increase in the time delay (1.3 ± 0.5 vs. 1.0 ± 0.1, P = 0.038) of CV-Ib were observed in patients with cardiac sarcoidosis. In examining the sensitivity of this test for detecting cardiac involvement, patients with sarcoidosis, the magnitude of CV-Ib in the basal septum was able to discriminate 75% of patients with cardiac involvement from patients without cardiac involvement, whereas 2DE parameters were not able to discriminate between these two groups. Conclusion: Decrease in CV-Ib in the basal septum exists in patients with cardiac sarcoidosis even in the absence of 2DE abnormalities. Analysis of CV-Ib may be a useful method to detect early myocardial involvement in patients with sarcoidosis.

T037-146 Velocity Data of Doppler Myocardial Imaging as a Predictor of Functional Recovery After Successful Revascularization

Hyun Suk Yang, Jae-Kwan Song, Jong-Min Song, Duk-Hyun Kang, Cheol Whan Lee, Myeong-Ki Hong, Jae-Joong Kim, Seong-Wook Park, Seung-Jung Park, Asan Medical Center, Seoul, AZ, South Korea

Background: Doppler myocardial imaging (DMI) is useful to investigate regional myocardial function. However, it was not tested whether velocity data of DMI could predict functional recovery after revascularization. Methods: Fifty-two patients (41 males, 60±9 yrs) with regional wall motion abnormality (RWMA) at left anterior descending artery (LAD) territory underwent rest DMI before revascularization and a repeat resting echocardiography 2±3 months later. Peak systolic velocity (Vpeak) and PST velocity (Vpst) were measured in anterior septum, apical inferior, and anterior wall. Results: Among 156 ischemic segments, velocity analysis was feasible in 148 segments (95%). Follow-up echocardiography at 3±1.4 months revealed improved RWMA in 89 segments (Group A) and no changes in 59 (Group B). Group A showed significantly higher Vpeak and Vpst than Group B (2.19±1.64 vs. 1.23±0.96 cm/s, 1.52±1.50 vs 1.01±0.76 cm/s, respectively). ROC curve of Vpeak showed the best cut-off value to predict myocardial functional recovery in 2.0 cm/s with sensitivity 48% and specificity 86%. Considering the negative correlation between the two (r = 0.345, p = 0.002), Vpst 2.0 cm/s was useful in patients with Vpeak < 2.0 cm/s. The algorithm using both Vpeak and Vpst could predict myocardial functional recovery with sensitivity 85% and specificity 75%. Conclusion: Velocity data of DMI at rest in ischemic myocardial segments are useful to predict functional recovery after successful revascularization.