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Abstract

We study the ADHM construction of (anti-)self-dual instantons in eight dimensions. We propose a gen-
eral scheme to construct the (anti-)self-dual gauge field configurations F ∧ F = ± ∗8 F ∧ F whose finite 
topological charges are given by the fourth Chern number. We show that our construction reproduces the 
known SO(8) one-instanton solution. We also construct multi-instanton solutions of the ’t Hooft and the 
Jackiw–Nohl–Rebbi (JNR) types in the dilute instanton gas approximation. The well-separated configura-
tions of multi-instantons reproduce the correct topological charges with high accuracy. We also show that 
our construction is generalized to (anti-)self-dual instantons in 4n (n = 3, 4, . . .) dimensions.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is well known that instantons in gauge theories play important roles in the study of non-
perturbative effects [1,2]. Instantons in four-dimensional gauge theories with gauge group G are 
defined by configurations such that the gauge field strength 2-form F satisfies the (anti-)self-dual 
equation F = ± ∗4 F . Here ∗d is the Hodge dual operator in d-dimensional Euclid space. Due 
to the Bianchi identity, instanton solutions in four-dimensional Yang–Mills theory satisfy the 
equation of motion. The instanton solutions are classified by the second Chern number which is 
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proportional to 
∫

Tr[F ∧ F ]. They are characterized by the homotopy group π3(G). A salient 
feature of the (anti-)self-dual instantons in four dimensions is its systematic construction of solu-
tions, known as the ADHM construction [3]. The ADHM construction reveals the Kähler quotient 
structure of the instanton moduli space and provides the scheme to calculate the non-perturbative 
corrections in the path integral.

It is natural to generalize the instantons in four dimensions to higher and lower dimensions. 
In the lower dimensions, the dimensional reduction of the (anti-)self-dual equation to three di-
mensions leads to the monopole equations. The ADHM construction is reduced to the Nahm 
construction of the monopoles [4]. In two dimensions, the (anti-)self-dual equations provide 
equations for the Hitchin system [5]. Further dimensional reductions of the (anti-)self-dual equa-
tion give equations in various integrable systems in one and two dimensions [6]. This is known 
as the Ward’s conjecture [7].

On the other hand, instantons in dimensions higher than four have been studied in various 
contexts. It is known that there are several kinds of “instantons” in higher dimensions. A straight-
forward generalization of the (anti-)self-dual equation F = ± ∗4 F to d > 4 dimensions is the 
linear equation Fμν = λTμνρσFρσ , λ �= 0 (μ, ν, ρ, σ = 1, . . . , d) [8–10]. Here Tμνρσ is an anti-
symmetric constant tensor which respects subgroups of the SO(d) Lorentz group. This equation 
is called the secular type and solutions to this equation are sometimes called secular type instan-
tons. Note that the secular type instantons satisfy the equation of motion for Yang–Mills theory 
but it is not always true that Chern numbers associated with the solutions are finite and quantized. 
An example of the secular type instanton is the Fubini–Nicolai instantons [11], also known as 
octonionic instantons, defined in eight dimensions. Other examples are BPS instantons that pre-
serve fractions of supersymmetry in eight-dimensional super Yang–Mills theory [12]. An ADHM 
construction of secular type instantons in 4n (n = 1, 2, 3, . . .) dimensions has been studied [13].

Among other things, instantons in 4n (n = 1, 2, 3, . . .) dimensions provide special interests. 
This is because in these dimensions, the (anti-)self-dual equations of the field strengths are nat-
urally defined. For example, in eight dimensions (n = 2), we can define the (anti-)self-dual 
equation F ∧F = ± ∗8 F ∧F . We call solutions to this equation the (anti-)self-dual instantons in 
eight dimensions. We expect that configurations which satisfy the (anti-)self-dual equation have 
non-zero topological charges given by the fourth Chern number k = N

∫
Tr[F ∧ F ∧ F ∧ F ], 

where N is a normalization constant. Since the eight-dimensional (anti-)self-dual equation is 
highly non-linear and contains higher derivatives, only the one-instanton solution is known [14,
15]. This is called the SO(8) instanton. Note that the SO(8) instanton does not satisfy the secular 
equation in general.

In this paper, we study an ADHM construction of (anti-)self-dual instantons in eight dimen-
sions. We will show that there is a general scheme to find the (anti-)self-dual instanton solutions. 
By introducing specific ADHM data which solve ADHM constraints, we will explicitly construct 
gauge field configurations whose fourth Chern numbers are integers. This implies that the solu-
tions are characterized by the homotopy group π7(G). We will also discuss eight-dimensional 
higher derivative theories in which the (anti-)self-dual equation F ∧ F = ± ∗8 F ∧ F becomes 
relevant.

The organization of this paper is as follows. In the next section, we study the ADHM construc-
tion of (anti-)self-dual instantons in eight dimensions. This is just an eight-dimensional analogue 
of the original ADHM construction of instantons in four dimensions. We find that there is an 
extra ADHM constraint in addition to the original one which is present in four dimensions. The 
gauge group and algebraic structures of the solutions are studied in detail. In section 3, we see 
that our construction precisely reproduces the well-known one-instanton profile of the solution 
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[14,15]. Furthermore we construct the so-called ’t Hooft and the Jackiw–Nohl–Rebbi (JNR) type 
multi-instantons. The ADHM data associated with these solutions solve the ADHM constraints 
in the dilute instanton gas limit. We obtain the correct topological charges in a good accuracy. 
In section 4, we discuss eight-dimensional gauge field theories where the (anti-)self-dual instan-
tons are analyzed. We observe that the multi-instantons of the ’t Hooft type can be interpreted 
as D(−1)-branes embedded in the D7-branes in the small instanton limit. Section 5 is devoted to 
conclusion and discussions. The ADHM construction of instantons in four dimensions is briefly 
discussed in Appendix A. The Clifford algebras in 4n dimensions are shown in Appendix B. The 
explicit form of the eight-dimensional ADHM equations for the gauge group U(8) is found in 
Appendix C.

2. ADHM construction in eight dimensions

In this section, we study the ADHM construction of (anti-)self-dual instantons in eight-
dimensional Euclid space with the flat metric. The (anti-)self-dual equation is defined by

F ∧ F = ± ∗8 (F ∧ F) , (1)

where the 2-form F = 1
2!Fμνdxμ ∧ dxν is the gauge field strength whose component is defined 

by

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν]. (2)

The anti-Hermite gauge field Aμ takes value in G. Here G is the Lie algebra associated with 
the non-Abelian gauge group G and μ, ν, . . . = 1, 2, . . . , 8 are the tensor indices in the eight-
dimensional Euclid space. The (anti-)self-dual equation (1) in the component expression is given 
by

F[μνFρσ ] = ± 1

4!εμνρσαβγ δFαβFγ δ, (3)

where εμνρσαβγ δ is the anti-symmetric epsilon symbol in eight dimensions and the bracket 
[μ1μ2 · · ·μn] stands for the anti-symmetrization of indices with the weight 1/n!. In the fol-
lowing subsections, we look for a general scheme to find the solutions to the (anti-)self-dual 
equation (3). To this end, we follow the ADHM construction of instantons in four dimensions 
and generalize it to eight dimensions.

2.1. (Anti-)self-dual basis in eight dimensions

The first step toward the ADHM construction in eight dimensions is to find an appropriate 
basis which guarantees the (anti-)self-duality nature of the gauge field strength Fμν . The corre-
sponding basis in four dimensions is the quaternions σμ = (−i �σ , 12) (μ = 1, . . . , 4) where �σ are 
the Pauli matrices. Using this basis, quantities η(+)

μν = σ †
μσν − σ †

ν σμ, η(−)
μν = σμσ †

ν − σνσ
†
μ that 

satisfy the (anti-)self-dual relations in four dimensions η(±)
μν = ± 1

2!εμνρσ η
(±)
ρσ are defined. These 

η
(±)
μν are just the ’t Hooft symbol.

By the analogy of the quaternions in four dimensions, we define the following basis in eight 
dimensions:

eμ = δμ818 + δμi�
(−)

, e†
μ = δμ818 + δμi�

(+)
(μ = 1, . . . ,8, i = 1, . . . ,7), (4)
i i
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where �(±)
i are 8 × 8 matrices that satisfy the relations {�(±)

i , �(±)
j } = −2δij 18. The matrices 

�
(±)
i are defined by �(±)

i = 1
2 (1 ± ω)�i . We choose the matrices �(±)

i such that they satisfy the 

relation �(+)
i = −�

(−)
i . Here �i are given by the matrix representation of the seven-dimensional 

complex (real) Clifford algebra �i ∈ C�7 (C(R)) and ω is a chirality matrix defined in Ap-
pendix B. Using this basis, we construct the eight-dimensional counterpart of the ’t Hooft symbol. 
This is defined by

�(+)
μν = e†

μeν − e†
νeμ, �(−)

μν = eμe†
ν − eνe

†
μ. (5)

We can confirm that �(±)
μν given above indeed satisfy the (anti-)self-dual relations in eight di-

mensions:

�
(±)
[μν�

(±)
ρσ ] = ± 1

4!εμνρσαβγ δ�
(±)
αβ �

(±)
γ δ , (6)

where the upper script sign of �(±)
μν correspond the sign in the right-hand side of (6). We also 

observe that the basis eμ satisfies the following useful relations:

eμe†
ν + eνe

†
μ = e†

μeν + e†
νeμ = 2δμν18, (7a)

eμeν + eνeμ = 2δμ8eν + 2δν8eμ − 2δμν18, (7b)

e†
μe†

ν + e†
νe

†
μ = 2δμ8e

†
ν + 2δν8e

†
μ − 2δμν18. (7c)

Furthermore the basis eμ is normalized as Tr
[
eμe†

ν

] = 8δμν18. For later convenience we calcu-
late the following quantities:

Tr�(±)
12 �

(±)
34 �

(±)
56 �

(±)
78 = ±16Tr18 = ±128,

�(±)
μν �(±)

ρσ �
(±)
αβ �

(±)
γ δ = εμνρσαβγ δ�

(±)
12 �

(±)
34 �

(±)
56 �

(±)
78 = ±16εμνρσαβγ δ18. (8)

A comment is in order. One may consider that a natural candidate of the eight-dimensional 
counterpart of the quaternions is octonions. Indeed, an ADHM construction of (anti-)self-dual 
instantons with the octonion basis has been proposed and studied [16,17]. However, due to the 
well-known nature of octonions, the gauge field loses the associativity which would causes po-
tential difficulties in field theories. We stress that the basis in (4) is defined by the complex (real) 
Clifford algebra C�7(C(R)) which has the matrix representations and keeps the associativity.

2.2. Solutions for gauge field

Now we have obtained the appropriate basis eμ which supplants the quaternions in four di-
mensions. The next step is to find explicit solutions for the gauge field Aμ. In the following, we 
choose the minus sign in (3) and concentrate on the anti-self-dual equation. In order to find the 
anti-self-dual solution, we first introduce the eight-dimensional Weyl operator1

� = C(x ⊗ 1k) + D, (9)

where C and D are (8 + 8k) × 8k matrices, x = xμeμ and xμ are the Cartesian coordinates of 
the eight-dimensional Euclid space. If we consider self-dual solutions, we choose the basis e†

μ

instead of eμ. The components of the matrices C and D are called the ADHM data. Note that 

1 Here the symbol ⊗ means the Kronecker product, i.e. the tensor product of matrices.
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we can decompose the indices of an 8(1 + k) × 8k matrix into the instanton index that runs from 
1 to k and the color indices that run from 1 to 8. As we will show, the integer k corresponds to 
the instanton number defined by the fourth Chern number k =N

∫
Tr[F ∧ F ∧ F ∧ F ]. Now we 

introduce an (8 + 8k) × 8 matrix V (x) which satisfies the Weyl equation:

�†V (x) = 0. (10)

The matrix V (x), which is called the zero-mode, is normalized as

V †V = 18. (11)

The completeness condition of V (x) implies the following relation2:

18+8k − V V † = �(�†�)−1�†. (12)

Following the ADHM construction of instantons in four-dimensions [3], we employ the ansatz 
that the gauge field Aμ(x) is given by the pure gauge form:

Aμ(x) = V †(x)∂μV (x). (13)

Next we calculate the field strength Fμν from the ansatz (13). Using the Weyl equation (10)
and the completeness relation (12), the result is

Fμν = V †C(eμ ⊗ 1k)(�
†�)−1(e†

ν ⊗ 1k)C
†V − (μ ↔ ν). (14)

We are now looking for conditions that the field strength (14) satisfies the anti-self-dual equa-
tion (3). One realizes that the basis eμ should appear in the combination of �(−)

μν defined in (5). 
We then demand that the factor (�†�)−1 in (14) commutes with the basis eμ(⊗1k):

eμ ⊗ 1k(�
†�)−1 = (�†�)−1eμ ⊗ 1k. (15)

Then the product of the field strengths is calculated to be

FμνFρσ =
(
V †C(�†�)−1

(
�(−)

μν ⊗ 1k

)
C†V

)(
V †C

(
�(−)

ρσ ⊗ 1k

)
(�†�)−1C†V

)
. (16)

In order that the field strength F[μνFρσ ] satisfies the anti-self-dual equation, �(−)
μν ⊗ 1k should 

commute with (C†V V †C) in (16). Therefore we demand the following condition:

eμ ⊗ 1k

(
C†V V †C

)
=

(
C†V V †C

)
eμ ⊗ 1k. (17)

Indeed, using the condition (17), the product of the field strengths becomes

F[μνFρσ ] = V †C(�†�)−1
(
�

(−)
[μν�

(−)
ρσ ] ⊗ 1k

)
C†V V †C(�†�)−1C†V. (18)

Since �(−)
[μν�

(−)
ρσ ] satisfies the anti-self-dual relation (6), we find that this is also true for F[μνFρσ ]. 

Therefore the expression (13) with the constraints (15) and (17) gives the solution to the anti-
self-dual equation (3) in eight dimensions.

It is desirable to find conditions on the ADHM data C and D corresponding to (15) and (17). 
The equation (15) is equivalent to the following constraint on the matrix �:

�†� = 18 ⊗ E
(1)
k , (19)

2 The completeness relation (12) is derived by assuming an existence of (�†�)−1.
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where E(1)
k is an invertible k × k matrix. We call (19) the first ADHM constraint. The condition 

(19) is a natural generalization of the ADHM constraint in four dimensions. See Appendix A for 
the four-dimensional counterpart of the constraint.

On the other hand, the relation (12) allows us to rewrite the condition (17) as

eμ ⊗ 1k

(
C†C

)
=

(
C†C

)
eμ ⊗ 1k,

eμ ⊗ 1k

(
C†�(�†�)−1�†C

)
=

(
C†�(�†�)−1�†C

)
eμ ⊗ 1k. (20)

The first condition is automatically satisfied when the condition (15) holds. The second one 
in (20) is essentially the new condition for eight-dimensional anti-self-dual instantons. This is 
equivalent to the constraint

C†�(�†�)−1�†C = 18 ⊗ E
(2)
k , (21)

where E(2)
k is an invertible k × k matrix. We call (21) the second ADHM constraint.

It is easy to find that the Weyl equation (10), the normalization condition (11), the first and 
the second ADHM constraints (19), (21) are invariant under the following transformations:

C 	→ C′ = UCR, D 	→ D′ = UDR, V 	→ V ′ = UV, (22)

where U ∈ U(8 + 8k) and R = 18 ⊗ Rk ∈ 18 ⊗ GL(k; C) for �i ∈ C�7(C).3 Using this 
U(8 + 8k) × GL(k, C) transformation, we can fix the ADHM data to the so-called canonical 
form. This is given by

C =
(

0[8]×[8k]
18k

)
[8+8k]×[8k]

, D =
(

S[8]×[8k]
T[8k]×[8k]

)
[8+8k]×[8k]

=
(

S[8]×[8k]
eμ [8] ⊗ T

μ
[k]

)
. (23)

Here the matrix subscript [a] × [b] means the matrix size. The symbol S[8]×[8k] stands for (
S1 [8]×[k] S2 [8]×[k] . . . S8 [8]×[k]

)
. We note that all the ADHM data are included in the 

(8 + 8k) × 8k matrix D in the canonical form. We find that there are residual symmetries which 
leave the canonical form (23) invariant. The transformations are given by

Sμ 	→ S′
μ = QSμR, T μ 	→ T ′ μ = R†T μR, (24)

where Q ∈ SU(8) and R ∈ U(k) for �i ∈ C�7(C).4

Now we have established the ADHM construction of (anti-)self-dual instantons in eight di-
mensions. Plugging the canonical form of C and D in (23) into the first and the second ADHM 
constraints (19), (21), we obtain the algebraic constraints on the matrices T and S. The explicit 
form of the constraints (that are called the ADHM equations) are found in Appendix C. Solutions 
S and T to these constraints lead to the profile functions of the gauge field Aμ corresponding to 
the anti-self-dual instantons. We will show the explicit solutions for S and T and its associated 
gauge field Aμ in Section 3. However, before going to the solutions, we discuss the gauge groups 
of the theory and the homotopy group which classify the solutions.

3 When �i take value in the real Clifford algebra Cl7(R) instead of the complex one and the ADHM data C are D are 
real valued, then the transformation groups are U ∈ O(8 + 8k) and R ∈ 18 ⊗ GL(k; R).

4 When �i ∈ C�7(R) and the matrices S are T are real valued, the transformation groups are Q ∈ SO(8) and R ∈ O(k).
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2.3. Gauge and homotopy groups

In this subsection, we discuss the gauge group of the theory and the homotopy class of the 
solutions.

The gauge transformation of the solution Aμ is induced by the transformation of the zero-
mode V (x) which preserves the normalization condition (11). Indeed, using the ansatz (13), the 
transformation of the zero-mode V 	→ Vg(x) induces the following gauge transformation:

Aμ 	→ g−1(x)Aμg(x) + g−1(x)∂μg(x). (25)

We note that the transformation V 	→ Vg(x) is independent of the one in (22). The gauge group 
is determined as follows.

As we have mentioned, the group structure of the transformation matrix g(x) is determined by 
the Clifford algebra which has been used to construct the basis eμ. For example, when eμ takes 
complex values, then �i is the element of the complex Clifford algebra C�7(C). In this case, the 
Weyl operator � takes complex values and the solutions to the Weyl equation �†V = 0 (that is 
the zero-mode V ) is a complex (8 + 8k) × 8 matrix. Therefore the gauge group associated with 
the transformation V 	→ Vg(x) is the unitary group G = U(8). On the other hand, when eμ and 
the ADHM data take real values, then �i belongs to the real Clifford algebra C�7(R). The Weyl 
operator � takes real values and the zero-mode V is a real (8 + 8k) × 8 matrix. In this case, the 
gauge group associated with the transformation V 	→ Vg(x) is the orthogonal group G = O(8).

It is clear that the color size N of the gauge group depends on the matrix size of the basis eμ. 
Here the matrix representations of the complex (real) Clifford algebra are given by the 8 × 8
complex (real) matrices. Therefore the basis eμ are 8 × 8 matrices and the color size is eight, i.e.
N = 8. Relations of gauge groups and Clifford algebras are discussed in detail in Appendix B. 
Note that the ADHM construction does not impose the specialty condition on the gauge group 
in general, namely, the gauge group G is not the special unitary group SU(N) nor the special 
orthogonal group SO(N) but they are U(N) or O(N). We can decompose the group U(N) (or 
O(N)) into the special group SU(N) (or SO(N)) part and U(1) (or S0) part: U(N) = SU(N) �
U(1) and O(N) = SO(N) � S0. Usually, we have to fix the element of U(1) (or S0) by hand 
when we consider SU(N) or SO(N) in the ADHM construction of instantons.

Finally, we give a brief discussion on the homotopy group. Instantons with gauge group5 G

in eight dimensions are classified by the homotopy group π7(G). We are interested in instantons 
that are characterized by an integer k. One observes that the gauge group G whose rank is small 
makes π7(G) be trivial. For example, the homotopy groups π7(G) for G = SO(N) (N ≤ 4)

and G = SU(N) (N ≤ 3) become trivial. For larger rank groups, one obtains desired property 
π7(G) = Z for G = SU(N) (N ≥ 4), G = SO(N) (N ≥ 5, N �= 8), G = Sp(N) (N ≥ 2). The 
homotopy groups relevant to the eight-dimensional ADHM construction presented in this paper 
are G = U(8), G = SU(8) and G = SO(8). For the former two groups, we have

π7(U(8)) = π7(SU(8)) = Z, (26)

while for G = SO(8), we have

π7(SO(8)) = Z⊕Z. (27)

5 Here we focus on the compact Lie group G.
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We note that the SO(8) instanton solutions are embedded in solutions for the gauge groups 
SO(N) (N ≥ 8). This is because the property of the homotopy class π7(SO(N)) = Z (N > 8). 
The same is true for SU(N) and U(N).

3. ADHM data and multi-instanton solutions

In this section, we introduce explicit ADHM data that satisfy the first and the second ADHM 
constraints (19), (21). We will show that the integer k in the construction is the topological 
charge of the eight-dimensional instantons. The topological charge Q for the eight-dimensional 
instantons is defined by the fourth Chern number:

Q =N
∫
R8

Tr (F ∧ F ∧ F ∧ F) =N
∫
R8

d8x Tr

(
1

8!εμνρσαβγ δFμνFρσ FαβFγ δ

)
, (28)

where N is the normalization constant which will be determined later. Using the expression (18)
and the ADHM constraints (19), (21), the charge density Q is calculated to be

Q= ±16Tr
(
V †C(�†�)−1C†V

)4
. (29)

Here ± corresponds to the (anti-)self-dual solutions respectively.
In the next subsection, we introduce explicit ADHM data and calculate the topological charges 

associated with the solutions. We first introduce the eight-dimensional ADHM ansatz for the 
ADHM data on the analogy of the four-dimensional ones. Here the “ansatz” means that this 
ADHM data at least satisfy the first ADHM constraint (19).

For a technical reason, it is convenient to introduce the following form of the second ADHM 
constraint:

C†V V †C = 18 ⊗ E
(3)
k , (30)

where E(3)
k is an invertible k × k matrix. This is a stronger condition of the second ADHM 

constraint but more tractable than (21). The second ADHM constraint (21) is satisfied when (30)
is satisfied. In the following, we will examine the second ADHM constraint (30) for given ansatz 
for ADHM data and determine the multi-instanton profiles.

3.1. BPST type one-instanton

We first reproduce the k = 1 instanton solution in eight dimensions. This is known as the 
SO(8) instanton [14]. In the case of k = 1, the ADHM ansatz in the canonical form is taken to be

C =
(

0
18

)
, D =

(
λ18

−aμeμ

)
, (31)

where λ ∈R is the size modulus and aμ ∈ R is the position modulus of the instanton. It is easily 
shown that the ADHM ansatz (31) satisfies the first ADHM constraint (19).

The solution to the Weyl equation (10) associated with the ADHM ansatz (31) is found to be

V = 1√
(

x̃†

−λ1

)
, (32)
ρ 8
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where we have defined x̃† = (xμ − aμ)e†
μ, ‖x̃‖2 = x̃x̃† = x̃†x̃ = (xμ − aμ)(xμ − aμ) and ρ =

λ2 + ‖x̃‖2. We next examine the constraint (30) for the ADHM ansatz (31). We find that the 
left-hand side of (30) associated with the ADHM ansatz (31) is proportional to the identity 18:

C†V V †C = λ2

ρ
18. (33)

Therefore, the second ADHM constraint (21) is trivially satisfied. Then the one-instanton solu-
tion to the anti-self-duality equation in eight dimensions is found to be

Aμ = −1

2

xν − aν

λ2 + ‖x̃‖2
�(−)

μν . (34)

This solution is nothing but the SO(8) instanton found in [14]. This is the eight-dimensional 
analogue of the Belavin–Polyakov–Schwarz–Tyupkin (BPST) instanton [1] in four dimensions. 
The associated field strength Fμν is evaluated to be

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν] = λ2

(λ2 + ‖x̃‖2)2
�(−)

μν . (35)

Then the ADHM construction in eight dimensions have reproduced the known one-instanton 
solution. Next we calculate the topological charge and determine the normalization constant N . 
The field strength for the SO(8) instanton (35) is very simple, so we are able to calculate the 
charge using (28). The result is

Q =N
∫
R8

d8x

(
λ2

(λ2 + x̃2)2

)4

Tr
(
�

(−)
[12 �

(−)
34 �

(−)
56 �

(−)
78]

)
= −N 16π4

105
. (36)

Therefore the normalization constant N is determined to be

N = 105

16π4
. (37)

This normalization is the same one employed in [14].

3.2. ’t Hooft type solutions

We next study ADHM data for instantons with k ≥ 2. A natural candidate for this is an eight-
dimensional generalization of the ’t Hooft type one [3]. The ’t Hooft type ADHM ansatz are 
given by

T μ = diagk
p=1

(
−aμ

p

)
,

S = 18 ⊗ (
λ1 λ2 . . . λk

)
, (38)

where aμ
p ∈ R are position and λp ∈ R are size moduli respectively. The Weyl operator associated 

with the ’t Hooft type ADHM ansatz is

�† = (
S† e†

μ ⊗ (xμ1k + T μ)
)
. (39)

Then we find

�†� = 18 ⊗

⎛
⎜⎜⎜⎝

λ2
1 + ‖x̃1‖2 λ1λ2 . . . λ1λk

λ2λ1 λ2
2 + ‖x̃2‖2 . . . λ2λk

...
...

. . .
...

λ λ λ λ . . . λ2 + ‖x̃ ‖2

⎞
⎟⎟⎟⎠ . (40)
k 1 k 2 k k
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Here x̃p is defined as x̃p = (xμ − a
μ
p )eμ. Therefore the ADHM ansatz (38) satisfies the first 

ADHM constraint (19).
The solution to the Weyl equation (10) is given by

V = 1√
φ

( −18(
eμ ⊗ diagk

p=1

(
x̃

μ
p

‖x̃p‖2

))
S†

)
, (41)

where φ = 1 + ∑k
p=1

λ2
p

‖x̃p‖2 . We then examine the constraint (30). Plugging the zero-mode (41)

into C†V V †C, we have

C†V V †C =
(
δμν18 + �(−)

μν /2
)

⊗ E
μν

(’t Hooft), (42)

where

E
μν

(’t Hooft) =

⎛
⎜⎜⎜⎜⎝

λ2
1X

μ
1 Xν

1 λ1λ2X
μ
1 X

μ
2 . . . λ1λkX

μ
1 Xν

k

λ2λ1X
μ
2 Xν

1 λ2
2X

μ
2 Xν

2 . . . λ2λkX
μ
2 Xν

k

...
...

. . .
...

λkλ1X
μ
k Xν

1 λkλ2X
μ
k Xν

2 . . . λ2
kX

μ
k Xν

k

⎞
⎟⎟⎟⎟⎠ . (43)

Here we have used the relation eμe†
ν = δμν18 + �

(−)
μν /2 and defined Xμ

m = x̃
μ
m/‖x̃m‖2. Since 

the constraint (30) requires that the right-hand side of (42) is proportional to 18, we have the 
following conditions on the moduli λa and aμ

m:

λmλn(x
μ − aμ

m)(xν − aν
n)�(−)

μν = 0. (44)

Here the indices m, n run from 1 to k and not summed. We find that the conditions (44) are 
satisfied in the well-separated limit of each instanton:

‖aμ
m − aμ

n ‖2 � λmλn, (45)

for all m and n. In the well-separated limit (45), we can neglect all the off-diagonal components 
in the matrix in (40):⎛

⎜⎝
λ2

1 + ‖x̃1‖2 . . . λ1λk

...
. . .

...

λkλ1 . . . λ2
k + ‖x̃k‖2

⎞
⎟⎠ �

⎛
⎜⎝

λ2
1 + ‖x̃1‖2 . . . 0

...
. . .

...

0 . . . λ2
k + ‖x̃k‖2

⎞
⎟⎠ . (46)

Indeed, in this limit we have

C†�(�†�)−1�†C � 18 ⊗ diagk
p=1

[
‖x̃p‖2

λ2
p + ‖x̃p‖2

]
. (47)

Therefore for the ’t Hooft type ansatz (38), the second ADHM constraint is satisfied in the well-
separated limit. Since the number of instanton density becomes dilute in this limit, this is called 
the dilute instanton gas approximation [18].

We proceed to evaluate the instanton charge for the ’t Hooft type ADHM data. In the well-
separated limit (45), by using (29), the charge density for general k instantons is calculated as

Q� −16
4

Tr
{
f μνe†

μeν

}4
, (48)
φ
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where f μν is given by

f μν =
(

λ1x̃
μ
1

‖x̃1‖2
λ2x̃

μ
2

‖x̃2‖2 . . .
λkx̃

μ
k

‖x̃k‖2

)
⎛
⎜⎜⎜⎝

λ2
1 + ‖x̃1‖2 λ1λ2 . . . λ1λk

λ1λ2 λ2
2 + ‖x̃2‖2 . . . λ2λk

...
...

. . .
...

λ1λk λ2λk . . . λ2
k + ‖x̃k‖2

⎞
⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1x̃
ν
1

‖x̃1‖2

λ2x̃
ν
2

‖x̃2‖2

...
λk x̃

ν
k

‖x̃k‖2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (49)

In order to illustrate multi-instanton solutions, we write down the charge densities for k = 1, 2, 3
explicitly.

For k = 1, the charge density is given by

Q(k=1)
’t Hooft = −128

(
λ2(

λ2 + ‖x̃‖2
)2

)4

. (50)

This is nothing but the one calculated in (36). We note that the one-instanton solution in the 
’t Hooft ADHM data is singular at the instanton position:

A
singular
μ = 1

4
�(+)

μν ∂ν ln

(
1 + λ2

‖x̃‖2

)
, (51)

while the BPST type solution (34) discussed in the previous subsection is non-singular. These 
solutions are connected by the following singular gauge transformation:

A
non-singular
μ = g1A

singular
μ g−1

1 + g1∂μg−1
1 , g1 = x̃√‖x̃‖2

. (52)

For k = 2 and k = 3, the charge densities in the dilute gas approximation are evaluated as

Q(k=2)
’t Hooft � −128

(
λ2

1‖x̃2‖4 + λ2
2‖x̃1‖4 + λ2

1λ
2
2

(‖x̃1‖2 + ‖x̃2‖2 − 2x̃
μ
1 x̃

μ
2

)
(
λ2

1‖x̃2‖2 + λ2
2‖x̃1‖2 + ‖x̃1‖2‖x̃2‖2

)2

)4

, (53)

Q(k=3)
’t Hooft � −128

[
γ

(
λ2

1‖x̃2‖4‖x̃3‖4 + λ2
2λ

2
3‖x̃1‖4

(
‖x̃2‖2 + ‖x̃3‖2 − 2x̃

μ
2 x̃

μ
3

)

+ λ2
2‖x̃1‖4‖x̃3‖4 + λ2

1λ
2
3‖x̃2‖4

(
‖x̃1‖2 + ‖x̃3‖2 − 2x̃

μ
1 x̃

μ
3

)

+ λ2
3‖x̃1‖4‖x̃2‖4 + λ2

1λ
2
2‖x̃3‖4

(
‖x̃1‖2 + ‖x̃2‖2 − 2x̃

μ
1 x̃

μ
2

))]4

. (54)

Here we have defined

γ = 1(
λ2

1‖x̃2‖2‖x̃3‖2 + λ2
2‖x̃1‖2‖x̃3‖2 + λ2

3‖x̃1‖2‖x̃2‖2 + ‖x̃1‖2‖x̃2‖2‖x̃3‖2
)2

. (55)
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Fig. 1. The charge density plots of the ’t Hooft type solutions. The upper figure corresponds to k = 1, left and right ones 
in the lower figure correspond to k = 2, 3 respectively. All the plots are projected to a two-dimensional subspace in the 
eight-dimensional space.

The numerical profiles for the k = 1, 2, 3 charge densities are found in Fig. 1. Here the param-
eters that satisfy the well-separated limit (45) are chosen such that aμ = 0, λ = 2 for k = 1, a1

1 =
−5, a1

2 = 5, aμ
1 = a

μ
2 = 0 (μ > 1), λ1 = λ2 = 2, for k = 2 and a1

m = 10/
√

3× sin(2π(m −1)/3), 
a2
m = 10/

√
3 × cos(2π(m − 1)/3), aμ

m = 0 (μ > 2), λm = 2 (m = 1, 2, 3) for k = 3. For these 
parameters, the numerical results of instanton charges are evaluated as Q � 2 × 1.02 (k = 2), 
Q � 3 × 1.03 (k = 3). Therefore we find that the dilute instanton gas approximation, which is 
needed to solve the second ADHM constraint, works well.

We also observe that the topological charge defined by the fourth Chern number is quantized 
in the well-separated limit. Indeed, using the property of the basis eμ, the charge density formula 
for general anti-self-dual instantons (29) is rewritten as

Q= −128Trk

((
E

(1)
k

)−1 (
1k − E

(2)
k

))4

, (56)

where ADHM data have been fixed to the canonical form. For the ’t Hooft type ADHM data in 
the dilute gas approximation, we have

Q’t Hooft � −128
k∑

p=1

(
λ2

p

(λ2
p + ‖x̃p‖2)2

)4

. (57)

This is just the summation of the one-instanton charge density (50) and gives Q = k.
A few comments are in order. First, we find the special solutions to the condition (44). The 

condition is exactly solved by am = an (m �= n) which implies that all the instantons are local-
ized at the same point. However, we find that the corresponding solution is equivalent to the 
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one-instanton (51). On the other hand, another exact solution λn = 0 (for all n) make the solution 
be trivial.6 Namely, it is a vacuum configuration.

Second, there is a principal difference between the four- and the eight-dimensional (anti-)self-
dual equations. In four dimensions, the ’t Hooft type ADHM data provides the exact solutions to 
the (anti-)self-dual equation F = ± ∗4 F [3]. However, in eight dimensions, this provides only the 
approximate solutions. The reason is that the (anti-)self-dual equation is linear in F only in four 
dimensions. The (anti-)self-dual equations in dimensions greater than four contain multiple F . 
For example in 4n (n ≥ 2) dimensions, the equation is given by

F∧n = ± ∗4n F∧n, (58)

where F∧n is the wedge products of n field strengths F . The equations (58) are non-linear in 
F when n ≥ 2. The intrinsic origin of the second ADHM constraint (21) comes from this non-
linearity of the (anti-)self-dual equations. Therefore the situation in 4n (n ≥ 2) dimensions is 
quite different from the four-dimensional case.

3.3. Jackiw–Nohl–Rebbi type solutions

We then study a generalization of the ’t Hooft solutions which is so-called Jackiw–Nohl–
Rebbi (JNR) type solutions.

The JNR type ansatz [19] is given by

� =
(

18 ⊗ �

18 ⊗ 1k

)
· x ⊗ 1k +

( −a0 ⊗ �

diagk
p=1(−ap)

)
=

(
x̃0 ⊗ �

X̃[8k]×[8k]

)
= eμ ⊗

(
x̃

μ
0 �

diagk
p=1(x̃

μ
p )

)
,

(59)

where � = (
λ1/λ0 . . . λk/λ0

)
, x̃i = (xμ − a

μ
i )eμ, ai = a

μ
i eμ and X̃ = diag(x̃1, . . . , x̃k). 

Here λi ∈ R and aμ
i ∈ R (i = 0, . . . , k) are moduli parameters. We note that the JNR ansatz (59)

is not in the canonical form and contain more moduli parameters than the ’t Hooft one. The latter 
is obtained from the former by the limit a0 → ∞, λ0 → ∞ with fixed a0/λ0 = 1.

We can confirm that the JNR ansatz satisfies the first ADHM constraint (19):

�†� = 18 ⊗
(
‖x̃0‖2t�� + diagk

p=1(‖x̃p‖2)
)

= 18 ⊗ E
(JNR)
k , (60)

where the symbol tM means the transposed matrix of M , so t� is k-column vector and t�� is 
k × k matrix. The solution to the Weyl equation (10) is given by

V = 1√
φ

( −18

diagk
p=1

(
x̃p

‖x̃p‖2

)
· x̃

†
0 ⊗ t�

)
, (61)

where φ = 1 + ‖x̃0‖2

λ2
0

∑k
p=1

(
λ2

p

‖x̃p‖2

)
.

Now we examine the second ADHM constraint. The left-hand side of (30) is evaluated to be:

6 Strictly speaking, the solution becomes singular at the instanton positions x̃μ
m = 0 in the limit λm → 0. We will 

discuss the physical meaning of this limit in Section 4.
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C†V V †C = 1

φλ2
0

(
eμe†

νeρe†
σ ⊗ E

μνρσ

(JNR)

)
,

E
μνρσ

(JNR) =

⎛
⎜⎜⎜⎜⎝

λ2
1Y

μν
1 Y

σρ
1 λ1λ2Y

μν
1 Y

σρ
2 . . . λ1λkY

μν
1 Y

σρ
k

λ2λ1Y
μν
2 Y

σρ
1 λ2

2Y
μν
2 Y

σρ
2 . . . λ2λkY

μν
2 Y

σρ
k

...
...

. . .
...

λkλ1Y
μν
k Y

σρ
1 λkλ2Y

μν
k Y

σρ
2 . . . λ2

kY
μν
k Y

σρ
k

⎞
⎟⎟⎟⎟⎠ , (62)

where Yμν
m = x̃

μ
mx̃ν

0 /‖x̃m‖2 − δμ8δν8 and m = 1, . . . , k is not summed. In each component in the 
matrix in (62), we have

Yμν
m Yσρ

n eμe†
νeρe†

σ = ‖x̃0‖2

‖x̃m‖2‖x̃n‖2
x̃mx̃†

n − 1

‖x̃n‖2
x̃0x̃

†
n − 1

‖x̃m‖2
x̃mx̃

†
0 + 18. (63)

For k = 1, since we have the relation x̃ax̃
†
b + x̃bx̃

†
a = 2x̃

μ
a x̃

μ
b 18, the right-hand side of (63) is 

proportional to 18 and the second ADHM constraint is satisfied. The charge density of the k = 1
JNR solution is given by

Q(k=1)
JNR = −128

(
λ̄2

1

(‖x̃1‖2 + ‖x̃0‖2 − 2x̃
μ
0 x̃

μ
1

)
(‖x̃0‖2λ̄2

1 + ‖x̃1‖2
)2

)4

, (64)

where λ̄m = λm/λ0. The moduli parameters are λ1/λ0 = λ and aμ
1 − a

μ
0 = aμ, so the k = 1 JNR 

solution has total nine parameters. Therefore the k = 1 JNR data is essentially equal to the k = 1
’t Hooft data, and we find that the numerical results of the k = 1 instanton charge (64) is Q = 1.

For k ≥ 2 case, it is not straightforward to solve the constraint (30) in a general fashion. 
However, a solution is found in the well-separated limit (45). In this limit, we can neglect all the 
off-diagonal components in E(JNR)

k :

E
(JNR)
k � diagk

p=1

(
‖x̃0‖2λ̄2

p + ‖x̃p‖2
)

. (65)

Then, the second ADHM constraint is satisfied:

C†�(�†�)−1�†C � 18 ⊗ diagk
p=1

(‖x̃0‖2λ̄4
p + 2λ̄2

px̃
μ
0 x̃

μ
p + ‖x̃p‖2

‖x̃0‖2λ̄2
p + ‖x̃p‖2

)
. (66)

We also observe that the instanton charge is quantized in this limit by using the same formula 
of the ’t Hooft ones. We note that the JNR data is not in the canonical form. In this case, the 
charge density formula (29) is rewritten as

Q= −128Trk

((
E

(1)
k

)−1
(C(2) − E

(2)
k )

)4

, (67)

where C(2) is defined by C†C = 18 ⊗ C(2). In the limit (45), we have C†C � 18 ⊗
(diagk

p=1λ̄
2
p + 1k). Therefore we obtain

QJNR � −128
k∑

p=1

⎛
⎜⎝ λ̄2

p

(‖x̃p‖2 + ‖x̃0‖2 − 2x̃
μ
0 x̃

μ
p

)
(
‖x̃0‖2λ̄2

p + ‖x̃p‖2
)2

⎞
⎟⎠

4

. (68)
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This is just the summation of the JNR type one-instanton charge density and the charge associated 
with (68) is Q = k.

We note that these three type ADHM data (BPST type, ’t Hooft type and JNR type) take real 
values. Therefore we can choose the gauge group G by using the Clifford algebras: C�7(C) or 
C�7(R). If we choose the complex Clifford algebra C�7(C) then the gauge group is the uni-
tary group G = U(8). On the other hand, we choose the real Clifford algebra C�7(R) for the 
orthogonal group G = O(8). We find explicit form of the complex (real) basis in Appendix B.

4. Higher derivative field theories in eight dimensions

In this section we discuss eight-dimensional gauge field theories where the (anti-)self-dual in-
stantons are relevant. Since the (anti-)self-dual equations in dimensions greater than four contain 
multi-field strengths, the theories inevitably contain higher derivative terms. In the following, 
we consider a gauge field Aμ and a non-Abelian gauge group G whose Lie algebra is G in 
eight-dimensional Euclid space. The generators of the gauge group T a (a = 1, . . . , dim G) are 
normalized as TrT aT b = κδab where κ is a constant. We also introduce the gauge coupling con-
stant g whose mass dimension is −2 in eight dimensions. The constant α′ is the string Regge 
slope parameter.

Quartic Yang–Mills model The first example is the so called quartic Yang–Mills model whose 
Lagrangian is given by the 4th products of the gauge field strengths F and no Yang–Mills kinetic 
term. The action of the quartic Yang–Mills model is given by

S = α

κg2

∫
Tr

[
1

2
∗8 (F ∧ F) ∧ (F ∧ F)

]
, (69)

where α is a constant whose mass dimension is [α] = −4. The action (69) is classically conformal 
and the Derrick’s theorem implies that the theory admits stable static solitons. It is straightfor-
ward to show that the Bogomol’nyi completion of the action is

S = α

κg2

∫
Tr

[
(F ∧ F ± ∗8(F ∧ F))2 ∓ F ∧ F ∧ F ∧ F

]
, (70)

where we have defined

(F ∧ F ± ∗8F ∧ F)2 = (F ∧ F ± ∗8F ∧ F) ∧ ∗8(F ∧ F ± ∗8F ∧ F). (71)

Then the action is bounded from below by the fourth Chern number S ≥ ± α

κg2

∫
Tr[F ∧ F ∧

F ∧ F ]. The Bogomol’nyi bound is saturated when (1) is satisfied. It is easy to show that the 
(anti-)self-dual solution satisfies the full equation of motion for the quartic model (69).

This kind of quartic Yang–Mills theory is not the standard gauge field theory but appears in 
some physically appropriate situations. For example, the quartic model has been introduced to 
provide the solution for the fundamental strings in SO(32) heterotic string theory [20,21]. Tree-
level heterotic five-brane is expected to induce a quartic Yang–Mills theory whose (anti-)self-dual 
instantons in eight dimensions precisely reproduce the energy–momentum tensor for fundamen-
tal strings. On the other hand, the quadratic Yang–Mills part is expected to appear at the one-loop 
level in perturbative heterotic five-brane theory [22]. This is in contrast to the heterotic funda-
mental string theory where the quartic Yang–Mills term appears in the one-loop level.

There are other applications of the quartic model. For example, various topological solitons 
specific for the quartic model have been studied in [23–25].
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D7-brane effective action and D-instantons We next consider more physically relevant mod-
els. Higher dimensional gauge theories are naturally realized as low-energy effective field theo-
ries on D-branes. The (p+1)-dimensional quadratic Yang–Mills theory appears in the zero-slope 
limit α′ → 0 of the open string sector on Dp-branes. The four-dimensional instantons are inter-
preted as D-instantons (or D(−1)-branes) embedded in D3-branes [26]. The ADHM moduli are 
interpreted as the zero-dimensional fields on the D-instanton world-volume. The ADHM con-
straint comes from the supersymmetric D-term condition of the D3–D(−1), D(−1)–D(−1) open 
string sectors [27]. This interpretation is generalized to Dp–D(p − 4) brane systems.

For the eight-dimensional gauge theory, we consider Euclidean D7-branes in type IIB string 
theory. In order to see the (anti-)self-dual instanton effects, we consider the α′ corrections to the 
eight-dimensional Yang–Mills theory. This is obtained from the dimensional reduction of the α′
corrected super Yang–Mills theory in ten-dimensions [28]. The gauge field part of the D7-brane 
world-volume Lagrangian is given by

LF = 1

κg2
Tr

[
−1

4
FμνF

μν

]
+ (2πα′)2

12κg2
t8TrF 4 +O

(
α′4

g2

)
. (72)

Here the first term is the eight-dimensional quadratic Yang–Mills part. The second part is the 
first α′ correction given by

t8TrF 4 = −4Tr

[
1

32
FμνFρσ FμνFρσ + 1

16
(FμνF

μν)2

− 1

8
FμνF

νρFρσ Fσμ − 1

4
FμρFρνFμσ Fσν

]
. (73)

We now interpret the eight-dimensional instantons as the D-instantons embedded in the 
D7-branes. The D-instantons are the sources of the R–R 0-form C(0). The C(0) coupling to 
the D7-branes is given by the Wess–Zumino term of the effective action:

LWZ = μ7

κg2
Tr

[
(2πα′)2

4! C(0)F ∧ F ∧ F ∧ F

]

= μ7

κg2
Tr

[
(2πα′)2

4! · 24
C(0)εμ1···μ8Fμ1μ2 · · ·Fμ7μ8

]
d8x. (74)

Here μ7 is the R–R charge of the D7-brane. In order that the eight-dimensional instantons F ∧
F = ± ∗8 F ∧ F whose instanton number k = 1

4!(2π)4 Tr
∫

F ∧ F ∧ F ∧ F become the source of 
the R–R 0-form, the quartic term in LF evaluated on the instantons should coincide with LWZ. 
We also need the condition that the quadratic term in LF on the instantons vanish. Therefore 
the eight-dimensional (anti-)self-dual instantons become the D-instantons when the following 
conditions are satisfied:

1

g2

∫
d8x Tr[FμνF

μν] = 0,
1

12
t8F

4 = ± 1

4! · 24
εμ1···μ8Fμ1μ2 · · ·Fμ7μ8, (75)

and all the O(α′4/g2) terms vanish. We call (75) the D-instanton conditions. When the D-
instanton conditions holds on the instanton solution, then, the quartic term in LF agrees with 
the effective action of k D-instantons:

SD(−1) = μ−1C
(0) 1

κ
Tr1k = kμ−1

κ
C(0). (76)
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Here μ−1 is the R–R charge of the D-instanton and we have used the relation λ2

g2
7

= 1
(2π)3gs

, 

μ−1 = 2π
gs

and gs is the string coupling.

We consider the zero-slope limit α′ → 0 with fixed α′2/g2 to obtain the effective action (72). 
In this limit, the O(α′4/g2) terms vanish and the F quartic term remains finite while the Yang–
Mills part diverges in general. The situation where the conditions (75) are satisfied has been 
analyzed in [30] where the instanton partition function for the D7/D(−1) system is studied. In 
there, it is shown that the one-instanton solution [14,15] satisfies the D-instanton condition (75)
when the size modulus becomes zero.

We find that our general solution (13) actually satisfies the second condition in (75). This 
is due to the property of the basis eμ defined by the Clifford algebra. For the first condition 
in (75), we can evaluate the quadratic Yang–Mills term for the ’t Hooft type instantons in the 
well-separated limit (45). The Yang–Mills quadratic term becomes

1

g2

∫
d8x Tr[FμνF

μν] = 1

g2
Tr[�(−)

μν �(−)μν]
k∑

p=1

∫
d8x

(
λ2

p

(λ2
p + ‖x̃p‖2)2

)2

. (77)

This is just the k times the one-instanton contribution. The radial part of the space–time integral 
in (77) has been calculated to be [29,30]

�∫
0

r7dr

(
λ2

p

(λ2
p + r2)2

)2

= λ2
p

2
log

(
1 + �2

λ2
p

)
− 11

12
λ2

p, (78)

where we have introduced the cutoff � in the space–time integral and neglected sub-leading 
terms of 1/�. Then, when the instantons shrink to zero-size λp → 0, the first condition in (75)
is satisfied.7 This result is a multi-instanton generalization of the one-instanton calculations in 
[29,30]. Therefore we conclude that the (anti-)self-dual instantons in the small instanton limit 
correspond to the D-instantons embedded in the D7-branes. We emphasize that the small instan-
ton λp → 0 is the strict limit of the dilute instanton gas approximation (45). In this limit, all the 
instantons show singular behavior and they satisfy the equation of motion. Note that the fourth 
Chern number is kept finite in this limit. The string origin of the zero-size limit of instantons is 
also discussed in [31].

A few comments are in order. First, the SO(8) instantons in eight dimensions are studied in 
the context of heterotic/type I string duality [32]. Consider the (Euclidean) D7-branes in type 
IIB orientifold theory compactified on two torus T 2. The D7-branes are placed on top of the 
O7-planes. There are four SO(8) sectors in the theory. Let us concentrate on the one sector among 
them. The world-volume theory of the D7-branes is given by the eight-dimensional N = 2 super 
Yang–Mills theory with the gauge group SO(8). The self-dual instantons give non-perturbative 
effects in eight-dimensional gauge theories [33,34]. This is a non-perturbative test of the string 
duality.

Second, the famous anomaly cancellation term BTrF 4, where B is the NS–NS B-field, in 
heterotic string theory indicates that configurations with the finite fourth Chern number become 
sources of fundamental strings [35]. This configuration is nothing but the (anti-)self-dual instan-
ton in eight dimensions.

7 This zero-size limit should be taken so that λ
2
p
2 log

(�2
p
2

) → 0 in the limit α′ → 0 with fixed α′2/g2.

g λp
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5. Conclusion and discussions

In this paper we have studied ADHM construction of (anti-)self-dual instantons in eight 
dimensions. The instantons satisfy the (anti-)self-dual equations F ∧ F = ± ∗8 F ∧ F . The 
gauge field is given by the pure gauge form (13) which is a natural generalization of the four-
dimensional (anti-)self-dual instantons. The ADHM construction is based on the basis eμ which 
is constructed from the Clifford algebra in seven dimensions. Due to the property of the basis eμ, 
the eight-dimensional anti-self-dual equation reduces to a set of algebraic constraints on matrices 
(the ADHM data). Compared with the (anti-)self-dual equation in four dimensions, the equation 
in eight dimensions is non-linear in F and contains terms with space–time derivative of second 
order. We have found that there are the first and the second ADHM constraints on the ADHM 
data. The former is the same form of the four-dimensional one while the latter comes from the 
non-linearity of the equation and essentially a new ingredient. We have also pointed out that 
the gauge group of the theory is determined by the structure of the seven-dimensional Clifford 
algebra.

We have shown that our construction precisely reproduces the known one-instanton profile, 
namely, the SO(8) instanton [14,15]. We have also found the k = 2, 3 multi-instanton solutions 
based on the ’t Hooft and JNR ansatz. The JNR type solution contain more moduli parameters 
compared with the ’t Hooft type. We have shown that the first and the second ADHM constraints 
are explicitly solved in the dilute instanton gas approximation. The topological charges are eval-
uated numerically and we have shown that the consistent results are found in a good accuracy. It 
is obvious that any higher charge solutions can be systematically constructed. Although they are 
approximate solutions, as far as we know, they are the first explicit examples of higher charge 
solutions that do not show spherical symmetry in eight dimensions.

We have discussed the eight-dimensional gauge theories where the (anti-)self-dual equation is 
relevant. The instanton configurations extremize the action of the quadratic field strength. There-
fore the theory inevitably contain higher derivative terms. As in the four-dimensional case, the 
eight-dimensional ADHM construction enjoys the space–time gauge symmetry and the gauge 
symmetry in the instanton space (dual space). This fact strongly suggests that the ADHM con-
struction presented in this paper has string theory origin in D-brane configurations [27,36]. 
Indeed, in [29,30], the authors studied D7/D(−1)-brane configurations in type IIB orientifold. 
The open string scattering amplitudes including zero-modes associated with strings that end on 
these branes reveal that the moduli action for eight-dimensional k = 1 self-dual instanton is given 
by the D-instanton effective action. We have exhibited a strong evidence that this is true even for 
the multi-instantons in the small instanton limit. In this limit, the ’t Hooft type multi-instantons 
become exact solutions of the (anti-)self-dual equation. They also satisfy the D-instanton condi-
tions in this limit and identified with the D-instantons embedded in the D7-brane world-volume.

In four dimensions, the ADHM construction of instantons in noncommutative space has been 
studied where the ADHM constraint is modified by the noncommutativity parameter. It is in-
teresting to study the ADHM construction of instantons in noncommutative space–time in eight 
dimensions. It is also interesting to study monopoles in seven dimensions [37] and its Nahm 
construction. Using the ADHM data we can also construct calorons in seven dimensions. In the 
high temperature limit, we expect that the seven-dimensional monopoles are realized.

It is interesting to study (anti-)self-dual equations in dimensions greater than eight. In 4n

dimensions, we can consider the (anti-)self-dual equation F ∧ F ∧ · · · ∧ F = ± ∗4n F ∧ F ∧
· · · ∧ F , where F ∧ F ∧ · · · ∧ F in both sides are 2n-forms. Solutions to the (anti-)self-dual 
equation are expected to have finite 2n-th Chern number k = 1

n

∫
Tr[F ∧ F ∧ · · · ∧ F ], 
n!(2π)
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for appropriate basis eμ. We find that the ADHM construction of instantons in eight dimensions 
presented in this paper is generalized to 4n dimensions. Supersymmetric generalization including 
higher derivative interactions [38] is also important to study the relation to string theories. We 
will come back to these issues in future studies.
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Appendix A. ADHM construction with U(2) gauge in four dimensions

In this section, we give a brief review on the ADHM construction of instantons in four dimen-
sions. We consider the gauge group U(2).

The four-dimensional Weyl operator �(4) is defined by

�(4) = C(x ⊗ 1k) + D, (79)

where C and D are quaternionic (k + 1) × k matrices, k is the instanton charge and x = xμeμ. 
Here xμ (μ = 1, . . . , 4) is the Cartesian coordinate of the four-dimensional Euclid space, eμ =
(−iσi, 12) is the basis of the quaternion and σi are the Pauli matrices. The Weyl operator �(4) is 
assumed to satisfy the ADHM constraint:

�
†
(4)�(4) = 12 ⊗ Ek, (80)

where �†
(4) is the quaternionic conjugate of �(4) and Ek is an invertible k × k matrix.

In order to construct the instanton solution for the gauge field Aμ(x), it is necessary to find a 
quaternionic (k + 1) column vector V (x) obeying the Weyl equation:

�
†
(4)V (x) = 0, (81)

where V (x) is the zero-mode normalized as V †(x)V (x) = 12. The gauge field Aμ(x) of instan-
tons is given by

Aμ(x) = V †(x)∂μV (x). (82)

Using the expression (82), the field strength is calculated as

Fμν = ∂μV †
(

12+2k − V V †
)

∂νV − (μ ↔ ν). (83)

Here we use the completeness relation:

12+2k − V V † = �(4)(�
†
(4)�(4))

−1�
†
(4). (84)

Then (83) is rewritten as

Fμν = V †C(eμ ⊗ 1k)(�
†
(4)�(4))

−1(e†
ν ⊗ 1k)C

†V − (μ ↔ ν)

= V †C(�
†
(4)�(4))

−1
(
η(−)

μν ⊗ 1k

)
C†V, (85)

where we have used the ADHM constraint (80). Here η(±)
μν is the ’t Hooft symbol defined by

η(+) = e† eν − e†eμ, η(−) = eμe† − eνe
† . (86)
μν μ ν μν ν μ
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The ’t Hooft symbol satisfies the four-dimensional (anti-)self-dual relation:

η(±)
μν = ± 1

2!εμνρσ η(±)
ρσ . (87)

Therefore the field strength Fμν associated with the solution (82) automatically satisfies the 
(anti-)self-dual equation F = ± ∗4 F .

From the above discussion, we find that a key point of the ADHM construction is that the 
’t Hooft symbol η(±)

μν constructed from the basis eμ satisfies the (anti-)self-dual relation. There-
fore if we formulate the ADHM construction of instantons in higher dimensions then we need to 
find the basis that satisfies the (anti-)self-dual relation in higher dimensions.

Appendix B. Clifford algebra and 4n-dimensional (anti-)self-dual tensor

In this section, we construct the 4n-dimensional generalization of the ’t Hooft symbol which 
satisfies the (anti-)self-dual relation. We first introduce (m = 4n − 1)-dimensional Clifford alge-
bra C�m(K) on the (number) field K . Elements of the Clifford algebra �i ∈ C�m(K) satisfy the 
relation:

�i�j + �j�i = −2δij , (88)

where the indices i, j run from 1 to 4n − 1. For K = R, C�m(R) is called “the real Clifford 
algebra”. On the other hand, for K = C, C�m(C) is called “the complex Clifford algebra”. In 
4n − 1 dimensions, the chirality element ω is defined by

ω = (−1)�(m+5)/4��1�2 . . . �m, �i ∈ C�m(R), (89a)

ω = i�(m+5)/2��1�2 . . . �m, �i ∈ C�m(C), (89b)

where the symbol �x� is the floor function (for example: �2.8� = 2, �3� = 3). Here we define 
the overall factor of the chirality element ω for later convenience. It is well known that we 
can decompose the (4n − 1)-dimensional Clifford algebra by using the chirality element. The 
projection operator is defined by

P± = 1

2
(1 ± ω). (90)

Using P±, we can decompose the Clifford algebra as

C�m(K) = C�(+)
m (K) ⊕ C�(−)

m (K), (91)

where C�
(±)
m (K) are defined by elements in C�m(K) projected by P±. We call C�

(±)
m (K) “the 

decomposed Clifford algebra”. Now we choose the elements of the decomposed Clifford algebra 
�

(±)
i ∈ C�

(±)
m (K) that satisfy the relation �(+)

i = −�
(−)
i .

Note that the elements of the decomposed Clifford algebra �(±)
i ∈ C�

(±)
m (K) satisfy the re-

lation {�(±)
i , �(±)

j } = −2δij , but �(±)
i are not elements of the Clifford algebra. Because the 

elements of the decomposed Clifford algebra are not the algebraic generators. The algebraic 
generators have the property that each element of the algebra is not produced by a product of 
other elements, that is eiej · · · �= et where ei, ej , . . . , et ∈ Q(K) and Q(K) is an algebra on the 
field K . The elements of the Clifford algebra �i are algebraic generators, therefore �i satisfies 
the relation �i�j · · · �= �t , where �i, �j , . . . , �t ∈ C�m(K). On the other hand, the element of 
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Table 1
The matrix rings GL(N; K) which are isomorphic to the (4n − 1)-dimensional complex (real) Clifford algebra 
C�4n−1(C(R)). Here N is the matrix size and the symbol H means the quaternion.

4n-dim. mod 8 C�4n−1(C) C�4n−1(R)

4 GL(22n−1;C) ⊕ GL(22n−1;C) GL(22n−2;H) ⊕ GL(22n−2;H)

8 GL(22n−1;C) ⊕ GL(22n−1;C) GL(22n−1;R) ⊕ GL(22n−1;R)

the decomposed Clifford algebra �(±)
i does not satisfy the relation �(±)

i �
(±)
j · · · �= �

(±)
t , where 

�
(±)
i , �(±)

j , . . . , �(±)
t ∈ C�

(±)
m (K).

We can construct the 4n-dimensional (anti-)self-dual tensor �(±)
μν form the (4n − 1)-dimen-

sional Clifford algebra C�4n−1(K). Here the 4n-dimensional “(anti-)self-dual tensor” means that 
the tensor satisfies the (anti-)self-dual relation in 4n dimensions. We define the 4n-dimensional 
basis eμ by

eμ = δμ4n1 + δμi�
(−)
i , e†

μ = δμ4n1 + δμi�
(+)
i , (92)

where 1 is an identity element (such that 1�
(±)
i = �

(±)
i 1) and the indices μ, ν, . . . run from 1 to 

4n. Using this basis, we define the 4n-dimensional (anti-)self-dual tensor by

�(+)
μν = e†

μeν − e†
νeμ, �(−)

μν = eμe†
ν − eνe

†
μ. (93)

We can confirm that �(±)
μν satisfies the 4n-dimensional (anti-)self-dual relation:

�
(±)
[a1a2

. . .�
(±)
a2n−1a2n] = ± 1

2n!εa1a2...a2nb1b2...b2n
�

(±)
b1b2

. . .�
(±)
b2n−1b2n

(94)

where �(+)
μν satisfies the self-dual equation and �(−)

μν satisfies the anti-self-dual equation respec-
tively.

In a 4n-dimensional ADHM construction, we have to represent the (4n − 1)-dimensional 
Clifford algebra C�4n−1(K) by matrices. It is well known that the complex (real) Clifford algebra 
has an isomorphism with a matrix ring. Furthermore the complex (real) Clifford algebra has the 
period with two (eight) from the Bott periodicity theorem [39]. Therefore we can naturally obtain 
the matrix representations of the complex (real) Clifford algebra (Table 1).

Note that the gauge group of the ADHM construction based on the (anti-)self-dual tensor (93)
is determined by the (number) field of the Clifford algebra. Therefore the size of the gauge group 
(color size) N is dependent on a matrix size of the matrix representation of the Clifford algebra 
GL(N; K).

Now we have obtained the 4n-dimensional (anti-)self-dual tensor. We construct the four- and 
eight-dimensional (anti-)self-dual basis explicitly. Note that the representation of the basis is not 
unique. We use the tensor product of the following 2 × 2 matrices. The complex Clifford algebra 
C�m(C) is constructed by the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, σ0 = 12. (95)

On the other hand, the real Clifford algebras C�m(R) are constructed by the following matrices 
[40]:

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −1
1 0

)
, τ3 =

(
1 0
0 −1

)
, τ0 = 12. (96)



220 A. Nakamula et al. / Nuclear Physics B 910 (2016) 199–224
For simplicity, we omit the tensor (Kronecker) product symbol ⊗ in the following discussions. 
For example, σij means σi ⊗ σj .

The complex basis in four dimensions We construct the four-dimensional (anti-)self-dual 
tensor from the three-dimensional Clifford algebra. The matrix representation of the three-
dimensional complex Clifford algebra C�3(C) is given by

�1 =
(

iσ1 0
0 −iσ1

)
, �2 =

(
iσ2 0
0 −iσ2

)
, �3 =

(
iσ3 0
0 −iσ3

)
. (97)

The chiral matrix ω and the projection operators P± are

ω = �1�2�3 =
(

12 0
0 −12

)
, P+ =

(
12 0
0 0

)
, P− =

(
0 0
0 12

)
. (98)

Using these matrices, we obtain

�
(±)
i = ±iσi, (99)

where i = 1, 2, 3. Therefore we obtain the four-dimensional (anti-)self-dual complex basis:

eμ = δμ412 − iδμiσi, e†
μ = δμ412 + iδμiσi . (100)

This basis is nothing but the quaternion basis which is used in the four-dimensional ADHM 
construction. In the previous discussion in subsection 2.3, the gauge group is U(2) for this basis.

The real basis in four dimensions For Table 1, the three-dimensional real Clifford algebra 
C�3(R) is isomorphic to H ⊕H. However we use real matrix representation to implement gauge 
group O(4). The real matrix representation of C�3(R) is given by

�1 =
(

τ12 0
0 −τ12

)
, �2 =

(
τ20 0
0 −τ20

)
, �3 =

(
τ32 0
0 −τ32

)
. (101)

The chiral matrix ω and the projection operators P± are

ω = �1�2�3 =
(−14 0

0 14

)
, P+ =

(
0 0
0 14

)
, P− =

(
14 0
0 0

)
. (102)

Therefore �(±)
i are

�
(±)
1 = ∓τ12, �

(±)
2 = ∓τ20, �

(±)
3 = ∓τ32, (103)

and we obtain the four-dimensional (anti-)self-dual tensor by using (92) and (93). If this real 
basis is used in the four-dimensional ADHM construction, the gauge group becomes G = O(4).

The complex basis in eight dimensions The matrix representation of C�7(C) is given by

�1 =
(

iσ133 0
0 −iσ133

)
, �2 =

(
iσ233 0

0 −iσ233

)
, �3 =

(
iσ013 0

0 −iσ013

)
,

�4 =
(

iσ023 0
0 −iσ023

)
, �5 =

(
iσ001 0

0 −iσ001

)
, �6 =

(
iσ002 0

0 −iσ002

)
,

�7 =
(

iσ333 0
0 −iσ333

)
. (104)
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Using (89b), the chiral matrix ω is given by

ω = (−1)�1�2�3�4�5�6�7 =
(

18 0
0 −18

)
. (105)

The projection operators P± are

P+ =
(

18 0
0 0

)
, P− =

(
0 0
0 18

)
. (106)

Therefore we obtain

�
(±)
1 = ±iσ133, �

(±)
2 = ±iσ233, �

(±)
3 = ±iσ013,

�
(±)
4 = ±iσ023, �

(±)
5 = ±iσ001, �

(±)
6 = ±iσ002, �

(±)
7 = ±iσ333. (107)

Of course, we can take another matrix representation:

�1 =
(

iσ112 0
0 −iσ112

)
, �2 =

(
iσ120 0

0 −iσ120

)
, �3 =

(−iσ132 0
0 iσ132

)
,

�4 =
(−iσ221 0

0 iσ221

)
, �5 =

(
iσ223 0

0 −iσ223

)
, �6 =

(−iσ202 0
0 iσ202

)
,

�7 =
(

iσ300 0
0 −iσ300

)
. (108)

In this case, �(±)
i are

�
(±)
1 = ±iσ112, �

(±)
2 = ±iσ120, �

(±)
3 = ∓iσ132,

�
(±)
4 = ∓iσ221, �

(±)
5 = ±iσ223, �

(±)
6 = ∓iσ202, �

(±)
7 = ±iσ300. (109)

The basis (109) is used to construct the Grossman’s one-instantons [14]. These bases take com-
plex values and the matrix size of �(±)

i is eight. Therefore the gauge group becomes U(8) for this 
basis.

The real basis in eight dimensions The matrix representation of C�7(R) is given by

�1 =
(

τ222 0
0 −τ222

)
, �2 =

(
τ012 0

0 −τ012

)
, �3 =

(
τ201 0

0 −τ201

)
,

�4 =
(

τ032 0
0 −τ032

)
, �5 =

(
τ120 0

0 −τ120

)
, �6 =

(
τ320 0

0 −τ320

)
,

�7 =
(

τ203 0
0 −τ203

)
. (110)

Using (89a), the chiral matrix ω is given by

ω = (−1)�1�2�3�4�5�6�7 =
(

18 0
0 −18

)
. (111)

The projection operators P± are

P+ =
(

18 0
0 0

)
, P− =

(
0 0
0 1

)
. (112)
8
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Therefore we obtain

�
(±)
1 = ±τ222, �

(±)
2 = ±τ012, �

(±)
3 = ±τ201,

�
(±)
4 = ±τ032, �

(±)
5 = ±τ120, �

(±)
6 = ±τ320, �

(±)
7 = ±τ203. (113)

This basis is real valued, therefore the gauge group becomes O(8).

Appendix C. Eight-dimensional U(8) ADHM equations

In this section, we explicitly write down the eight-dimensional ADHM equations for U(8) 
gauge group. Here we use the complex basis (109).8 If we use the real basis (113) then we obtain 
the eight-dimensional ADHM equations for O(8) gauge group.

We assume that ADHM data S is expanded by the basis eμ, that is S = eμ ⊗ S̃μ. The first 
ADHM equations are given by the following equations (114), (115) and (116).

[T 2, T 5] − [T 3, T 6] + i

2

(
S

†
4S4 − S

†
1S1

)
= 0,

[T 3, T 6] − [T 1, T 4] + i

2

(
S

†
4S4 − S

†
2S2

)
= 0,

[T 1, T 4] − [T 2, T 5] + i

2

(
S

†
4S4 − S

†
3S3

)
= 0. (114)

[T 1, T 2] + [T 4, T 5] + 1

2

(
S

†
1S2 − S

†
2S1

)
= 0,

[T 1, T 5] − [T 4, T 2] + i

2

(
S

†
1S2 + S

†
2S1

)
= 0,

[T 1, T 3] + [T 4, T 6] + 1

2

(
S

†
1S3 − S

†
3S1

)
= 0,

[T 1, T 6] − [T 4, T 3] + i

2

(
S

†
1S3 + S

†
3S1

)
= 0,

[T 2, T 3] + [T 5, T 6] + 1

2

(
S

†
2S3 − S

†
3S2

)
= 0,

[T 2, T 6] − [T 5, T 3] + i

2

(
S

†
2S3 + S

†
3S2

)
= 0,

[T 1, T 2] − [T 4, T 5] + 1

2

(
S

†
4S3 − S

†
3S4

)
= 0,

[T 1, T 5] + [T 4, T 2] − i

2

(
S

†
4S3 + S

†
3S4

)
= 0,

[T 2, T 3] − [T 5, T 6] + 1

2

(
S

†
4S1 − S

†
1S4

)
= 0,

[T 2, T 6] + [T 5, T 3] − i

2

(
S

†
4S1 + S

†
1S4

)
= 0,

[T 3, T 1] − [T 6, T 4] + 1

2

(
S

†
4S2 − S

†
2S4

)
= 0,

8 Note that we can use other basis (107).
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[T 3, T 4] + [T 6, T 1] − i

2

(
S

†
4S2 + S

†
2S4

)
= 0,

[T 8, T 1] + [T 7, T 4] + 1

2

(
S

†
2S7 − S

†
7S2

)
= 0,

[T 8, T 4] − [T 7, T 1] + i

2

(
S

†
2S7 + S

†
7S2

)
= 0,

[T 8, T 2] + [T 7, T 5] + 1

2

(
S

†
3S5 − S

†
5S3

)
= 0,

[T 8, T 5] − [T 7, T 2] + i

2

(
S

†
3S5 + S

†
5S3

)
= 0,

[T 8, T 3] + [T 7, T 6] + 1

2

(
S

†
1S6 − S

†
6S1

)
= 0,

[T 8, T 6] − [T 7, T 3] + i

2

(
S

†
1S6 + S

†
6S1

)
= 0,

[T 8, T 1] − [T 7, T 4] + 1

2

(
S

†
4S5 − S

†
5S4

)
= 0,

[T 8, T 4] + [T 7, T 1] − i

2

(
S

†
4S5 + S

†
5S4

)
= 0,

[T 8, T 2] − [T 7, T 5] + 1

2

(
S

†
4S6 − S

†
6S4

)
= 0,

[T 8, T 5] + [T 7, T 2] − i

2

(
S

†
4S6 + S

†
6S4

)
= 0,

[T 8, T 3] − [T 7, T 6] + 1

2

(
S

†
4S7 − S

†
7S4

)
= 0,

[T 8, T 6] + [T 7, T 3] − i

2

(
S

†
4S7 + S

†
7S4

)
= 0. (115)

−[T 1, T 4] − [T 2, T 5] − [T 3, T 6] − [T 8, T 7] − i

2

(
S

†
4S4 − S

†
8S8

)
= 0. (116)

Now an invertible k × k matrix f is defined by the first ADHM constraint �†� = 18 ⊗ f −1

(that is f = (E
(1)
k )−1). The second ADHM equations are given by the following equations (117), 

(118) and (119).

T μf = f T μ (117)

[T 1, T 2] = 0, [T 2, T 3] = 0, [T 3, T 1] = 0,

[T 4, T 5] = 0, [T 5, T 6] = 0, [T 6, T 4] = 0,

[T 1, T 8] = 0, [T 2, T 8] = 0, [T 3, T 8] = 0,

[T 4, T 7] = 0, [T 5, T 7] = 0, [T 6, T 7] = 0. (118)

[T 1, T 5] + [T 4, T 2] = 0, [T 2, T 6] + [T 5, T 3] = 0, [T 3, T 4] + [T 6, T 1] = 0,

[T 1, T 7] + [T 4, T 8] = 0, [T 2, T 7] + [T 5, T 8] = 0, [T 3, T 7] + [T 6, T 8] = 0.

(119)
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