Note

Cycle packings in graphs and digraphs

Jennifer J. Quinn ${ }^{1}$
Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA

Received 3 September 1993; accepted 31 July 1995

Abstract

A cycle packing in a (directed) multigraph is a vertex disjoint collection of (directed) elementary cycles. If D is a demiregular multidigraph we show that the ares of D can be partitioned into $\Delta_{\text {in }}$ cycle packings - where $\Delta_{\text {in }}$ is the maximum indegree of a vertex in D. We then show that the maximum length cycle packings in any digraph contain a common vertex.

1. Introduction

A cycle packing \mathscr{C} in a (directed) graph is defined in [6] as the vertex disjoint union of elementary (directed) cycles. The size of \mathscr{C} equals the number $|\mathscr{C}|$ of vertices covered by the packing. The packing \mathscr{C} is a maximal cycle packing provided no cycle is disjoint from \mathscr{C} and \mathscr{C} is a maximum cycle packing provided $|\mathscr{C}|$ is maximum. For a digraph D of order n let $\varrho(D)$ denote the size of a maximum cycle packing in D. If $\varrho(D)=n$ then D has a perfect cycle packing (or 2-factor).

In a graph G, the maximum degree of a vertex in G is denoted $\Delta(G)$. In a digraph D, the maximum in- and out-degrees occurring in D are denoted $\Delta_{\text {in }}(D)$ and $\Delta_{\text {out }}(D)$, respectively. A digraph D is regular if the indeg ${ }_{D}(v)=\operatorname{outdeg}_{D}(w)=\Delta_{\text {in }}(D)=\Delta_{\text {out }}(D)$ for all vertices v and w in D. A digraph D is demiregular if the indeg ${ }_{D}(v)=\operatorname{outdeg}_{D}(v)$ for all vertices v in D. We show that the arcs of a demiregular multidigraph D can always be partitioned into the minimum possible number of cycle packings; that is, the arcs of D can always be partitioned into $\Delta_{\text {in }}(D)$ cycle packings.

In [6], it was conjectured that the maximum cycle packings in graphs and digraphs contain a common vertex. This conjecture was then verified for outerplanar graphs and outerplanar digraphs. Here, we prove that the maximum cycle packings in a directed

[^0]multigraph contain a common vertex by utilizing a cycle packing decomposition of the arcs in a related demiregular multidigraph. Unfortunately, a similar argument is not valid for undirected multigraphs.

2. Results

The connected components of a demiregular multidigraph D contain directed Eulerian cycles (see e.g. [1,2]), so the arcs of D can be greedily decomposed into cycle packings. Since $\Delta_{\text {in }}(D)$ is the maximum indegree of a vertex in D, it cannot be decomposed into fewer than $\Delta_{\text {in }}(D)$ cycle packings. Kotzig [3] showed that $\Delta_{\text {in }}(D)$ packings suffice for regular multidigraphs by proving that its arcs can be partitioned into perfect cycle packings. We shall show that $\Delta_{\text {in }}(D)$ cycle packings suffice for any demiregular digraph.

Lemma 2.1. Assume D is a demiregular multidigraph of order n. Then D can be partitioned into $\Delta_{\text {in }}(D)$ cycle packings.

Proof. Let D^{\prime} be the multidigraph obtained by adding $\Delta_{\text {in }}(D)-\operatorname{indeg}(v)$ loops at vertex v for each vertex v in D. The resulting multidigraph D^{\prime} is regular of indegree $\Delta_{\text {in }}(D)$. By Kotzig's work, the arcs of D^{\prime} can be decomposed into $\Delta_{\text {in }}(D)$ perfect cycle packings. So

$$
D^{\prime}=\mathscr{C}_{1}^{\prime} \oplus \mathscr{C}_{2}^{\prime} \oplus \cdots \oplus \mathscr{C}_{\text {in }^{\prime}(D)}^{\prime},
$$

where each \mathscr{C}_{i}^{\prime} is a perfect cycle packing of D^{\prime}. By removing the loops in D^{\prime} which do not occur in D, each \mathscr{C}_{i}^{\prime} restricts to a cycle packing \mathscr{C}_{i} of D. Thus

$$
D=\mathscr{C}_{1} \oplus \mathscr{C}_{2} \oplus \cdots \oplus \mathscr{C}_{\Delta_{\mathrm{in}}(D)}
$$

where each \mathscr{C}_{i} is a cycle packing of D. So a demiregular multidigraph can be partitioned into $\Delta_{\text {in }}(D)$ cycle packings.

Lemma 2.1 can be used to prove that the maximum cycle packings in a multidigraph have a common vertex.

Theorem 2.2. The maximum cycle packings of a directed multigraph D have a common vertex.

Proof. Assume D is a multidigraph and assume to the contrary that for each vertex v in D there is a maximum cycle packing \mathscr{C}_{v} which does not contain the vertex v. Define a directed multigraph D^{\prime} on the vertices of D as

$$
D^{\prime}=\sum_{v \in V} \mathscr{C}_{v}
$$

where an arc (x, y) occurs with multiplicity $\left|\left\{v \mid(x, y) \in \mathscr{C}_{v}\right\}\right|$. Then D^{\prime} is a demiregular multidigraph and $\Delta_{\text {in }}\left(D^{\prime}\right)<|V(D)|$. By Lemma 2.1 the arcs of D^{\prime} can be partitioned
in $\Delta_{\text {in }}\left(D^{\prime}\right)$ cycle packings. Since D^{\prime} has exactly $|V(D)| \varrho(D)$ arcs, the average size of a cycle packing in the partition is

$$
\frac{|V(D)| \varrho(D)}{\Delta_{\text {in }}\left(D^{\prime}\right)}>\varrho(D)
$$

So there is at least one cycle packing of D^{\prime} of size strictly greater than $\varrho(D)$. But this contradicts the fact that any cycle packing of D^{\prime} is also a cycle packing of D and so the size of any cycle packing in D^{\prime} cannot exceed $\varrho(D)$.

A digraph is hypohamiltonian provided the digraph minus any vertex contains a directed Hamilton cycle (see [8]). A nontrivial example of a directed hypohamiltonian graph is $\vec{C}_{p} \times \vec{C}_{q}$ where \vec{C}_{i} represents the directed cycle on i vertices and p and q are relatively prime. We now show that every hypohamiltonian digraph contains a perfect cycle packing.

Corollary 2.3. If D is a directed hypohamiltonian graph, then D contains a perfect cycle packing.

Proof. Assume D is a hypohamiltonian digraph of order n. For any vertex $v \in V(D)$, the digraph $D \backslash\{v\}$ contains a Hamilton cycle, so $\varrho(D) \geqslant n-1$ and the intersection of all cycles of length $n-1$ is empty. Hence the intersection of all cycle packings of size $n-1$ is empty. Theorem 2.2 implies that $\varrho(D)$ cannot equal $n-1$, forcing $\varrho(D)=n$. Hence D contains a perfect cycle packing.

An undirected version of Lemma 2.1 clearly holds. We shall state it here without proof.

Lemma 2.4. If G is a multigraph with every vertex having even degree, then G can be partitioned into $\Delta(G) / 2$ cycle packings.

The next logical step is to try and prove the corresponding undirected version of Theorem 2.2. Mimicking the proof of Theorem 2.2, assume G is a multigraph and for each vertex v in G assume there exists a maximum cycle packing \mathscr{C}_{v} which does not contain v. The multigraph

$$
G^{\prime}=\sum_{v \in V(G)} \mathscr{C}_{v}
$$

where the multiplicity of the edge $\{x, y\}$ is $\left|\left\{v \mid\{x, y\} \in \mathscr{C}_{v}\right\}\right|$, can be partitioned into $\Delta\left(G^{\prime}\right) / 2$ cycle packings. The average size of a cycle packing in this decomposition is strictly greater than $\varrho(G)$. However, a cycle packing in G^{\prime} may not be a cycle packing of G since G^{\prime} can contain multiple edges (forming 2-cycles) that do not occur in G. Hence the proof of Theorem 2.2 will not generalize to undirected graphs. We can only continue to conjecture that the maximum cycle packings of a multigraph have a common vertex.

Fig. 1. A cubic graph on 16 vertices whose maximum cycle packings contain only 15 vertices.

Notice, any graph that contains a perfect cycle packing satisfies this conjecture since the maximum cycle packings must have every vertex of the graph as a common vertex. Thus regular multigraphs of even degree and vertex transitive multigraphs satisfy the conjecture since they always contain perfect cycle packings (see [4]). Regular multigraphs of odd degree need not contain perfect cycle packings. The regular graph of degree 3 (a cubic graph) in Fig. 1 has 16 vertices and maximum cycle packings of size 15 . But, cubic multigraphs will also satisfy the conjecture that the maximum cycle packings share a common vertex.

A classical result of Peterson, states sufficient conditions for a cubic multigraph to contain a perfect matching:

Every connected cubic multigraph with no more than two bridges has a perfect matching.

In a cubic multigraph, a pendant block is incident to exactly one bridge. Using Peterson's result, we see that any pendant block in a cubic multigraph G must contain a perfect cycle packing. Thus G either contains a perfect cycle packing or every maximum cycle packing of G contains all the vertices of the pendant blocks.

Peterson's result can be used further to find a lower bound on the size of a maximum cycle packing in cubic graphs. Finding and characterizing such bounds is the focus of [7].

References

[1] C. Berge, Graphs (North-Holland, New York, 1985).
[2] J.C. Bermond and C. Thomassen, Cycles in digraphs - A survey, J. Graph Theory 5 (1981) 1-43.
[3] A. Kotzig. The decomposition of a directed graph into quadratic factors consisting of cycles, Acta F.R.N. Univ. Comment. Math. XXII (1969) 27-29.
[4] L. Lovasz and M.D. Plummer, Matching Theory (North-Holland, Amsterdam, 1986).
[5] J.J.Q. Massey, Colorings and cycle packings in graphs and digraphs, Ph.D. Thesis, University of Wisconsin-Madison, 1993.
[6] J.J. Quinn, Maximum cycle packings in outerplanar digraphs, submitted.
[7] J.J. Quinn, Cycle packings in cubic graphs, Congr. Numer. 97 (1993) 115-164.
[8] C. Thomassen, Hypohamiltonian graphs and digraphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs (Springer, New York, 1976) 557-571.

[^0]: ' Research partially supported by NSA Grant MDA904-89-H-2060 and an Office of Education Fellowship administered by the Department of Mathematics of the University of Wisconsin-Madison.

