patient's medical history we then receive consent via a monitored phone call for consent, or by mailing the consent. Once we receive consent for tissue typing, then we proceed with testing.

When a matched related donor is found, the Donor Coordinator performs an information session prior to their medical evaluation. This helps donors feel comfortable with the donation and helps answer all of their logistical questions prior to seeing our clinical team.

Once cleared, the Donor Coordinator arranges for the donors filgrastim injections to be given by a home healthcare nurse.

**Results/Conclusions:** Our program has received great feedback from donors since we started the Donor Coordinator position. We have been able to work through donor concerns in a private manner. We have chosen not to test or use donors based on their concerns and this position has helped with family dynamics. Many of these steps have helped donors feel that they are important in this process and has helped them feel comfortable with the whole donation. We are in the process of creating a survey to assess the donor’s experience with the Donor Coordinator, our medical team, and the donation process.

---

**521**

**Improving Channels of Communication to Ensure Multidisciplinary Knowledge and Participation in BMT Quality and Process Improvement**

**Amanda K. Hrnicek.** Blood and Marrow Transplant Program, The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH

**Introduction:** Quick and effective communication regarding information that is constantly evolving is a critical component of quality patient care and safety. In order to improve communication and ensure understanding regarding new/revised policies and performance improvement initiatives, a BMT quality newsletter and quiz tool was implemented.

**Methods:** From (09/2013) through (10/2014) a “Spotlight on Quality” newsletter was electronically distributed to all staff within the BMT Program, including MDs, RNs, BMT Coordinators, Nurse Practitioners, Apheresis Staff, Hematology Clinic Staff, Clinical Trials staff, Cell Therapy Lab staff, and other ancillary/support roles. This newsletter allowed them to receive education and updates regarding policy changes, accreditation standards, staff recognition, departmental announcements, and quality projects/initiatives underway. The newsletter also contained a “Quiz Egg” link that staff was required to complete, allowing for standard documentation of policy training while also having the ability to tabulate the results and assess for general understanding of the changes being introduced.

**Results:** Staff reported inclusive knowledge regarding BMT Program initiatives and policy changes as also evidenced by a 72% mean quiz completion amongst BMT Quality Committee members. Those departments that have taken the opportunity to use the newsletter for communicating departmental changes to the program felt well recognized and understood. From a quality perspective, lack of understanding regarding a policy change or initiative was gleaned from the quiz results based upon the tabulation provided of % of correct responses for each question. Lastly, staff expressed a greater willingness to get involved in quality improvement opportunities when they are well informed of initiatives.

**Conclusion:** A consistent method of communication distributed to the entire BMT Program has formalized programmatic changes and has placed quality initiatives at the forefront while allowing for improved multidisciplinary communication. Information is clearly communicated and with the quiz tool, staff training and comprehension is clearly measured.

---

**522**

**Improving Communication Barriers from Consult to Evaluation in Hematopoietic Stem Cell Transplant**

**Gana Elizabeth Locker1, Lisa Huntsinger1, Hannah E. Spencer1, Geoffrey Barkley2, Leann Boyce2, Rebeca Gonzalez2, Amer Beittinanheh2, Leonid Volodin2, Tamila L. Kindwall-Keller2, Adrienne Banavage4, 1** Stem Cell Transplant, University of Virginia Health System, Charlottesville, VA; 2 University of Virginia Health System, Charlottesville, VA; 3 Hematology Oncology, University of Virginia School of Medicine, Charlottesville, VA; 4 Stem Cell Transplant, University of Virginia, Charlottesville, VA; 5 University of Virginia, Charlottesville, VA

**Background:** The University of Virginia Health System's (UVA) mission is to be the safest place in health care for patients and employees. The BE SAFE initiative outlines how to identify problems related to patient and employee safety via the A3 problem solving tool. A3 methodology is a Lean process improvement system that standardizes workflows by removing unnecessary or wasteful practices, thereby increasing efficiency of healthcare delivery. In support of the BE SAFE initiative, we examined our hematopoietic stem cell transplant (HSCT) inpatient consultation process using our electronic medical record (EMR) at UVA. Full implantation of the EMR at UVA occurred in March 2011 using EPIC Hyper-space software.

**Methods:** A multidisciplinary team including social worker, financial coordinator, quality coordinator, program administrator, physicians and transplant coordinators conducted an audit of all inpatient HSCT consults requested from July 2013 to July 2014 examining the process from initial consult to transplant workup. Algorithms were created in Microsoft Visio to represent our current state and target state for the consultation process. Through the A3 process, we identified
communication violations that are represented by 4 storm clouds seen in Figure 1.

**Results:** Seventeen patients, with high risk malignancies (14 AML/MDS, 1 ALL), had an inpatient HSCT consult requested during the twelve month timeframe. Approximately 77% of consults experienced a connection violation resulting from poor communication. Frequent problems identified included failure to communicate the need for social work/financial screening, inability to view the consult order in EPIC, and the HSCT team being unaware of potential transplant patients. Patients were evaluated for transplant without insurance verifications and psychosocial assessments leading to patient dissatisfaction, transitions of care to other institutions, and excess out of pocket costs.

**Solution:** Our working group designed a target workflow to optimize communication. To implement target workflow, the HSCT program collaborated with EPIC builders to create a systems list, a consult patient list for the transplant program. The systems list, implemented September 2014, captures all consults ordered by inpatient staff allowing the members of the HSCT program to monitor for new consults. In-service educational sessions will be provided to all involved staff beginning October 2014. The new processes will be reviewed weekly for 4 weeks and monthly for the first quarter allowing for real-time interventions and corrections. Once the target state is met, we expect increased cost containment and decreased external transitioning of care, thereby improving patient care and satisfaction.

**Background:** The Sarah Cannon Blood Cancer Network (SCBCN) consists of 6 programs in the US performing over 850 HSCTs annually. In the fall of 2012, the SCBCN physician leaders proposed development of standardized disease-based BMT pathways. These included background information on the diseases, indications for transplant and treatment methods to be used. Anticipated benefits included improved quality and efficiency of transplantation throughout network, improved data collection, and a better platform for collaborative research amongst the programs. A Pathways Committee was formed with representation from each program including physicians, Pharm Ds, Clinical Nurse Specialists, and administrative support personnel.

**Process:** The committee scheduled twice monthly conference calls from January, 2013 through September, 2014 and developed initial pathways. The physicians presented draft pathways based upon expertise and clinical interest which were then modified according to committee and evidence review. Network experts were consulted as requested by the committee. Once the draft pathways were completed they were circulated to the 22 SCBCN program transplant physicians for comment. Comments were collated and sent to the committee for review for final revisions.

**Outcome:** Twelve standardized BMT pathways resulted from this process covering acute and chronic leukemias, lymphomas, myelodysplastic syndromes, multiple myeloma, myeloproliferative syndromes, graft-versus-host disease prophylaxis, and stem cell mobilization. Consensus on the treatment pathways was readily achieved setting the stage for further clinical and research collaboration. Final versions of the pathways were published on the Sarah Cannon SharePoint site for program access. SCBCN members agreed to implement the pathways to guide BMT care. Physicians may choose to treat a patient off-pathway but must submit a variance form for tracking. Variances are reviewed at the SCBCN quarterly Network Quality Committee Meeting.

Implementation of the pathways will require standardized order sets be created and PharmDs from Network programs are creating standardized order sets for each pathway. Pathways will be built into the electronic BMT Patient Management Software and variances tracked electronically.

**A Network Approach to Standardization of BMT Pathways**

**Peter A. McSweeney**, Carlos Bachier, Jesus G. Berdeja, Hana Safah, Mohammed M. Elayan, Charles F. LeMaistre, Rocky Billups, Tonya Cox, Colorado Blood Cancer Institute, Denver, CO; Adult Blood and Marrow Transplant, Texas Transplant Institute, San Antonio, TX; Sarah Cannon BMT Program, Nashville, TN; Hematology and Medical Oncology, Tulane Medical Center, New Orleans, LA; Sarah Cannon, Nashville, TN

**Background:** The Sarah Cannon Blood Cancer Network (SCBCN) consists of 6 programs in the US performing over 850 HSCTs annually. In the fall of 2012, the SCBCN physician leaders proposed development of standardized disease-based BMT pathways. These included background information on the diseases, indications for transplant and treatment methods to be used. Anticipated benefits included improved quality and efficiency of transplantation throughout network, improved data collection, and a better platform for collaborative research amongst the programs. A Pathways Committee was formed with representation from each program including physicians, Pharm Ds, Clinical Nurse Specialists, and administrative support personnel.

**Process:** The committee scheduled twice monthly conference calls from January, 2013 through September, 2014 and developed initial pathways. The physicians presented draft pathways based upon expertise and clinical interest which were then modified according to committee and evidence review. Network experts were consulted as requested by the committee. Once the draft pathways were completed they were circulated to the 22 SCBCN program transplant physicians for comment. Comments were collated and sent to the committee for review for final revisions.

**Outcome:** Twelve standardized BMT pathways resulted from this process covering acute and chronic leukemias, lymphomas, myelodysplastic syndromes, multiple myeloma, myeloproliferative syndromes, graft-versus-host disease prophylaxis, and stem cell mobilization. Consensus on the treatment pathways was readily achieved setting the stage for further clinical and research collaboration. Final versions of the pathways were published on the Sarah Cannon SharePoint site for program access. SCBCN members agreed to implement the pathways to guide BMT care. Physicians may choose to treat a patient off-pathway but must submit a variance form for tracking. Variances are reviewed at the SCBCN quarterly Network Quality Committee Meeting.

Implementation of the pathways will require standardized order sets be created and PharmDs from Network programs are creating standardized order sets for each pathway. Pathways will be built into the electronic BMT Patient Management Software and variances tracked electronically.

There is an increased need for the development of approaches to measure quality, costs and resource utilization patterns among allogeneic hematopoietic cell transplant (allo HCT) patients. Administrative claims data provide comprehensive data for examining service utilization and costs. However, because administrative data are primarily designed for reimbursement purposes, many challenges arise when using it for research. This is particularly problematic when working with rare diseases and procedures, as is the case with allo HCT. To examine the costs and service utilization of allo HCT and chemotherapy for older patients with acute myeloid leukemia (AML), a retrospective cohort study was designed using the 2007-2011 Truven Health MarketScan Research Database, a national multi-payer claims database that contains costs paid for healthcare services. Using this cohort, we demonstrate challenges in using claims databases for allo HCT and propose some approaches to mitigate them. Using ICD-9 diagnosis codes, we identified 29,915 patients with AML in the dataset. From this cohort, we focused on patients age ≥ 50 years and preliminarily identified 468 allo HCT recipients and 6371 patients with AML who did not receive an HCT. Figure 1 lists some of the issues faced and our approach to address them. Utilizing administrative claims data is both a science and an art. Researchers need to make rational decisions based on