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Abstract

A cycle packing in a (directed) multigraph is a vertex disjoint collection of (directed) elemen-
tary cycles. If D is a demiregular multidigraph we show that the arcs of D can be partitioned
into Ain cycle packings — where 4, is the maximum indegree of a vertex in D. We then show
that the maximum length cycle packings in any digraph contain a common vertex.

1. Introduction

A cycle packing € in a (directed) graph is defined in [6] as the vertex disjoint
union of elementary (directed) cycles. The size of % equals the number |€] of vertices
covered by the packing. The packing € is a maximal cycle packing provided no cycle
is disjoint from % and € is a maximum cycle packing provided |¢| is maximum. For
a digraph D of order n let g(D) denote the size of a maximum cycle packing in D. If
¢(D) = n then D has a perfect cycle packing (or 2—factor).

In a graph G, the maximum degree of a vertex in G is denoted A(G). In a digraph
D, the maximum in- and out-degrees occurring in D are denoted A;,(D) and Ay (D),
respectively. A digraph D is regular if the indeg,(v)=outdeg,(w) = 4iy (D)= dou(D)
for all vertices v and w in D. A digraph D is demiregular if the indeg,,(v) = outdeg,(v)
for all vertices v in D. We show that the arcs of a demiregular multidigraph D can
always be partitioned into the minimum possible number of cycle packings; that is, the
arcs of D can always be partitioned into 4i,(D) cycle packings.

In [6], it was conjectured that the maximum cycle packings in graphs and digraphs
contain a common vertex. This conjecture was then verified for outerplanar graphs and
outerplanar digraphs. Here, we prove that the maximum cycle packings in a directed
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multigraph contain a common vertex by utilizing a cycle packing decomposition of the
arcs in a related demiregular multidigraph. Unfortunately, a similar argument is not
valid for undirected multigraphs.

2. Results

The connected components of a demiregular multidigraph D contain directed Eulerian
cycles (see e.g. [1,2]), so the arcs of D can be greedily decomposed into cycle packings.
Since 4i,(D) is the maximum indegree of a vertex in D, it cannot be decomposed into
fewer than Ai(D) cycle packings. Kotzig [3] showed that 4;,(D) packings suffice
for regular multidigraphs by proving that its arcs can be partitioned into perfect cycle
packings. We shall show that 4;,(D) cycle packings suffice for any demiregular digraph.

Lemma 2.1. Assume D is a demiregular multidigraph of order n. Then D can be
partitioned into Ain(D) cycle packings.

Proof. Let D' be the multidigraph obtained by adding Ay (D) — indeg(v) loops at
vertex v for each vertex v in D. The resulting multidigraph D’ is regular of indegree
Ain(D). By Kotzig’s work, the arcs of D’ can be decomposed into 4i,(D) perfect cycle
packings. So

D =(g’1 @% ®'..@%2m(0)’
where each %] is a perfect cycle packing of D’. By removing the loops in D’ which
do not occur in D, each €. restricts to a cycle packing %, of D. Thus
D=%,0%& ®%Fs,0)

where each €; is a cycle packing of D. So a demiregular multidigraph can be partitioned
into Aip(D) cycle packings. [

Lemma 2.1 can be used to prove that the maximum cycle packings in a multidigraph
have a common vertex.

Theorem 2.2. The maximum cycle packings of a directed multigraph D have a com-
mon vertex.

Proof. Assume D is a multidigraph and assume to the contrary that for each vertex
v in D there is a maximum cycle packing %, which does not contain the vertex v.
Define a directed multigraph D’ on the vertices of D as
p-Ye.,
veV

where an arc (x, y) occurs with multiplicity |{v|(x, y) € €,}|- Then D' is a demiregular
multidigraph and 4;,(D’) < |V(D)|. By Lemma 2.1 the arcs of D’ can be partitioned
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in 4;,(D’) cycle packings. Since D' has exactly [V (D) e(D) arcs, the average size of
a cycle packing in the partition is
|V (D)|e(D)
Ain(D')
So there is at least one cycle packing of D' of size strictly greater than o(D). But this

contradicts the fact that any cycle packing of D’ is also a cycle packing of D and so
the size of any cycle packing in D’ cannot exceed g(D). O

o(D).

A digraph is hypohamiltonian provided the digraph minus any vertex contains a
directed Hamilton cycle (see [8]). A nontrivial example of a directed hypohamiltonian
graph is C, X C} where C; represents the directed cycle on i vertices and p and g are
relatively prime. We now show that every hypohamiltonian digraph contains a perfect
cycle packing.

Corollary 2.3. If D is a directed hypohamiltonian graph, then D contains a perfect
cycle packing.

Proof. Assume D is a hypohamiltonian digraph of order n. For any vertex v € V(D),
the digraph D\ {v} contains a Hamilton cycle, so ¢(D)>n— 1 and the intersection of
all cycles of length n— 1 is empty. Hence the intersection of ali cycle packings of size
n— 1 is empty. Theorem 2.2 implies that g(D) cannot equal » — 1, forcing ¢(D) = n.
Hence D contains a perfect cycle packing. [

An undirected version of Lemma 2.1 clearly holds. We shall state it here without
proof.

Lemma 2.4. If G is a multigraph with every vertex having even degree, then G can
be partitioned into A(G)/2 cycle packings.

The next logical step is to try and prove the corresponding undirected version of
Theorem 2.2. Mimicking the proof of Theorem 2.2, assume G is a multigraph and for
each vertex v in G assume there exists a maximum cycle packing %, which does not
contain v. The multigraph

G'= Y .

vtEV(G)

where the multiplicity of the edge {x, ¥} is [{v | {x,»} € €.}|, can be partitioned into
4(G’)/2 cycle packings. The average size of a cycle packing in this decomposition is
strictly greater than g(G). However, a cycle packing in G’ may not be a cycle packing
of G since G’ can contain multiple edges (forming 2-cycles) that do not occur in G.
Hence the proof of Theorem 2.2 will not generalize to undirected graphs. We can
only continue to conjecture that the maximum cycle packings of a multigraph have a
common vertex.
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Fig. 1. A cubic graph on 16 vertices whose maximum cycle packings contain only 15 vertices.

Notice, any graph that contains a perfect cycle packing satisfies this conjecture since
the maximum cycle packings must have every vertex of the graph as a common vertex.
Thus regular multigraphs of even degree and vertex transitive multigraphs satisfy the
conjecture since they always contain perfect cycle packings (see [4]). Regular multi-
graphs of odd degree need not contain perfect cycle packings. The regular graph of
degree 3 (a cubic graph) in Fig. 1 has 16 vertices and maximum cycle packings of
size 15. But, cubic multigraphs will also satisfy the conjecture that the maximum cycle
packings share a common vertex.

A classical result of Peterson, states sufficient conditions for a cubic multigraph to
contain a perfect matching:

Every connected cubic multigraph with no more than two bridges
has a perfect matching.

In a cubic multigraph, a pendant block is incident to exactly one bridge. Using
Peterson’s result, we see that any pendant block in a cubic multigraph G must con-
tain a perfect cycle packing. Thus G either contains a perfect cycle packing or every
maximum cycle packing of G contains all the vertices of the pendant blocks.

Peterson’s result can be used further to find a lower bound on the size of a maximum
cycle packing in cubic graphs. Finding and characterizing such bounds is the focus
of (71
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