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Microglia play an essential role in innate immunity, homeostasis, and neurotropic support in the central
nervous system. In Alzheimer disease (AD), these cells may affect disease progression by modulating the
buildup of b-amyloid (Ab) or releasing proinflammatory cytokines and neurotoxic substances. Discovering
agents capable of increasing Ab uptake by phagocytic cells is of potential therapeutic interest for AD.
Lipoxin A4 (LXA4) is an endogenous lipid mediator with potent anti-inflammatory properties directly
involved in inflammatory resolution, an active process essential for appropriate host responses, tissue
protection, and the return to homeostasis. Herein, we demonstrate that aspirin-triggered LXA4 (15 mg/kg)
s.c., twice a day, reduced NF-kB activation and levels of proinflammatory cytokines and chemokines, as well
as increased levels of anti-inflammatory IL-10 and transforming growth factor-b. Such changes in the
cerebral milieu resulted in recruitment of microglia in an alternative phenotype, as characterized by the up-
regulation of YM1 and arginase-1 and the down-regulation of inducible nitric oxide synthase expression.
Microglia in an alternative phenotypeepositive cells demonstrated improved phagocytic function,
promoting clearance of Ab deposits and ultimately leading to reduction in synaptotoxicity and improve-
ment in cognition. Our data indicate that activating LXA4 signaling may represent a novel therapeutic
approach for AD. (Am J Pathol 2013, 182: 1780e1789; http://dx.doi.org/10.1016/j.ajpath.2013.01.051)
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Alzheimer disease (AD) is a devastating neurodegenerative
disorder that impairs memory and causes cognitive and
psychiatric deficits. The neuropathological hallmarks of AD
are diffuse and neuritic plaques, which are predominantly
composed of the b-amyloid (Ab) peptide, and neurofibril-
lary tangles, which are composed of filamentous aggregates
of hyperphosphorylated tau protein.1 Chronic inflammation
due to recruitment of activated glial cells to amyloid plaques
is another key pathological feature of AD, although its impact
on disease progression and neurodegeneration remains an
area of active investigation.2

Microglia play essential roles in the maintenance of
homeostasis within the central nervous system, but the
inflammatory program that is induced by these cells alsohas the
potential to cause neuronal dysfunction and death if inflam-
matory responses are not properly resolved.3,4 Primarily, acti-
vated microglia respond to environmental stresses and
stigative Pathology.

.

immunological challenges by scavenging excess neurotoxins
and exerting their phagocytic ability of engulfing damaged and
dead cell debris, providing a nurturing environment for tissue
healing.5 Moreover, it has been recently demonstrated that
microglia exert a critical role on postnatal development, adult
neuronal plasticity, and circuit function.6,7 In contrast, chron-
ically activated microglia ignite inflammatory responses by
releasing a variety ofmediators that have been demonstrated to
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ATL Mitigates AD-Like Pathology
disrupt cellular function in the brain.8,9 Remarkably, such an
exacerbated inflammatory response has been proposed to be
a critical causal factor for the impairment in the phagocytosis of
Ab deposits by microglia in the AD brain.10,11 Therefore,
modifying microglial activation, instead of inhibiting its
function, seems to represent a reasonable alternative to enhance
Ab clearance and reduce amyloid deposition in the AD brain.

Recent advances in knowledge of the mechanisms of
inflammatory resolution have identified lipoxins as attractive
therapeutic tools to treat diseases in which inflammation is
involved.12e15 Lipoxin A4 (LXA4) is generated via the lip-
oxygenase pathway during cell-cell interactions in inflam-
matory conditions, whereas aspirin-triggered LXA4 (ATL),
a molecule that displays the same anti-inflammatory activities
as the native lipoxins, is generated after the acetylation of
cyclooxygenase-2 and is more resistant to metabolic inacti-
vation.16 Lipoxins potentiate inflammatory resolution by
means of potent agonistic actions at the G-proteinecoupled
receptor, termed LXA4 receptor (ALX/FPR2).

17 Activation of
ALX by LXA4 reduces many endogenous processes, such as
neutrophil and eosinophil recruitment and activation, leuko-
cyte migration, NF-kB translocation, and chemokine and
cytokine production. Likewise, evidence shows that LXA4

signaling primes macrophages for chemotaxis and enhances
phagocytosis of microorganisms and apoptotic cells.18 In the
nervous system, LXA4 protects neurons against experimental
stroke and Ab42 toxicity by modulating inflammation.13,19,20

In addition, lipoxins inhibit inflammatory pain processing
through their actions on astrocytic activation in the spinal
cord.15 However, the ability of LXA4 signaling to modulate
neuroinflammation and AD pathology in vivo has not been
addressed. Given the fact that elevated neuroinflammation
and altered microglial responses are common hallmarks in
AD brain during the disease course, we examined the effects
of ATL on AD neuropathology and behavior deficits.

Materials and Methods

Animals

Twelve-month-old male Tg2576 mice harboring the Swedish
double mutation in amyloid precursor protein (APP;
APPKM670/671ML) were used for all experiments.21 Animals
were maintained at controlled room temperature (22�C �
2�C) and humidity (60% to 80%) under a 12:12-hour light-
dark cycle (lights on at 6 AM). All procedures used in the
present study followed the Principles of Laboratory Animal
Care from the NIH (Bethesda, MD), publication 85-23, and
were approved by the University of California, Irvine,
Institutional Animal Care and Use Committee.

Treatment with Aspirin-Triggered LXA4

Animals were treated s.c. with 15 mg/kg ATL (5S,6R,15R-
trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid; Cayman
Chemical, Ann Arbor, MI), twice daily for 8 weeks.15
The American Journal of Pathology - ajp.amjpathol.org
A separate group of animals was treated with 5% poly-
ethylene glycol 200 and 5% Tween 20 in saline (vehicle).
Injections were performed from 8 to 10 months of age and
completed on the day of the euthanasia.

Behavior Studies

Mice were exposed to two identical objects placed at the
opposite ends of the arena for 5 minutes. Twenty-four hours
later, mice were presented for 5 minutes with one of the
familiar objects and a novel object of similar dimensions.
The recognition index represents the percentage of the time
that mice spend exploring the novel object.

For the Morris water maze (MWM), mice were trained to
swim to a platform submerged 1.5 cm beneath the surface of
the water and invisible to the mice while swimming.
Animals were subjected to four training trials per day for 7
days. A probe trial was assessed 24 hours after the last
training session and consisted of a 60-second free swim in
the pool without the platform. Performance was monitored
with the EthoVision XT video-tracking system (Noldus
Information Technology, Leesburg, VA).

For the contextual fear conditioning, mice were placed in
the conditioning chamber (San Diego Instruments, San
Diego, CA) and allowed to explore for 2 minutes before
receiving three electric foot shocks (duration, 1 second;
intensity, 0.2 mA; intershock interval, 2 minutes). Twenty-
four hours later, freezing behavior was analyzed.

Tissue Preparation

Mice were deeply anesthetized with sodium pentobarbital and
sacrificed by perfusion transcardially with 0.1 mol/L PBS (pH
7.4) solution. The right brain hemispheres were fixed for 48
hours in 4% paraformaldehyde and cryoprotected in 30%
sucrose for immunohistochemical (IHC) analysis. Frozen
brainswere divided into sections coronally (40mmthick) using
a Leica SM2010R freezing microtome (Leica Microsystems,
Bannockburn, IL), serially collected in cold 0.02% sodium
azide, and stored at 4�C. The left hemispheres were snap
frozen on dry ice after removal of cerebellum, brainstem, and
olfactory bulb, and subjected to protein extraction sequentially
using T-PER tissue protein extraction reagent (Thermo
Scientific, Rockford, IL) and 70% formic acid. The superna-
tant was aliquoted and stored at�80�C. Protein concentration
in the supernatant was determined using the Bradford assay.

Immunoblotting

Equal protein amountswere separated using 4% to 12%gradient
SDS-PAGE, transferred to a nitrocellulose membrane, and in-
cubated overnight at 4�Cwith primary antibody. The following
primary antibodies were used in this study: postsynaptic density
protein 95 (Cell Signaling Technology, Danvers, MA); human
APP-CT20, A disintegrin and metalloproteinase domain-
containing protein (ADAM) 10, ADAM17, and beta-secretase 1
1781
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(BACE1; Calbiochem, San Diego, CA); OC and A11 (Dr.
Charles Glabe, University of California, Irvine); Ab1-16 (6E10)
(Covance Research Products, Denver, PA); arginase, inducible
nitric oxide synthase (iNOS), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; Santa Cruz Biotechnology, Santa
Cruz, CA); ATP-binding cassette transporter 1 (ABCA1), low
density lipoprotein receptor-related protein 1 (LRP1), apolipo-
protein E (APOE), insulin-degrading enzyme (IDE), neprilysin,
and ubiquitin (Abcam, Cambridge, MA); YM1 (Stem Cell
Technologies, Vancouver, BC, Canada); phosphorylated-p65
NF-kB, liver X receptor (LXR), and peroxisome proliferator-
activated receptor g (Cell Signaling Technology, Danvers,
MA); or protein phosphatase 2A (PP2A; Sigma-Aldrich, St.
Louis, MO). After washing, the membranes were incubated
with adjusted secondary antibodies coupled to horseradish
peroxidase. The immunocomplexes were visualized using the
SuperSignal West Pico Kit (Thermo Scientific). Band density
measurements were made using ImageJ imaging software
version 1.36b (NIH).

ELISA

Determination of the Ab levels was performed as previously
described.22 Tumor necrosis factor (TNF)-a and IL-1b were
measured using commercially available enzyme-linked
immunosorbent assay (ELISA) kits (Thermo Scientific),
according to the manufacturer’s instructions. The levels of
granulocyte-macrophage colony-stimulating factor (GM-CSF),
interferon-g, IL-6, IL-4, monocyte chemotactic protein-1,
macrophage inflammatory protein-1a, regulated on activation
normal T-cell expressed and secreted (RANTES), matrix
metallopeptidase-9 (MMP-9), IL-10, and transforming growth
factor (TGF)-b were assessed using the Aushon SearchLight
Assay Services (Aushon BioSystems, Billerica, MA).

Immunohistochemistry

Sections were incubated overnight at 4�C with antieAb1-16
(6E10;CovanceResearchProducts), anti-Ab40 (C49), anti-Ab42
(D32;Dr. VitalyVasilevko andDr. DavidH. Cribbs, University
of California, Irvine), antieglial fibrillary acidic protein (GFAP;
Millipore, Billerica, MA), anti-CD45, anti-CD11b (AbD Sero-
tec, Raleigh, NC), or antieionized calcium-binding adapter
molecule 1 (Iba-1; Wako Chemicals, Richmond, VA) with 5%
normal serum in Tris-buffered solution. After the appropriate
biotinylated secondary antibody, sections were processed using
the Vectastain Elite ABC reagent and 3,30-diaminobenzidine
(Vector Laboratories, Burlingame, CA), according to the man-
ufacturer’s instructions. Sections from vehicle- andATL-treated
mice were processed under the same conditions. Negative
control experiments included omission of primary antibody and
substitution of the primary antibody by equivalent dilutions of
nonimmune serum, using the same staining protocol, and were
devoid of specific immunoreaction product.

The immunostaining was assessed at six brain coronal
levels. Specifically, six alternate sections (40 mm thick) of the
1782
brainwith an individual distance of approximately 160mmwere
obtained between 1.34 and 2.54 mm posterior to the bregma.
Images of stained hippocampus and entorhinal cortex were
acquired using an Axiocam digital camera and AxioVision
software version 4.6 connected to an Axioskop 50 microscope
(Carl ZeissMicroImaging, Thornwood,NY). Settings for image
acquisition were identical for vehicle- and ATL-treated tissues.
Staining analyses were calculated as the percentage of

labeled area captured (positive pixels)/the full area captured
(total pixels) using ImageJ complying with strict stand-
ards.22e24 Examiners (R.M., M.K., and D.B.V.) blinded to
sample identities made all histological assessments.

Immunofluorescence

Sections were incubated overnight at 4�C with the following
primary antibodies: anti-synaptophysin (Sigma-Aldrich), antie
Ab1-16 (6E10; Covance Research Products), anti-GFAP
(Dako, Carpentaria, CA), antieIba-1 (Wako Chemicals), anti-
YM1 (StemCell Technologies), antiephosphorylated-p65NF-
kB (Cell Signaling Technology, Danvers, MA), anti-CD45
(AbD Serotec), anti-collagen IV (Fitzgerald Industries Inter-
national, Acton, MA), anti-NeuN (Millipore), and/or anti-ALX
(Novus Biologicals, Littleton, CO). Sections were then rinsed
and incubated for 1 hour with secondary Alexa Fluore
conjugated antibodies (Invitrogen, Carlsbad, CA) at room
temperature. Finally, sections were mounted onto gelatin-
coated slides in Fluoromount-G (Southern Biotech, Birming-
ham, AL) and examined under a Leica DM2500 confocal laser
microscope using the Leica Application Suite Advanced
Fluorescence software version 2.6.0 (Leica Microsystems).
The immunofluorescence was assessed at the same brain

coronal levels previously described. Confocal images were
acquired by sequential scanning using a z-separation of 0.25
mm using the Leica Application Suite Advanced Fluores-
cence software (Leica Microsystems). Volumetric image
measurements were made in the hippocampus and entorhinal
cortex using Imaris software version 7.5.2 (Bitplane Inc.,
South Windsor, CT). For quantification of the ratio between
Iba-1 or GFAP and 6E10 staining, the Iba-1 or GFAP
volume was divided by the corresponding 6E10 volume for
each image before calculating averages per mouse.

Thioflavin S Staining

Sections were incubated in 0.5% thioflavin S in 50% ethanol
for 10 minutes, differentiated twice in 50% ethanol, and
washed in PBS solution. Staining was visualized under
a confocal microscope. Volumetric image measurements
were made using Imaris software (Bitplane Inc.). The thio-
flavin S levels represent the average value obtained by the
analysis of images of the hippocampus and entorhinal cortex.

Cell Culture Studies

Primary astrocyteswere isolated frompostnatal day 1C57BL/6
mice. Briefly, cortex was isolated, minced, and trypsinized
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


ATL Mitigates AD-Like Pathology
for 20 minutes at 37�C. Tissues were then triturated and
grown in Dulbecco’s modified Eagle’s medium/F12 medium
supplemented with 10% fetal bovine serum, penicillin, and
streptomycin for 6 days in a humidified incubator at 37�Cwith
5% CO2. When cells were confluent, primary astrocytes were
purified by shaking at 350 rpm for 24 hours at 37�C. Attached
cells were trypsinized and cultured on slide chambers to eval-
uate the purity of astrocytes by staining with GFAP (astrocyte
marker), Iba-1 (microglia marker), CNPase (oligodendrocyte
marker), and b-tubulin (neuronal marker) antibodies or
seeded on culture flasks for experiments. Cells were exposed
to 1 mmol/L Ab42 in the absence or presence of 10, 100, or
1000 nmol/L ATL for 24 hours. Some cells were incubated in
the presence of 1000 nmol/L ATL plus 100 nmol/L ALX
antagonist butoxycarbonyl-Phe-Leu-Phe-Leu-Phe (BOC2).
Conditionedmediawere collected for treatments toBV2 cells,
and astrocytes were homogenized with M-PER reagent con-
taining protease and phosphatase inhibitors to collect proteins.
Extracted proteins were used for Western blot analysis to
measure phosphorylated-p65 NF-kB or GAPDH expression.

Murine microglia/macrophage (BV2) cells were grown in
Dulbecco’s modified Eagle’s medium supplemented with
10% fetal bovine serum, penicillin, and streptomycin. For Ab
phagocytosis studies, 5 � 106/mL BV2 cells were incubated
with 150 nmol/L 488-labeled Ab42 (488-Ab42; Anaspec,
Fremont, CA) and LysoTracker (Invitrogen) in conditioned
media collected from primary astrocytes for 3 hours at 37�C.
ALX antagonist, BOC2 (100 nmol/L), was used to avoid the
effect of any residual ATL present in the conditioned media
collected from primary astrocytes. Microglial Ab phagocy-
tosis was verified by confocal laser-scanning microscopy
(Leica Microsystems). 488-Ab42epositive cells were exam-
ined microscopically using a counting grid at �630 magnifi-
cation. In addition, YM1 expression was verified by confocal
laser-scanning microscopy using anti-YM1 and antieIba-1.
Finally, extracted proteins from BV2 cells were used for
Western blot analysis tomeasureYM1orGAPDHexpression.
Figure 1 Aspirin-triggered LXA4 reduces cognitive impairment. Learning and m
A: Each training day represents the average latency to find the hidden platform o
target quadrant (B) and number of platform location crosses (C) in the probe tria
find the hidden platform during the training session and a higher preference for t
D: Tg2576 mice treated with ATL exhibited a significant increase in the recogn
represents the percentage of the time that mice spend exploring the nonfamiliar o
ATL- and vehicle-treated Tg2576 mice. The values represent means � SEM (N Z
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Statistical Analysis

All data are expressed as means � SEM. The statistical eval-
uation of the results was performed using one- or two-way
analysis of variance. After significant analyses of variance,
multiple post hoc comparisons were performed using the
Bonferroni’s test. Some datawere analyzed using the unpaired
t-test. The accepted level of significance for the tests was
P < 0.05. All tests were performed using the Statistica soft-
ware version 5.1 (StatSoft Inc., Tulsa, OK). All final data were
presented as percentage of control (vehicle-treated samples).

Results

Aspirin-Triggered LXA4 Improves Cognition and
Protects Synapses

Learning and memory functions are vulnerable to several
pathological processes, including AD.25 To investigate the
effect of ATL on the cognitive decline associated with AD,
Tg2576 mice were evaluated in cognitive tasks that rely on
brain areas most affected by AD. ATL-treated mice per-
formed significantly better than vehicle-treated mice in the
hippocampal-dependent reference spatial memory version
of the MWM,26 as indicated by shorter latencies to find the
hidden platform in the training session (Figure 1A), in-
creased target quadrant preference (Figure 1B), and number
of platform location crosses (Figure 1C) during the probe
trial. Similarly, ATL-treated mice exhibited a significant
increase in the exploration of the nonfamiliar object in the
cortical-dependent novel object recognition task (Figure 1D).27

However, no significant difference was found between
vehicle- and ATL-treated mice in the contextual fear
conditioning, which is mainly dependent on the amygdala
and hippocampus (Figure 1E).28 More important, the
effects of ATL on behavior were not related to overt motor
impairments, because the swimming speed or total distance
emory in Tg2576 mice were significantly improved after treatment with ATL.
f four trials in the spatial reference version of the MWM. Time spent in the
l of the MWM. ATL-treated mice presented significantly shorter latencies to
he target quadrant during the probe session than vehicle (V)etreated mice.
ition index compared with vehicle-treated animals. The recognition index
bject. E: No change in the contextual fear conditioning was found between
10). *P < 0.05, **P < 0.01.
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traveled in the MWM and the total squares crossed and
rearing behavior in the open-field arena were comparable
between groups (data not shown).

The restoration of cognitive function by the effect of ATL
seems to be mediated by an overall increase in synaptic
density in the hippocampus and cortex. Increased levels of
presynaptic synaptophysin (Figure 2, A and C) and post-
synaptic density protein 95 (Figure 2, B and D) protein were
found in ATL-treated mice relative to vehicle-treated mice.
These data show that the restoration of the inflammatory
homeostasis by ATL leads to the increase of synaptic
density and improves cognition in Tg2576 mice.
Aspirin-Triggered LXA4 Reduces Ab Levels through
a Mechanism Independent of APP Processing

Accumulation of Ab in the brain parenchyma as diffuse and
senile plaques is a major pathological feature of AD.1 By
using an ELISA, we found that levels of Ab40 and Ab42 were
Figure 2 Aspirin-triggered LXA4 increases the expression of synaptic
proteins. Increased levels of presynaptic synaptophysin [A (IHC) and C
(quantitation)] and postsynaptic density protein 95 (B and D) were found in
the brains of ATL-treated mice when compared with vehicle (V)etreated
mice. Representative photomicrographs were taken frommouse cortex. Scale
bar Z 50 mm. The values represent means � SEM (N Z 10). *P < 0.05.
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significantly reduced in both the soluble- and insoluble-
detergent fractions in the brains of ATL-treated versus
vehicle-treated Tg2576 mice (Figure 3A). In addition, there
was diminished immunoreactivity to Ab40 and Ab42 anti-
bodies (Figure 3B), and decreased thioflavin Sepositive
fibrillar Ab deposits (Figure 3, C and D), in brains of ATL-
treated Tg2576 mice. We also found that ATL markedly
reduced the levels of both protofibrillar and fibrillar oligo-
mers in the soluble-detergent fraction of Tg2576 mouse
brains, as demonstrated by the changes in A11 and OC
immunoreactivity, respectively (Figure 3, E and F).
To elucidate the mechanism by which ATL reduced Ab

levels, we determined whether APP processing pathways
were modified in Tg2576 mice. Steady-state levels of APP,
a-APP cleaving enzymes ADAM10 and ADAM17, the
putative b-secretase enzyme BACE1, and the C-terminal
fragments of APP, C99, and C83 were unaffected by ATL,
suggesting that ATL did not alter APP processing or Ab
production (Supplemental Figure S1, A and B). These results
suggest that ATL might trigger changes in the Ab levels
through activation of clearance processes, whichwe examined
by assessing the effect of ATL on the major putative Ab
clearance pathways.29e33 Interestingly, ATL did not alter the
expression of ABCA1, LRP1, and APOE, nor was there
a reduction in the levels of the major Ab-degrading enzymes,
IDE and neprilysin (Supplemental Figure S1, C and E). In
addition, steady-state levels of ubiquitinated proteins, a critical
process for proteasomal degradation,34 remained unaltered
after treatment with ATL (Supplemental Figure S1, D and E).
Aspirin-Triggered LXA4 Switches the Microglia from the
Classic toward the Alternative Phenotype

Growing evidence suggests that microglia and bone mar-
rowederived macrophages are capable of degrading Ab and
preventing it from accumulating in the brain.35,36 Lipoxins are
critical modulators of inflammatory resolution, and have been
implicated in the non-phlogistic recruitment and activation of
monocytes and macrophages.18,37e40 Consequently, the acti-
vation of the lipoxin signaling pathway may facilitate the Ab
clearance through the modulation of the glial cell response. To
test this hypothesis, we examinedwhether the effect ofATL on
Ab clearance was mediated by the modulation of the inflam-
matory response. On treatment with ATL, Tg2576 mice had
a significant reduction in the inflammatory reaction, as evi-
denced by the pronounced decrease in the GFAP-positive
astrocytes and CD11b-, CD45-, and Iba-1epositive micro-
glial immunoreactivity (Figure 4, A and B). Colocalization
studies demonstrated that microglia and astrocytes are directly
associated with Ab deposits (Figure 4, C and E). Surprisingly,
the ratio between the immunoreactivity for Iba-1epositive
microglia and 6E10-positive Ab deposits (Figure 4D), or
between GFAP-positive astrocytes and 6E10-positive Ab
deposits (Figure 4F), was significantly higher in the ATL-
treated mice than vehicle-treated mice. These data indicate
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Aspirin-triggered LXA4 reduces brain
Ab levels in Tg2576mice. Mice treatedwith ATL have
lower levels of Ab40 and Ab42 peptides in both
soluble- and insoluble-detergent fractions measured
by ELISA (A), reduced Ab40 and Ab42 immunoreac-
tivity (B), and reduced thioflavin Sepositive fibrillar
Ab deposits (C and D) compared with vehicle (V)e
treated mice. Representative photomicrographs
were taken from the cortex. E and F: Effect of ATL on
Ab oligomer levels. Dot-blot analysis was performed
using A11 and OC antibodies for protofibrillar and
fibrillar Ab oligomers, respectively, demonstrating
reduced levels of both oligomeric forms in the
soluble-detergent fraction of the brains from ATL-
treated mice. Scale bars: 100 mm (B); 50 mm (C).
The values represent means � SEM (N Z 10).
*P < 0.05, **P < 0.01.
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that ATL facilitates activation of glial cells without interfering
in their recruitment to sites of Ab deposition.

To explore mechanisms of glial cell regulation by lipoxins,
we characterized the expression pattern of ALX in the mouse
brain. Notably, although we detected ALX on neurons, as-
trocytes, and cerebrovasculature, the expression of ALX
was undetectable on microglia/macrophages (Supplemental
Figure S2). Thus, it is likely that ATL activates astrocytes,
neurons, and/or cerebrovascular cells, which, in turn, release
mediators that stimulate the recruitment of phagocytic cells to
the site of Ab deposition. To test this hypothesis, we deter-
mined the levels of molecular markers of classic and alter-
native activation of monocyte-macrophage cells.41e43 Of
great relevance, microglia in the brains of ATL-treated
Tg2576 mice presented an alternative activation phenotype,
as characterized by the up-regulation in YM1 and arginase-1
and the down-regulation in iNOS expression (Figure 4, G and
H). These findings were further confirmed by colocalization
analysis of YM1, CD45-positive microglia, and 6E10-
positive Ab deposits, which revealed higher levels of the
alternative activation marker, YM1, in the microglia of
ATL-treated mice (Figure 4I). Likewise, ATL stimulated the
proresolution inflammatory response by switching the
mediator phenotype from generating proinflammatory to
anti-inflammatory mediators, as demonstrated by the change
The American Journal of Pathology - ajp.amjpathol.org
in the levels of TGFb, IL-10, MMP-9, RANTES, TNF-a,
IL-1b, IFN-g, IL-6, and GM-CSF (Figure 4J).

To extend thesefindings, we examinedphagocytosis in vitro.
By using conditioned media from primary astrocytes treated
with Ab42 in the absence or presence of ATL, we found that
ATLwas capable of potentiating the phagocytosis of 488-Ab42
by BV2 microglial cells in a concentration-dependent manner
(Supplemental Figure S3, A and C). Corroborating our in vivo
studies, BV2 microglial cells also showed a more robust YM1
expression when incubated in conditioned media from astro-
cytes treatedwithATLversus vehicle (Supplemental Figure S3,
B, D, and E). More important, the effects mediated by ATL
inhibited the ALX antagonist, BOC2.

Aspirin-Triggered LXA4 Reduces the Activation of
Transcription Factor NF-kB on Astrocytes

Finally, we examined the underlyingmolecularmechanismby
which ATL promoted Ab clearance. In this regard, the acti-
vation of transcriptional factors with particular importance for
the inflammatory response was analyzed in the brains of
Tg2576 mice.44e46 Our data clearly demonstrate that ATL
reduces the activation of NF-kB, but not liver X receptor
(LXR) and peroxisome proliferator-activated receptor g, as
designated by the decrease in the phosphorylated-p65 NF-kB
1785
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Figure 4 Aspirin-triggered LXA4 switches microglia from the classic toward the alternative phenotype. A and B: Tg2576 mice treated with ATL exhibited
a significant decrease in GFAP-positive astrocytes and CD11b-, CD45-, and Iba-1epositive microglial immunoreactivity versus vehicle-treated animals.
Confocal analysis showing the colocalization of Iba-1epositive microglia (red; C) and GFAP-positive astrocytes (red; E) and with 6E10-positive Ab deposits
(green). The determination of the ratio between the immunoreactivity for Iba-1epositive microglia and 6E10-positive Ab deposits (D) and GFAP-positive
astrocytes and 6E10-positive Ab deposits (F) demonstrated an increased cell burden in ATL-treated mice compared with vehicle (V)etreated animals.
Representative photomicrographs were taken from the cortex. Representative blots (G) and quantitative results (H) of Western blot analysis showing the up-
regulation of YM1 and arginase-1 and the down-regulation in iNOS expression induced by ATL treatment compared with vehicle-treated mice. Tissue amounts
of GAPDH were used as loading controls. I: Confocal analysis confirming the colocalization of YM1 (red), CD45-positive microglia (green), and 6E10-positive
Ab deposits (blue) in brains of ATL-treated mice. Representative photomicrographs were taken from the cortex. J: ATL administration resulted in reduction of
MMP-9, RANTES, macrophage inflammatory protein-1a, monocyte chemotactic protein-1, TNF-a, IL-1b, IL-6, interferon-g, and GM-CSF and elevation of IL-10
and TGFb levels. Scale bars: 50 mm (GFAP, CD11b, and Iba-1) or 25 mm (CD45) (A); 50 mm (C and E); 100 mm (I). The values represent means � SEM
(N Z 10). *P < 0.05, **P < 0.01.
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Figure 5 Aspirin-triggered LXA4 reduces the activation of transcriptional factor, NF-kB, on
astrocytes. Representative blots (A) and quantitative results (B) of Western blot analysis
demonstrating that ATL reduces the levels of phosphorylated-p65 NF-kB, but not of LXR or
peroxisome proliferator-activated receptor (PPAR)g, compared with vehicle (V)etreatedmice.
Tissue amounts of GAPDHwere used as loading controls. C: The activation of NF-kB (green) was
observed in GFAP-positive astrocytes, but not in CD45-positive microglia or NeuN-positive
neurons (all red), as demonstrated by confocal analysis. Representative photomicrographs
were taken from the cortex. D: Colocalization of GFAP-positive astrocytes with phosphorylated
p65 NF-kB. Scale bars: 25 mm. The values represent means � SEM (NZ 10). **P < 0.01.
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levels comparedwith vehicle-treatedmice (Figure 5,A andB).
Notably, the activation ofNF-kB in the Tg2576micewas only
observed in GFAP-positive astrocytes (Figure 5, C and D).
Corroborating these data,ATL inhibitedAb42-inducedNF-kB
activation in primary astrocytes, an effect that was diminished
by ALX antagonist, BOC2 (Supplemental Figure S4). Al-
though we cannot discard the involvement of neurons and
cerebrovasculature, these data clearly suggest that stimulation
of ALX in astrocytes by ATL potentiates the non-phlogistic
recruitment and activation of alternative microglia, resulting
in Ab clearance.

Discussion

Herein, we provide critical functional and molecular evidence
indicating the endogenous proresolution LXA4 pathway as
a potential candidate to treat AD. More important, ATL pre-
sented notable potency, because mitigation of AD-like path-
ological characteristics was obtained at a microgram dose of
this compound versus the milligram doses of more widely
used non-steroidal anti-inflammatory drugs. Mechanistically,
the effects of ATL seem to be dependent on activation of ALX
expressed in astrocytes, and likely on cerebrovasculature and
neurons. ATL decreased activation of NF-kB and production
of proinflammatory mediators, and increased levels of anti-
inflammatory proteins. Remarkably, these environmental
changes in the AD-like brains propitiate the activation of
microglia in an alternative and phagocytic phenotype, which,
in turn, results in clearance of Ab plaques and improvement of
cognition.

Accumulation of Ab in the brain parenchyma is a major
neuropathological hallmark of AD and is believed to trigger
The American Journal of Pathology - ajp.amjpathol.org
a cascade that leads to the other pathological features of AD,
including synaptic loss and aberrant inflammation.47 Over-
production, altered processing, or failed clearance of Ab may
be causal factors of AD.1 Of great relevance, we demonstrated
the novel findings that ATLmarkedly reduces Ab deposition in
AD-like brains. Notably, such an effect appears to be unrelated
to changes inAb production, because the balance betweenAPP
proteolytic fragments, CTFb (C99) and CTFa (C83), remained
unaltered after ATL treatment. In addition, we found no
changes in the expression of LRP1, APOE, IDE, and neprily-
sin, suggesting that LXA4 signaling is not involved in the
regulation of blood-brain barriere and protease-mediated Ab
clearance pathways. However, possible changes in degradative
enzyme activity still need to be addressed.

An exacerbated inflammatory response is another impor-
tant feature of AD that may trigger loss of function in cells of
the central nervous system.48e50 For this reason,many studies
have focused on uncovering the underlying regulatory
mechanisms and strategies to down-regulate proinflammatory
responses. However, recent studies showing that blockade of
inflammatory responses aggravates the progression of AD
raised the question about how to best manipulate the immune
response to succeed in the management of neurodegenerative
disorders.4,51 The discoveries that the resolution of inflam-
mation is a highly coordinated and active process controlled
by endogenous proresolvingmediators and that inflammatory
cells undergo classic and alternative activation highlight new
potential molecular targets to modulate inflammation and
treat chronic inflammatory diseases.18,41,52 Accordingly, we
report the novel finding that brains of AD transgenic mice
undergo dynamicmodification in response toATL, resulting in
reduced NF-kB activation and switching the profile of released
1787
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mediators from proinflammatory to anti-inflammatory. In
addition, our studies suggest that astrocytes are key modu-
lators in the regulation of these modifications in the cerebral
milieu; however, a potential role of cerebrovascular cells
and neurons cannot be disregarded. Future studies using
conditional knockout strategies to selectively delete ALX
gene expression in specific cells of the central nervous
system are necessary to further understand the role of the
LXA4 pathway in the regulation of immune responses in the
diseased brain.

Microglia are the resident central nervous system immune
cells that have long been recognized as rapid responders to
injury and disease, playing a role in a broad range of processes,
such as tissue inflammation and clearance of cellular
debris.53e55 Growing evidence has strongly suggested
a dichotomous role of these cells in AD. Although activation of
microglia has been shown to promote Ab clearance, excessive
or dysregulated releases of proinflammatory cytokines, che-
mokines, and reactive oxygen species from these inflammatory
cells contribute to neuronal degeneration.4,51 Such paradoxical
actions are related to the plasticity of these cells in response to
environmental signals, which allow them to undergo different
forms of polarized activation. Cells of monocyte-macrophage
lineage, including microglia, can be activated into two
different states, classic and alternative.41,42,56,57 Classically
activated macrophages are essentially proinflammatory, and
their activation is driven by IFN-g and Toll-like receptor
ligands, which results in up-regulation of iNOS, IL-12, and
major histocompatibility complex class II expression.43 Alter-
natively activated macrophages, however, produce higher
levels of anti-inflammatory mediators, such as IL-10, and are
thought to play a primary role in the resolution of inflammation
and the coordination of tissue repair after the acute inflamma-
tory response.41 In this context, because lipoxins are key
modulators of inflammatory resolution and have been impli-
cated in the non-phlogistic recruitment and activation of
monocytes and macrophages, they represent a viable alterna-
tive to facilitate the Ab clearance through the modulation of
glial cell response.18,37,38 In support of this hypothesis, we
found that the activation of LXA4 signaling decreases levels of
TNF-a, IL-1b, interferon-g, IL-6, GM-CSF, RANTES, and
MMP-9, which have been implicated with a different degree of
importance in the progression of neuroinflammation and brain
degeneration in AD. In addition, IL-10 and TGFb in the brain
are increased after the treatment with ATL. Notably, it has been
shown that these cytokines present potent anti-inflammatory
properties and support neuronal maintenance, function, and
plasticity.58 Such changes in the pattern of immune mediators
released in response to ATL prompt the brain for the
recruitment and activation of microglia in a non-phlogistic
phenotype. Consistent with the idea that these cells may
affect disease progression by modulating the buildup of Ab
through its phagocytosis, we detect a reduced accumulation
of Ab after stimulation of LXA4 signaling. More important,
the reduction of Ab leads to a robust decrease in synapto-
toxicity that resulted in improvement in cognition.
1788
Available treatment options for AD are limited, and their
efficacy is minimal. Therapies under investigation involve
disease-modifying strategies, although many of these are
associated with prominent adverse events in humans.
Therefore, discovering agents that are capable of increasing
Ab uptake by phagocytic cells is of potential therapeutic
interest for AD. Given that lipoxins are a family of endog-
enous lipid mediators with potent anti-inflammatory and
proresolution properties, they may be potential candidates
for the development of novel AD therapies.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2013.01.051.
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