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Abstract 

A cycle packing in a (directed) multigraph is a vertex disjoint collection of (directed) elemen- 
tary cycles. If D is a demiregular multidigraph we show that the arcs of D can be partitioned 
into Ai. cycle packings - -  where Ain is the maximum indegree of a vertex in D. We then show 
that the maximum length cycle packings in any digraph contain a common vertex. 

1. Introduction 

A cycle packing cg in a (directed) graph is defined in [6] as the vertex disjoint 
union of  elementary (directed) cycles. The size of  cg equals the number Ic¢[ of  vertices 

covered by the packing. The packing cg is a maximal cycle packing provided no cycle 
is disjoint from cg and cg is a maximum cycle packing provided leg] is maximum. For 

a digraph D of  order n let 0(D) denote the size of  a maximum cycle packing in D. If 

0(D) = n then D has a perfect cycle packing (or 2-factor).  

In a graph G, the maximum degree of  a vertex in G is denoted A(G). In a digraph 
D, the maximum in- and out-degrees occurring in D are denoted Ain(D) and Aout(D), 

respectively. A digraph D is regular if the indego(v ) = outdegD(w ) = Ain(D)= Aout(D) 
for all vertices v and w in D. A digraph D is demiregular if  the indegD(v ) = outdego(v ) 
for all vertices v in D. We show that the arcs of  a demiregular multidigraph D can 
always be partitioned into the minimum possible number of  cycle packings; that is, the 
arcs of  D can always be partitioned into Ain(D) cycle packings, 

In [6], it was conjectured that the maximum cycle packings in graphs and digraphs 
contain a common vertex. This conjecture was then verified for outerplanar graphs and 

outerplanar digraphs. Here, we prove that the maximum cycle packings in a directed 
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multigraph contain a common vertex by utilizing a cycle packing decomposition of the 
arcs in a related demiregular multidigraph. Unfortunately, a similar argument is not 
valid for undirected multigraphs. 

2. Results 

The connected components of a demiregular multidigraph D contain directed Eulerian 
cycles (see e.g. [1,2]), so the arcs of D can be greedily decomposed into cycle packings. 
Since Ain(D) is the maximum indegree of a vertex in D, it cannot be decomposed into 
fewer than Ain(D) cycle packings. Kotzig [3] showed that Ain(D) packings suffice 
for regular multidigraphs by proving that its arcs can be partitioned into perfect cycle 
packings. We shall show that Ain(D) cycle packings suffice for any demiregular digraph. 

Lemma 2.1. Assume D is a demiregular multidigraph of  order n. Then D can be 
partitioned into Ain(D) cycle packings. 

Proof. Let D' be the multidigraph obtained by adding Ain(D)-  indeg(v) loops at 
vertex v for each vertex v in D. The resulting multidigraph D' is regular of indegree 
Ain(D). By Kotzig's work, the arcs of D I can be decomposed into Atn(D) perfect cycle 
packings. So 

1 D' = ~¢'1 ® ¢¢~ ® ' "  • ~, , to) ,  

where each cg~ is a perfect cycle packing of D t. By removing the loops in D' which 
do not occur in D, each rg~ restricts to a cycle packing rgi of D. Thus 

D = cgl @ oK2 @ • • • • ~A,(D), 

where each c£~ is a cycle packing of D. So a demiregular multidigraph can be partitioned 
into Ain(D) cycle packings. [] 

Lemma 2.1 can be used to prove that the maximum cycle packings in a multidigraph 
have a common vertex. 

Theorem 2.2. The maximum cycle packings of a directed multigraph D have a com- 
mon vertex. 

Proof. Assume D is a multidigraph and assume to the contrary that for each vertex 
v in D there is a maximum cycle packing cgv which does not contain the vertex v. 
Define a directed multigraph D' on the vertices of D as 

D' = Z rgv' 
vEV 

where an arc (x,y) occurs with multiplicity I{vl(x,y) ~ %}]. Then D' is a demiregular 
multidigraph and Ain(D') < IV(D)I. By Lemma 2.1 the arcs of D' can be partitioned 
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in din(D') cycle packings. Since D' has exactly V(D)[o(D) arcs, the average size of 
a cycle packing in the partition is 

[V(D)[o(D) 
> e(D). 

Ain(D') 

So there is at least one cycle packing of D' of s~ze strictly greater than Q(D). But this 
contradicts the fact that any cycle packing of D' is also a cycle packing of D and so 
the size of any cycle packing in D' cannot exceed #(D). [] 

A digraph is hypoharniltonian provided the digraph minus any vertex contains a 
directed Hamilton cycle (see [8]). A nontrivial example of a directed hypohamiltonian 
graph is CVp × CVq where t~i represents the directed cycle on i vertices and p and q are 
relatively prime. We now show that every hypohamiltonian digraph contains a perfect 
cycle packing. 

Corollary 2.3. I f  D is a directed hypohamiltonian graph, then D contains a perfect 
cycle packing. 

Proof. Assume D is a hypohamiltonian digraph of order n. For any vertex v E V(D), 
the digraph D \ {v} contains a Hamilton cycle, so Q(D)>>.n- 1 and the intersection of 
all cycles of length n - 1 is empty. Hence the intersection of all cycle packings of size 
n - 1 is empty. Theorem 2.2 implies that Q(D) cannot equal n - 1, forcing Q(D) = n. 
Hence D contains a perfect cycle packing. [] 

An undirected version of Lemma 2.1 clearly holds. We shall state it here without 
proof. 

Lemma 2.4. I f  G is a multigraph with every vertex hav&g even degree, then G can 
be partitioned into A(G)/2 cycle packings. 

The next logical step is to try and prove the corresponding undirected version of 
Theorem 2.2. Mimicking the proof of Theorem 2.2, assume G is a multigraph and for 
each vertex v in G assume there exists a maximum cycle packing ~v which does not 
contain v. The multigraph 

G ' =  ~ ~,~, 
~'EV(G) 

where the multiplicity of the edge {x, y} is [{v I {x,y} E ~}1,  can be partitioned into 
A(G')/2 cycle packings. The average size of a cycle packing in this decomposition is 
strictly greater than o(G). However, a cycle packing in G' may not be a cycle packing 
of G since G ' can contain multiple edges (forming 2-cycles) that do not occur in G. 
Hence the proof of Theorem 2.2 will not generalize to undirected graphs. We can 
only continue to conjecture that the maximum cycle packings of a multigraph have a 
common vertex. 
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Fig. 1. A cubic graph on 16 vertices whose maximum cycle packings contain only 15 vertices. 

Notice, any graph that contains a perfect cycle packing satisfies this conjecture since 
the maximum cycle packings must have every vertex of the graph as a common vertex. 
Thus regular multigraphs of even degree and vertex transitive multigraphs satisfy the 
conjecture since they always contain perfect cycle packings (see [4]). Regular multi- 
graphs of odd degree need not contain perfect cycle packings. The regular graph of 
degree 3 (a cubic graph) in Fig. 1 has 16 vertices and maximum cycle packings of 
size 15. But, cubic multigraphs will also satisfy the conjecture that the maximum cycle 
packings share a common vertex. 

A classical result of Peterson, states sufficient conditions for a cubic multigraph to 
contain a perfect matching: 

Every connected cubic multigraph with no more than two bridges 
has a perfect matching. 

In a cubic multigraph, a pendant block is incident to exactly one bridge. Using 
Peterson's result, we see that any pendant block in a cubic multigraph G must con- 
tain a perfect cycle packing. Thus G either contains a perfect cycle packing or every 
maximum cycle packing of G contains all the vertices of the pendant blocks. 

Peterson's result can be used further to find a lower bound on the size of a maximum 
cycle packing in cubic graphs. Finding and characterizing such bounds is the focus 
of [7]. 
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