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a b s t r a c t

In this work, a new form of Adomian decomposition method (ADM) is presented; by this
form a general iterative method can be achieved in which there is no need of calculating
Adomian polynomials. Also, this general iterative method is compared with the Adomian
decomposition method and variational iteration method (VIM) and its advantages are
expressed.
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1. Introduction

Recently, various mathematical methods, such as Adomian decomposition [1,2], variational iteration [3,4], homotopy
perturbation [5,6], Exp function [7,8], and others [9,10], have been proposed for obtaining exact or analytical approximation
solutions for nonlinear problems.
In this paper, for solving functional equations, by using an Adomian decomposition method procedure, we derive a gen-

eral iteration method and compare it with the variational iteration method for a class of especial equations.
The Adomian decomposition method developed by Adomian at the beginning of 1980 is used in [11] to solve the

Burger’s–Huxley and Burger’s–Fisher equations. The authors of [12] applied the Adomian decomposition method to find
solution of systems of integral–differential equations. In [13], the Adomian decomposition method is employed to solve the
wave equation which has special importance in engineering and sciences. The interested reader can see [14–16] for some
other applications of the method. The convergence of the method is systematically discussed by Babolian and Biazar [17].
The variational iterationmethod developed by the Chinesemathematician Ji-HuanHewas successfully applied to various

sciences and engineering problems, for example, the variational iteration method is used in [18] to solve delay differential
equations. This method is employed in [19] to solve a system of two nonlinear integro-differential equations, which arise
in biology, describing Biological species living together. The authors of [20] used the variational iteration method to solve
fourth-order parabolic equations. The interested reader can see [21–23] for some other applications of the method. The
convergence of the method is systematically discussed by Tatari and Dehghan [24].
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2. Basic idea of He’s variational iteration method

To clarify the basic ideas of VIM, we consider the following differential equation:

Lu(t)+ Nu(t) = g(t) (1)

where, L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous term.
According to VIM, we can write down a correction functional as follows:

un+1(t) = un(t)+
∫ t

0
λ(ξ)(Lun(ξ)+ Nũn(ξ)− g(ξ))dξ, (2)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the variational theory, and ũn is a restricted
variation which means δũn = 0.
It is obvious now that themain steps of He’s variational iterationmethod require first the determination of the Lagrangian

multiplier λ that will be identified optimally. Having determined the Lagrange multiplier, the successive approximations
un+1, n ≥ 0, of the solution uwill be readily obtained upon using any selective function u0. Consequently, the solution

u(x) = lim
n→∞

un(x).

In other words, the correction functional (2) will give several approximations, and therefore the exact solution is obtained
at the limit of the resulting successive approximations.

3. Basic idea of Adomian’s decomposition method and newmodified Adomian’s decomposition method

Consider the functional equation

F(u(x)) = g(x), (3)

where F is a functional operator and g(x) is an inhomogeneous term. Suppose that the functional operator F can be
decomposed into three operators, i.e.

F = I + R+ N, (4)

where I is an invertible operator, R is a linear and N is an analytic nonlinear operator.
Now we can write the Eq. (3) as the following:

I(u(x))+ R(u(x))+ N(u(x)) = g(x). (5)

Applying the inverse operator I−1 to both sides of Eq. (5) and using given conditions, we obtain

u(x) = f (x)− I−1(R(u(x)))− I−1(N(u(x))). (6)

ADM defines the unknown function u(x) by an infinite series, say

u(x) =
∞∑
n=0

un(x), (7)

where the components un(x) are usually determined recurrently. Substituting this infinite series into Eq. (6) leads to

∞∑
n=0

un(x) = f (x)− I−1
(
R

(
∞∑
n=0

un(x)

))
− I−1

(
N

(
∞∑
n=0

un(x)

))
. (8)

Adomian also considers N(u) as the summation of an infinite series of polynomials, say

N(u) =
∞∑
n=0

An(u0, u1, . . . , un). (9)

Polynomials An, which are called Adomian polynomials, are generated for all kinds of nonlinearity so that A0 depends only
on u0, A1 depends on u0 and u1 and in general An depends on u0, u1, . . . , un. Adomian introduces these polynomials as

An(u0, u1, . . . , un) =
1
n!
dn

dλn

[
N

(
n∑
i=0

λiui

)]
λ=0

, n = 0, 1, 2, . . . . (10)

The Adomian procedure can be presented as the following:

u0(x) = f (x),
un+1 = −I−1(R(un))− I−1(An(u0, u1, . . . , un)), n = 0, 1, 2, . . . . (11)
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Substituting Eq. (9) into Eq. (8) leads to

∞∑
n=0

un(x, t) = f (x)− I−1
(
R

(
∞∑
n=0

un(x)

))
− I−1

(
∞∑
n=0

An

)
. (12)

It can be written as

u0 + u1 + · · · + un + · · · = f (x)− I−1(R(u0 + u1 + · · · + un + · · ·))− I−1(A0 + A1 + · · · + An + · · ·). (13)

By considering vn =
∑n
i=0 ui and Eq. (13), the following procedure can be constructed:

v0 = f (x),

vn+1 = v0 − I−1(R(vn))− I−1
(

n∑
i=0

Ai

)
, n = 0, 1, 2, . . . . (14)

Consequently, the exact solution may be obtained by

u = lim
n→∞

vn = lim
n→∞

n∑
i=0

ui. (15)

4. The general iterative method

In this section, we are going to construct a general iteration method to solve partial differential equations.
For the analytic nonlinear operator N , we can write

lim
n→∞

N

(
n∑
i=0

ui

)
= lim
n→∞

n∑
i=0

Ai. (16)

By considering, Eqs. (14) and (16) can be reconstructed as

v′0 = f (x),
v′n+1 = v

′

0 − I
−1(R(v′n))− I

−1(N(v′n)).
(17)

Eq. (17) is a general iteration method for solving the functional equations. One of the advantages of the general iteration
method with respect to the Adomian decomposition method is that in this method computing the Adomian polynomials is
not needed.
In this section, we apply the general iteration method to solve the following problems.

Example 1. Consider the following equation with initial condition

∂u
∂t
− 3

∂(u2)
∂x
+
∂3u
∂x3
= 0,

u(x, 0) = 6x.
(18)

By using
[
∂
∂t

]−1
yields

u(x, t) = 6x+
∫ t

0

(
3
∂(u2(x, τ ))

∂x
−
∂3u(x, τ )
∂x3

)
dτ . (19)

From (19), we get

u0 = 6x,

un+1 = u0 +
∫ t

0

(
3
∂(u2n)
∂x
−
∂3un
∂x3

)
dτ , n = 0, 1, . . . . (20)

For the first few n, we have

u1 = 6x(1+ 36t),
u2 = 6x(1+ 36t + 1296t2 + 15 552t3),
u3 = 6x(1+ 36t + 1296t2 + 15 552t3 + 1 119 744t4 + 20 155 392t5)+ small terms
...

un = 6x(1+ 36t + 1296t2 + 46 656t3 + 1 679 616t4 + 60 466 176t5 + 21 767 866t6

+ 78 364 164 096t2 + · · ·).

(21)
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Recall that

u = lim
n→∞

un. (22)

That gives

u(x, t) =
6x

1− 36t
, |36t| < 1. (23)

This is an exact solution.

Example 2. Consider the partial differential equation with the initial conditions

∂2u
∂t2
−
∂2u
∂x2
+ 2

∂2(u3)
∂x2

−
∂4u
∂x4
= 0,

u(x, 0) =
1
x
,

∂u(x, 0)
∂t

= −
1
x2
.

(24)

Similarly we obtain the following iteration formulation

u0(x, t) =
1
x
−
t
x2
,

un+1 = u0(x, t)+
∫ t

0

∫ t

0

(
∂2un(x, t)
∂x2

− 2
∂2(un(x, t))3

∂x2
+
∂4un(x, t)
∂x4

)
dtdt, n = 0, 1, . . . .

(25)

We obtain the following successive approximations

u1(x, t) =
1
x
−
t
x2
+
t2

x3
−
t3

x4
+ small terms,

u2(x, t) =
1
x
−
t
x2
+
t2

x3
−
t3

x4
+
t4

x5
−
t6

x7
+ small terms,

...

un(x, t) =
1
x
−
t
x2
+
t2

x3
−
t3

x4
+
t4

x5
−
t6

x7
+ · · · ,

(26)

and in the closed form by

u(x, t) =
1
x+ t

. (27)

Example 3. Let us solve the following ordinary differential equation:

∂3u(x)
∂x3

+
1
2
u(x)

∂2u(x)
∂x2

= 0,

u(0) = 0, u′(0) = 1, u′′(0) = A, u′(∞) = 0.
(28)

For (17), we obtain

u0(x) = x+
1
2
Ax2,

un+1(x) = u0(x)−
1
2

∫ x

0

∫ x

0

∫ x

0

(
un(x)

∂2un(x)
∂x2

)
dxdxdx, n = 0, 1, 2 . . . .

(29)

Using (29), we obtain the following successive approximations

u1(x) = x+
1
2
x2A−

1
240
A2x5 −

1
48
Ax4,

u2(x) = x+
1
2
x2A−

1
5 702 400

A4x11 −
1

193 536
A2x9 +

11
161 280

A3x8

+
11
20 160

A2x7 +
1
960
A2x6 −

1
240
A2x5 −

1
48
x4A,
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u3(x) = x+
x2A
2
−

A7x23

6 282 355 064 832 000
−

197A6x21

6 290 632 212 480 000

−

(
−

83
752 467 968 000A

7
+

1
211 805 798 400A

5
)
x20

40

−

(
−

83
752 467 968 000A

6
+

1
159 188 779 008A

4
)
x19

38
+

14 057A5x18

656 653 713 713 408 000

−

( 5449
3 678 732 288 000A

6
−

1829
15 918 877 152 000A

4
)
x17

34

−

( 5449
229 920 768 000A

5
−

17
6 502 809 600A

3
)
x16

32
−

1147A4x15

253 609 574 400

−

( 967
3 019 161 600A

3
−

10 033
49 816 166 400A

5
)
x14

28
−

( 1
4 055 040A

2
−

10 033
3 832 012 800A

4
)
x13

26

+
1157A3x12

2 554 675 200
−

(
−

23
1 612 800A

2
+

5
193 536A

4
)
x11

22
−
5A3x10

387 072
−
43A2x9

967 680

−

( 1
1344A−

11
10 080A

3
)
x8

16
+
11A2x7

20 160
+
Ax6

960
−
A2x5

240
−
x4A
48
,

....

The results derive so far, for these examples, are exactly the same as those obtained by the variational iteration method
[21,25].

5. Equivalence of VIM and general iteration method for a class of especial equations

In this section, we show that the VIM and general iteration method for especial forms are equivalence equations.

5.1. We first consider the following general nonlinear differential equation

Lu(x, t)+ Ru(x, t)+ N(x, t) = g(x, t),
u(x, 0) = u0

(30)

where L = ∂
∂t , R and N are linear and nonlinear operator respectively and g(x, t) is an inhomogeneous term.

Using VIM to solve Eq. (30), the following variational iteration formula can be obtained:

un+1(x, t) = un(x, t)+
∫ t

0
λ{Lun(x, ξ)+ Rũn(x, ξ)+ Nũn(x, ξ)− g(x, ξ)}dξ . (31)

Its stationary conditions can be obtained as follows:

λ′(ξ)|ξ=t = 0,
1+ λ(ξ)|ξ=t = 0.

(32)

The Lagrange multipliers can be identified as follows:
λ(ξ) = −1. (33)

Substituting the identified multiplier into Eq. (31) results in the following iteration formula:

un+1(x, t) = un(x, t)−
∫ t

0
{Lun(x, ξ)+ Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ

= un(x, t)−
∫ t

0
{Lun(x, ξ)}dξ −

∫ t

0
{Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ

= u0(x, t)−
∫ t

0
{Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ . (34)

We have used
u0(x, t) = un(x, 0) = u(x, 0). (35)

Now if we consider the general iterative method for solving Eq. (30), we can write

vn+1(x, t) = v0(x, t)−
∫ t

0
{Rvn(x, t)+ Nvn(x, t)− g(x, t)}dt,

v0(x, t) = u(x, 0).
(36)

It is clear that Eq. (34) is an analogy form of Eq. (36).
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5.2. We now consider the following general nonlinear partial differential equation

Lu(x, t)+ Ru(x, t)+ N(x, t) = g(x, t),

u(x, 0) = f0(x),
∂u(x, 0)
∂t

= f1(x),
(37)

where L = ∂2

∂t2
, R and N are linear and nonlinear operator respectively and g(x, t) is an inhomogeneous term.

Using VIM to solve Eq. (37), the following variational iteration formula can be obtained:

un+1(x, t) = un(x, t)+
∫ t

0
λ{Lun(x, ξ)+ Rũn(x, ξ)+ Nũn(x, ξ)− g(x, ξ)}dξ . (38)

Its stationary conditions can be obtained as follows:

λ′′(ξ) = 0,
λ(ξ)|ξ=t = 0,
1− λ′(ξ)|ξ=t = 0.

(39)

The Lagrange multipliers can be identified as follows:

λ(ξ) = ξ − t. (40)

Substituting the identified multiplier into Eq. (38) results in the following iteration formula:

un+1(x, t) = un(x, t)+
∫ t

0
(ξ − t){Lun(x, ξ)+ Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ

= un(x, t)+
∫ t

0
ξ{Lun(x, ξ)}dξ −

∫ t

0
t{Lun(x, ξ)}dξ +

∫ t

0
(ξ − t){Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ

= u0(x, t)−
∫ t

0
(t − ξ){Run(x, ξ)+ Nun(x, ξ)− g(x, ξ)}dξ . (41)

But

u0(x, t) = un(x, 0)+ t
∂un(x, 0)
∂t

= f0(x)+ tf1(x). (42)

Now if we consider the general iteration method for solving Eq. (37), we can write

vn+1(x, t) = v0(x, t)−
∫ t

0

∫ t

0
{Rvn(x, t)+ Nvn(x, t)− g(x, t)}dtdt,

v0(x, t) = f0(x)+ tf1(x).
(43)

For prove equivalence between Eqs. (41) and (43), it is sufficient show that∫ t

0

∫ t

0
w(x, t)dtdt =

∫ t

0
(t − ξ)w(x, ξ)dξ, (44)

where

w(x, t) = Run(x, t)+ N(x, t)− g(x, t). (45)

For Eq. (44), if we take the partial derivative with respect to t , we have

d
dt

(∫ t

0

∫ t

0
w(x, t)dtdt

)
=
d
dt

(∫ t

0
(t − ξ)w(x, ξ)dξ

)
. (46)

Consequently∫ t

0
w(x, t)dt =

∫ t

0
w(x, ξ)dξ . (47)

So the main terms differ in a constant, say
∫ t
0

∫ t
0 w(x, t)dtdt =

∫ t
0 (t − ξ)w(x, ξ)dξ + c .

By takingw(x, t) = 1, we derive c = 0.

6. Conclusion

In this paper, we have been looking for a general iteration formula, having the Adomian decompositionmethod inmined.
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By using the Adomian decomposition method, we have achieved this goal and presented a general iteration formula,
which seems to be effective.
Three examples, which illustrate the method and its simplicity efficiency, lead to the results which are exactly the same

as those obtained by the variational iteration method. This method can be used for solving other functional equations as
well.
The convergence of the method is under study in our research group.
Also in this article, equivalence of this method with the variational iteration method for some especial functional

equations is indicated.
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