine and valine, 100 mg of lysine, phenylalanine, and

threonine and 80 mg of Se-Met, all added 15 min before IPTG induction. Har-

vested cell pellets were re-suspended in suitable chromatography buffers

containing 10 mM Bilivirdin IXa (Frontier Scientific, Inc.) and protease inhibitor

tablets (Roche) and French pressed to disrupt cells. DNase I (10 mg/ml) was

added followed by Triton X-100 to a final concentration of 0.5% to disrupt

weak hydrophobic interaction between RpBphP1 and most probably the cell

membrane. Protein was purified on His-Trap HP or HiTrap QFF 5 ml columns

(GE Healthcare) in the case of His6-tagged or untagged protein, respectively,

and gel filtered using a HiLoad 26/60 Superdex200 column (GE Healthcare) in

5 mM TrisHCl pH 8 and 10 mMNaCl. The plasmid pETPSPL (pET28a) contain-

ing the Rhodospeudomonas palustris gene ppsR2 was kindly provided by

Shinji Masuda (Tokyo Institute of Technology) and Tom Beatty (University of

British Columbia). The protein N-His6-RpPpsR2 (pET28a) was expressed in

E. coli BL21 (DE3) and induced with 0.5 mM IPTG overnight at 18�C. It was

purified on a His-Trap HP column followed by gel filtration and stored in

a reduced environment of final buffer 20 mM Tris-HCl pH 8, 300 mM NaCl,

and 5 mM dithiothreitol (DTT).

UV/Visible Spectroscopy

UV/Visible spectra were recorded at room temperature on a Perkin Elmer

Lambda 35 UV/VIS spectrometer. Spectra were recorded either in the dark

or after illuminating the sample with light passed through an interference filter

centered on 760 (±10) nm (Knight Optical, Ltd.). The filter achieved �100%

photoconversion from Pfr to Pr. Photoconversion measurements were carried

out in UVette cells (Eppendorf), which hold 50–100 ml sample volumes, have

10 mm optical paths for UV/Visible spectrum measurements and a 2 mm

optical path, at right angles, to induce photoconversion.

Crystallization and Data Collection

UntaggedRpBphP1-N70was purified by collecting the flow-through fromNi(II)

affinity chromatography using a previously purified C-terminal His6-tagged

RpBphP1 sample that was reloaded onto the Ni(II) affinity column only after

SDS-PAGE gels showed an almost complete degradation of the C-terminal

HOS fragment, which usually occurred at a concentration of 20 mg/ml and
1444 Structure 20, 1436–1446, August 8, 2012 ª2012 Elsevier Ltd Al
a temperature of 4�C in about 1 to 2 weeks. RpBphP1-N70 was crystallized

in a 96 well sitting drop format using a Screemaker 96+8 crystallization robot

(Gilson). The final conditionwas optimized to be 4%poly-g-glutamic acid poly-

mer (PGA), Molecular Dimensions Ltd, 0.4 M Niacinamide, 200 mM KBr and

100 mM TrisHCl pH 8, at a protein concentration of 20 mg/ml at 20�C. Crystals
grew as green thin plates (200 3 200 3 30 mm) and were viewed by passing

white light through an interference filter (Knight Optical, Ltd.) centered at

500 (±20) nm, which is a BV none absorbing region, enabling crystals to be

harvested and cryo-protected with 25% ethylene glycol. Diffraction data

were collected with a Pilatus 6M-F detector at 100 K on the synchrotron

beam line I03, Diamond Source Ltd. Images were indexed, integrated and

scaled using Xia2, XDS (Kabsch, 2010), SCALA (Winn et al., 2011).

Structure Determination and Refinement

The crystal structure of Se-Met RpBphP1-N70 was determined by Se-MAD/

SAD phasing using CCP4 suite of programs (Winn et al., 2011). One crystal

was used to measure Se-MAD data to a resolution of 3.4 Å at Se inflection,

peak and low remote energies and a stronger SAD dataset was measured

on another crystal at 2.9 Å resolution and high remote energies. The SAD data-

set was used in phasing and also for structure refinement. The Se substructure

was determined in SHELXD (Schneider and Sheldrick, 2002) which found 45

Se atoms with correlation coefficients 0.45/0.25 for strong/weak reflections.

The program autoSHARP (Vonrhein et al., 2007) was used to augment Se sites

to 52 and to calculate protein crystal phases to 3.0 Å (Table S1). The data in the

range 3.4 to 3.0 Å was therefore primarily phased with SAD data from crystal 2.

The experimentally phased map was improved by five cycles of solvent flat-

tening andhistogrammatching using a solvent fraction 0.64. This gave a readily

interpretable electron density map (Figure S6). The starting map was of suffi-

cient quality to automatically build 80%of the atomic model using the program

Buccaneer (Cowtan, 2006). Later maps were further improved, using DM and

PARROT (Winn et al., 2011), by NCS averaging of the four molecular copies.

The remaining structure was modeled in Coot 6.2 (Emsley and Cowtan,

2004) and refined with REFMAC5 (Murshudov et al., 2011) using loose NCS

restraints and isotropic atomic temperature augmented with a TLS thermal

model defined by each monomer. The structure was refined with the scale

factor between X-ray and geometric parameters determined automatically

by REFMAC5 and the final model was refined to Rfactor 19.8% and Rfree

24.4%, Table 1. The structure bond and angle geometry is 0.015 Å and

2.17�, respectively, and 76.7% of residues were calculated, by PROCHECK,

to be in the ‘core’ favored Ramachandran region. This is better than the value

of 68.7% predicted by PROCHECK for data at 2.9 Å resolution (Laskowski

et al., 1993). The structure contains chain A (8–635), chain B (8–451, 458–

634), chain C (8–452, 457–633), chain D (8–443, 457–635), 4 biliverdin IXa

and 320 water molecules. PyMOL (Molecular Graphics System) and CCP4mg

(Winn et al., 2011) were used to illustrate the structure. Superimposition and

comparison of structures was made with the program RAPIDO (Mosca and

Schneider, 2008).

Gel Filtration Analysis

Purified protein (200 ml of approximately 3mg/ml) were loadedonto aSuperose

12 10/300 GL (GE Healthcare) using an ÄKTA Explorer (GE Healthcare). For

RpBphP1 this was done either in the dark or quickly after illumination at

760 nm for 20 min. The column was calibrated using the high-molecular-

weight calibration kit (GE Healthcare).

RpBphP1 Monomer Swapping in Dimers by Ni(II) Affinity

Chromatography

Purified N-terminal His-tag and untaggedRpBphP1weremixed in a ratio�1:4.

Samples were either incubated in the dark or illuminated for 20 minutes at

760 nm to achieve a Pr state. Chromatography was carried out over a period

of 10 min using a 1 ml His-Trap HP column and an ÄKTA Explorer. The elution

profile was monitored at the high energy biliverdin absorption wavelength

400 nm which is also the isosbestic point of Pr/Pfr states.

Detection of RpBphP1 Binding to RpPpsR2 by Ni(II) Affinity

Chromatography

Purified N-terminal His6-tagged RpPpsR2 and untagged RpBphP1 were

mixed in a ratio �1:4 and applied to a Ni-affinity chromatography column as
l rights reserved
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above, after illumination. Elution spectra were monitored at 280 and 400 nm to

differentiate peaks containing both His6-RpPpsR2 and RpBphP1 or only His6-

RpPpsR2 or RpBphP1. Because RpBphP1 is untagged it can only bind to the

column when it is part of the complex His6-RpPpsR2-RpBphP1.

Homology Search and Docking

An orthologous structure to the RpBphP1 C-terminal fragment (635–730) was

found (Tables S2A and S2B) using a Hidden Markov Model comparison

program HHPred (Söding, 2005). The orthologous fragment was rebuilt to

the correct RpBphP1 amino acid sequence using Modeler 9.3 (Sali and Blun-

dell, 1993) and docked to RpBphP1-N70 with the program Hex 6.3 (Ritchie

et al., 2008), which uses a rigid body geometry/energy search algorithm that

samples several thousand orientations and fits each orientation by molecular

mechanics energy minimization.

ACCESSION NUMBERS

The PDB accession number for the coordinates of the structureRpBphP1-N70

reported in this paper is 4EHO.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and three tables and can be

found with this article online at http://dx.doi.org/10.1016/j.str.2012.06.002.

ACKNOWLEDGMENTS

We would like to thank the Biotechnology and Biological Sciences Research

Council (Grant BB/E002609/2) and the Science and Technology Facilities

Council for supporting the work. The plasmid pETPSPL containing the

Rhodospeudomonas palustris gene ppsR2 was kindly provided by Shinji

Masuda (Tokyo Institute of Technology) and Tom Beatty (University of British

Columbia).

Received: January 20, 2012

Revised: May 19, 2012

Accepted: June 2, 2012

Published online: July 12, 2012

REFERENCES

Anantharaman, V., Balaji, S., and Aravind, L. (2006). The signaling helix:

a common functional theme in diverse signaling proteins. Biol. Direct 1, 25.

Bellini, D., Fordham-Skelton, A.P., and Papiz, M.Z. (2011). STRU-cloning:

a fast, inexpensive and efficient cloning procedure applicable to both small

scale and structural genomics size cloning. Mol. Biotechnol. 48, 30–37.

Bennett, M.J., Schlunegger, M.P., and Eisenberg, D. (1995). 3D domain swap-

ping: a mechanism for oligomer assembly. Protein Sci. 4, 2455–2468.

Bhoo, S.H., Davis, S.J., Walker, J., Karniol, B., and Vierstra, R.D. (2001).

Bacteriophytochromes are photochromic histidine kinases using a biliverdin

chromophore. Nature 414, 776–779.

Braatsch, S., Bernstein, J.R., Lessner, F., Morgan, J., Liao, J.C., Harwood,

C.S., and Beatty, J.T. (2006). Rhodopseudomonas palustris CGA009 has

two functional ppsR genes, each of which encodes a repressor of photosyn-

thesis gene expression. Biochemistry 45, 14441–14451.

Braatsch, S., Johnson, J.A., Noll, K., and Beatty, J.T. (2007). The O2-

responsive repressor PpsR2 but not PpsR1 transduces a light signal sensed

by the BphP1 phytochrome in Rhodopseudomonas palustris CGA009.

FEMS Microbiol. Lett. 272, 60–64.

Casino, P., Rubio, V., and Marina, A. (2009). Structural insight into partner

specificity and phosphoryl transfer in two-component signal transduction.

Cell 139, 325–336.

Chen, Y., Zhang, J., Luo, J., Tu, J.M., Zeng, X.L., Xie, J., Zhou, M., Zhao, J.Q.,

Scheer, H., and Zhao, K.H. (2012). Photophysical diversity of two novel cyano-

bacteriochromes with phycocyanobilin chromophores: photochemistry and

dark reversion kinetics. FEBS J. 279, 40–54.
Structure 20, 1436
Clough, R.C., and Vierstra, R.D. (1997). Phytochrome degradation. Plant Cell

Environ. 20, 713–721.

Cowtan, K. (2006). The Buccaneer software for automated model building. 1.

Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011.

Davis, S.J., Vener, A.V., and Vierstra, R.D. (1999). Bacteriophytochromes:

phytochrome-like photoreceptors from nonphotosynthetic eubacteria.

Science 286, 2517–2520.

Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular

graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

Essen, L.O., Mailliet, J., and Hughes, J. (2008). The structure of a complete

phytochrome sensory module in the Pr ground state. Proc. Natl. Acad. Sci.

USA 105, 14709–14714.

Evans, K., Fordham-Skelton, A.P., Mistry, H., Reynolds, C.D., Lawless, A.M.,

and Papiz, M.Z. (2005). A bacteriophytochrome regulates the synthesis of

LH4 complexes in Rhodopseudomonas palustris. Photosynth. Res. 85,

169–180.
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