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Abstract

In this paper the full transmission of learning for the general production lot size problem with an infinite
planning horizon is studied under the following assumptions: (1) Items deteriorate while they are produced

or stored. (2) Both demand and deterioration rates are (known) functions of time. (3) Shortages are al-

lowed, but are partially backordered. (4) The production rate is defined as the number of units produced

per unit time. A closed form for the total relevant cost as well as a rigorous mathematical method that leads

to a minimum total cost of the underlying inventory system are introduced. An illustrative example which

explains the applications of the theoretical results as well as its numerical verification are also given.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

It has been noted that the performance of a person, group of persons, or an organization,
engaged in a repetitive task improves with time. Such a phenomenon is referred, in the literature,
as the ‘‘Learning Phenomenon’’, which implies a reduction in the cost or the time required for
producing each unit. For instance, the familiarity with operational tasks and their environments,
and the effective use of tools and machines are usually increased with repetition. The simplest and
most widely used model is due to Wright [18] who suggested the power function, known as the
learning curve (LC), to express the relations of learning. The LC is represented as
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ti ¼ t1i�r ð1Þ
where ti is the time elapsed to produce the ith unit, t1 is the time required to produce the first unit, i
is the production count and r is the slope of the (LC). Similarly, if interruption occurs in pro-
duction the system may forget some of what it has learnt which means that the production at the
recommencement is not as high as when the production ceased. This phenomenon leads to what
so called the ‘‘forgetting curve’’ (FC) which is assumed to be
t̂tx ¼ t̂t1xf ð2Þ
where t̂tx, t̂t1, x and f have equivalent meanings of forgetting as ti, t1, i and r in relation (1). Both
learning and forgetting phenomenons have received considerably more attention of many re-
searchers. Keachie and Fontana [7] have shown the importance of transmission of learning in
optimal lot size models. Alder and Nanda [1] developed a general equation for the average
production time per unit when some percentage of learning is not retained between lots. Muth and
Spremann [14] introduced a transcendental cost function to determine the optimal lot size under
learning effects. Elmaghraby [4] reviewed some previously proposed models and expand one of
them to accommodate a finite horizon. He also suggested a model which gives more consistent
relationship between learning and forgetting. Salameh et al. [16] described a production lot size
model in which they incorporated the (LC) which has lead to a decrease in the optimum pro-
duction quantity and the required production time for each unit when full transmission of
learning (FTL) is assumed in successive cycles. In a subsequent paper Jaber and Salameh [8]
generalized Salameh et al. model with the consideration of shortages. The effect of both learning
and forgetting on the optimum production quantity and the minimum total inventory system cost
where shortages are not allowed has been considered by Jaber and Bonney [10,13]. The effect of
intracycle, within cycle, backorders on the optimal manufactured quantity and the total inventory
system cost was studied by Jaber and Bonney [11] for both full and partial transmission of
learning. A common theoretical drawback of (LC) formulae is that the results obtained are not
plausible as the cumulative production approaches to infinity. To retain plausibility, a correction
of Wrights model is made by adding a nonzero lower bound to give a new formulae known as
DeJong learning curve which is given by
ti ¼ t1mþ ð1� mÞt1i�r ð3Þ

where ti, t1, i and r have similar meanings as those of the (LC) and mð06m6 1Þ is a new pa-
rameter, known as the incompressibility factor. The optimal lot sizing under the bounded learning
case has been considered by so many researchers. The most recent articles on this aspect are of
Jaber and Bonney [9] and Zhou and Lau [19]. For more details about the learning and forgetting
phenomenons, including the bounded case, see the excellent review of Jaber and Bonney [12] and
the references therein.

All the above mentioned authors assumed a constant demand rate and did not incorporate
deterioration in their models. Also, with the exception of Jaber and Salameh [8] and Zhou and
Lau [19] who assumed that shortages are allowed but are fully backordered, all other authors
assumed that shortages are not permitted to occur.

In this paper we shall establish a general production lot size (GPLS) model under the following
assumptions
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(i) A single item is produced at an increasing rate, denoted by P ðtÞ, and its production is subject
to FTL (formulae (1)).

(ii) Items are subject to deterioration while in production or in storage. The deterioration and the
demand rates are assumed to be a known functions of time say hðtÞ, DðtÞ, respectively.

(iii) Shortages are allowed but only a fraction bð06 b6 1Þ is backordered and the rest ð1� bÞ is
lost. However, deterioration did not occur in the shortage periods.

(iv) To avoid mathematical complications, only FTL (i.e. formulae (1)) will be assumed, in which
case the production rate PðtÞ is defined in the natural sense as
PðtÞ ¼ Number of units produced up to time t
t

ð4Þ
and the initial production rate will be considered to be 1=t1 (t1 is the time required to produce
the first unit). However, the resulting mathematical model (though it is bit complicated one)
can be considered as the starting point to build similar models in which one or more of the
formulas (1), (2) or (3) can be incorporated.

(v) The cost parameters are as follows:
c¼ unit production cost which includes material, labor and manufacturing costs.
h¼ unit holding cost per unit time.
b¼ unit shortage cost per unit time for backordered items.
s¼ unit shortage cost per unit time for lost items.
k¼ set up cost per set up.

Let IðtÞ denote the inventory level at time t. The system starts operating at time T0 (note that we
can set T0 ¼ 0 without loss of generality) at a demand rate DðtÞ which accumulates up to time T1
leading to a maximum amount of Sj units of backordered items. Then production starts to fulfill
the demand and to clear the entire Sj units where the inventory level reaches to zero by time T2.
Fig. 1. The behaviour of the inventory system with and without learning.
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Now, the inventory level starts to go up with the rate PðtÞ � DðtÞ � hðtÞIðtÞ till time T3 where the
inventory level reaches its maximum. Then the inventory declines continuously at a rate
DðtÞ � hðtÞIðtÞ and it becomes zero by time T4 (the end of the cycle). The process is repeated. For
the learning case we shall use T1j, T2j, T3j and T4j for cycle j with similar meanings as T1, T2, T3 and
T4, respectively. The changes in the inventory levels for the with and without learning cases are
depicted in Fig. 1.

The paper is organized as follows. In the next section we formulate the (GPLS) model without
the consideration of learning effects and we indicate in brief its solution in Section 3. The (GPLS)
model is reformulated under (FTL) and a solution procedure for the resulting model are treated in
Section 4. An illustrative example, which explains the application of the theoretical results of
Section 3 together with its numerical verification as well as some concluding remarks are intro-
duced in Section 5.
2. Model formulation in general (without learning)

The variations of inventory levels depicted in Fig. 1 are given by the following differential
equations
dIðtÞ
dt

¼ �bDðtÞ T0 6 t < T1 ð5Þ
with the initial condition IðT0Þ ¼ 0
dIðtÞ
dt

¼ �½PðtÞ � DðtÞ� T1 6 t < T2 ð6Þ
with the ending condition IðT2Þ ¼ 0
dIðtÞ
dt

¼ PðtÞ � DðtÞ � hðtÞIðtÞ T2 6 t < T3 ð7Þ
with the initial condition IðT2Þ ¼ 0
dIðtÞ
dt

¼ �DðtÞ � hðtÞIðtÞ T3 6 t < T4 ð8Þ
with the final condition IðT2Þ ¼ 0.
Let
a0ðtÞ ¼ hðtÞ and c0ðtÞ ¼ e�aðtÞ ð9Þ

Then the solutions of the above differential equations are
IðtÞ ¼ �b
Z t

T0

DðuÞdu T0 6 t < T1 ð10Þ

IðtÞ ¼ �
Z T2

t
½P ðuÞ � DðuÞ�du T1 6 t < T2 ð11Þ
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IðtÞ ¼ e�aðtÞ
Z t

T2

½P ðuÞ � DðuÞ�eaðuÞ du T2 6 t < T3 ð12Þ

IðtÞ ¼ e�aðtÞ
Z T4

t
DðuÞeaðuÞ du T3 6 t < T4 ð13Þ
respectively.
Let
Iðt1; t2Þ ¼
Z t2

t1

IðtÞdt
then from (12) and (13) (using integration by parts) we can easily find
IðT2; T3Þ ¼
Z T3

T2

½cðT3Þ � cðuÞ�½P ðuÞ � DðuÞ�eaðuÞdu ð14Þ

IðT3; T4Þ ¼
Z T4

T3

½cðuÞ � cðT3Þ�eaðuÞ du ð15Þ
Similarly (10) and (11) lead, respectively, to
IðT0; T1Þ ¼ b
Z T1

T0

ðT1 � uÞDðuÞdu ð16Þ

IðT1; T2Þ ¼
Z T2

T1

ðu� T1Þ½P ðuÞ � DðuÞ�du ð17Þ
Let us assume, without loss of generality, that T0 ¼ 0. Then the relevant costs of the underlying
inventory system consists of the following:

Item�s production cost ¼ c
R T3
T1
PðuÞdu.

Note that this cost includes the deterioration cost.
Holding cost ¼ h½IðT2; T3Þ þ IðT3; T4Þ�.
Shortage cost for backordered items ¼ b½Ið0; T1Þ þ IðT1; T2Þ�.
Shortage cost for lost items ¼ sð1� bÞ

R T1
0
DðuÞdu.

Thus, the total relevant cost per unit time denoted by W , is given by
W ¼ 1

T4
c
Z T3

T1

PðuÞdu
�

þ h
Z T3

T2

fcðT3Þ
�

� cðuÞgfP ðuÞ � DðuÞg � eaðuÞduþ
Z T4

T3

fcðuÞ

� cðT3ÞgDðuÞeaðuÞdu
�
þ b b

Z T1

0

ðT1
�

� uÞDðuÞduþ
Z T2

T1

ðu� T1ÞðPðuÞ � DðuÞÞ
�
du

þ sð1� bÞ
Z T1

0

DðuÞduþ k
�

ð18Þ
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Our objective is to find T1, T2, T3 and T4 that minimize W , where W is given by (18). But, the
variables T1, T2, T3 and T4 are related to each other through the following relations
0 < T1 6 T2 6 T3 6 T4 ð19Þ

b
Z T1

0

DðuÞdu ¼
Z T2

T1

½P ðuÞ � DðuÞ�du ð20Þ

e�aðT3Þ
Z T3

T2

½P ðuÞ � DðuÞ�eaðuÞdu ¼ e�aðT3Þ
Z T4

T3

DðuÞeaðuÞdu ð21Þ
Relation (19) express the natural monotonicity constraints, since otherwise, the given problem,
would have no meaning. Relations (20) (and (21)) ensures that fact the the inventory levels must
have equal values for t ¼ T1 (for t ¼ T3). Thus we need to solve the following optimization
problem which we shall call problem ðPÞ.
ðPÞ Minimize W subject to

19; g1 ¼ 0 and g2 ¼ 0

�

where W is a given by (18) and g1, g2 are given by
g1 ¼ b
Z T1

0

DðuÞdu�
Z T2

T1

½PðuÞ � DðuÞ�du

g2 ¼
Z T3

T2

½PðuÞ � DðuÞ�eaðuÞ du�
Z T4

T3

DðuÞeaðuÞdu
3. Solution procedure for the general model

The solution procedure for problem ðPÞ goes as follows. First we ignore (19) and we solve the
problem under the two equality constraints g1 ¼ 0 and g2 ¼ 0 (let us call this problem ðP1Þ).

Then we show that any solution to ðP1Þ does satisfy the constraints (19) (hence it satisfies
problem ðP Þ).

To see this, let ZðT1; T2; T3; T4; k1; k2Þ be the Lagrangean of ðP1Þ where, k1, k2 are the Lagrange
multipliers corresponding to g1 ¼ 0 and g2 ¼ 0, respectively, then
ZðT1; T2; T3; T4; k1; k2Þ ¼ W ðT1; T2; T3; T4Þ þ k1g1 þ k2g2
The necessary conditions to have a minimum are
oZ
oT1

¼ 0;
oZ
oT2

¼ 0;
oZ
oT3

¼ 0;
oZ
oT4

¼ 0;
oZ
ok1

¼ 0; and;
oZ
ok2

¼ 0 ð22Þ
Note that the last two equations of (22) repeat (20) and (21), respectively. From the expression of
W , g1 and g2, we can easily obtain the following results
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T4 �
oZ
oT1

¼ �cPðT1Þ þ b b
Z T1

0

DðuÞdu
�

�
Z T2

T1

½PðuÞ � DðuÞ�du
�
þ sð1� bÞDðT1Þ

þ k1½bDðT1Þ þ PðT1Þ � DðT1Þ� ¼ 0
Recalling (19) we get:
k1 ¼
cPðT1Þ � sð1� bÞDðT1Þ
P ðT1Þ � ð1� bÞDðT1Þ

ð23Þ
Note that k1 P 0 if cP s or if b ¼ 1 (no lost items)
T4 �
oZ
oT2

¼ h½�cðT3Þ þ cðT2Þ�½P ðT2Þ � DðT2Þ�eaðT2Þ þ bðT2 � T1Þ½P ðT2Þ � DðT2Þ�

� k1½P ðT2Þ � DðT2Þ� � k2½P ðT2Þ � DðT2Þ�eaðT2Þ ¼ 0
From which and (23) we have
k2 ¼ e�aðT2Þ h½cðT2Þ
�

� cðT3Þ�eaðT2Þ þ bðT2 � T1Þ �
sð1� bÞDðT1Þ � cPðT1Þ
PðT1Þ � ð1� bÞDðT1Þ

�
ð24Þ

T4 �
oZ
oT3

¼ cPðT3Þ þ h c0ðT3Þ
Z T3

T2

½P ðuÞ
�

� DðuÞ�eaðuÞ du� c0ðT3Þ
Z T4

T3

DðuÞeaðuÞ du
�

þ k2½P ðT3Þ � DðT3Þ�eaðT3Þ þ DðT3ÞeaðT3Þ� ¼ 0
recalling (21) we obtain
k2 ¼ �ce�aðT3Þ ð25Þ

From (24) and (25) we have
ce�aðT3Þ ¼ e�aðT2Þ h½cðT3Þ
�

� cðT2Þ� � bðT2 � T1Þ �
cPðT1Þ � sð1� bÞDðT1Þ
PðT1Þ � ð1� bÞDðT1Þ

�
ð26Þ
Finally, let W ¼ w=T4 () w ¼ T4 � W , w0 ¼ oW =oT4, then
oZ
oT4

¼ w0T4 � w
T 2
4

þ k2
og2
oT4

¼ fh½cðT4Þ � cðT3Þ�DðT4ÞeaðT4ÞgT4 � w
T 2
4

þ ce�aðT3ÞDðT4ÞeaðT4Þ

oZ
oT4

¼ 0 () W ¼ fh½cðT4Þ � cðT3Þ� þ cT4e�aðT3ÞgeaðT4ÞDðT4Þ ð27Þ
Now, let T1 > 0, then it is evident from (20) that T2 P T1 since the RHS of (20) is >0 and since
P ðuÞPDðuÞ. On the other hand, (26) implies that h½cðT3Þ � cðT2Þ� > bðT2 � T1Þ þ k1 P 0 (for
cP s) which implies that cðT3ÞP cðT2Þ () T3 P T2 (recall cðtÞ is an increasing function since
c0ðtÞ ¼ e�aðtÞ > 0). This and (21) implies that T4 P T3. Thus (19) can be replaced by T1 > 0. But the
constraint T1 > 0 need not to be considered since its corresponding Lagrange multiplier is then
equal to zero as an implication of Kuhn–Tucker necessary conditions.

Sufficient conditions for the global optimality of the solution(s) to problem ðP1Þ can be es-
tablished by quite similar methods to the methods that have been used in Balkhi [2,3].
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4. Model motivation and formulation under (FTL)

4.1. Model motivation

A very simple example for learning phenomena, which expresses the time reduction as in-
creasing practice is gained, is that clerks become quicker in accomplishing their daily routines
within time upon reaching to some kind of steady state situation. Such learning phenomena, is
also applicable to many kinds of productions especially those which their productivity are in-
fluenced by human labour needed for final assembly (Examples: cars, aircrafts, ships, machines,
electronics, . . .). The theory can be applicable to single operator or trainee learning a new task just
as much as a complete organization doing a new type of production where the organizational
learning is, conveniently, viewed as the sum of individual learning. Different learning curve models
for certain individual, organizational learning or a combination of both have been introduced in
the literature and will not be examined here again, because they have had adequate description in
their papers. The learning curves in those papers have been imposed and their parameters have
been estimated on the basis of aggregated empirical and/or simulated data usually taken from
assembly lines (see for instance [5–7,15,17,18]). To the author�s knowledge and with the exception
of the papers mentioned in Section 1, non of those learning curves has been incorporated in an
inventory model in order to study the impact of the learning phenomena on the production
outputs in terms of time, cost or cumulative work. However, the incorporation of learning
phenomena in the (GPLS) model introduced here, has the features that it covers many of pro-
duction lot size inventory models. To avoid mathematical complications, the learning curve (1)
(which was proposed by Wright [18] to show the variation of labour cost with the quantity
produced airplanes) is going to be incorporated in our (GPLS) model. This curve is, in fact, the
most common curve still in use since it is simple to explain and as accurate as other learning
curves. Though our model is mainly a theoretical one but it can be applied to many real life
situations. A scenario of practical example can still be given. The example consists of assembling a
number (say 1000) of electronic machines (say washing machines). This requires a staff of some
men and women (say 50) who are newly trained for such task but are not completely skilled in this
work. There are neither imposed production rates nor bonuses given to the workers, hence their
actual production rates are recorded. Thus, the actual times required to assemble successive units
are recorded for each worker. Also, the cumulative outputs versus the elapsed time for the whole
work shop are also recorded, then the average times required by the whole work shop to produce
successive units are calculated. The resulting data can then be used to estimate the parameters
of the proposed learning curve (1), namely t1 and r, by using suitable statistical method. For
instance, the logarithmic transformation of LC (1) is
logðtiÞ ¼ logðt1Þ � r logðiÞ
which is an equation of a straight line with slope ð�rÞ.
A simple linear regression can then be used to compute r and t1 from the empirical data ob-

tained (as in the manner explained above). The resulting learning curve, can now be incorporated
in the underlying production lot size model to study its impact on the levels of productivity.

Further, from (1) we have t2 ¼ t12�r and for the value r ¼ 0:075, (which is being used below in
Section 5.1) then 2�r ¼ 94:9%. This result means that the time needed to produce the second unit
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is 94.9% of the time needed to produce the first unit. The value r ¼ 0:075 has, infact, been taken
from an empirical study of an assembly line case investigated in [5] to estimate the parameters of
LC (1).
4.2. Model formulation

Since FTL implies that learning takes its effects in successive cycles and units we shall rewrite
the (LC) given by (1) as
tij ¼ t1ji�r ð28Þ

where tij is the elapsed time to produce the ith unit in production cycle j, t1j is the time required to
produce the first unit in cycle j, and r is the slop reflecting the decrease in the production time
required per unit. To see the effects of learning in the production lot size models, we shall include
the above learning curve (viz (28)) in our (GPLS) model where it is necessary, namely in pro-
duction times and rates. (Note that the LC (28) need not to be included in the factors that are
not related to the learning phenomena, namely, DðtÞ and hðtÞ.) To do this, we first give another
(approximated) form for (28). Let tj be the time required to produce i units in the jth cycle
then
tj ¼
Xi

k¼1

t1jk�r ¼ t1j
Xi

k¼1

k�r � t1j

Z i

0

k�r dk; or tj ¼ t1j
i1�r

1� r
ð29Þ
Also, from the definition of P ðtÞ we have
PðtjÞ ¼
i
tj
¼ 1� r

t1ji�r
ð30Þ
Now, let Qj be the amount produced between T2j and T3j and Sj as defined above.
Then, from (29) we have
T3j � T2j ¼ t1j
Q1�r

j

1� r
ð31Þ
Also,
Sj ¼ b
Z T1j

0

DðtÞdt ð32Þ
Note that the RHS of (32) is an increasing function of T1j, so T1j can be uniquely determined as a
function of Sj, say
T1j ¼ f1ðSjÞ ð33Þ

From (33) and (20), T2j can be uniquely determined as a function of Sj, say
T2j ¼ f2ðSjÞ ð34Þ
Substituting (34) in (31) we find that T3j can be uniquely determined as a function of Sj and Qj, say
T3j ¼ f3ðSj;QjÞ ð35Þ
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from which and (21), T4j can be uniquely determined as a function of Sj and Qj, say
T4j ¼ f4ðSj;QjÞ ð36Þ

Note that (34)–(36) have resulted from (direct) substitutions of the constraints g1 ¼ 0 and g2 ¼ 0.
Now substituting these results in (18) we then obtain the following unconstrained optimization
problem for the (FTL) case in which Sj and Qj are our decision variables which we shall call it
problem ðP2Þ
Minimize LðSj;QjÞ

¼ 1

f4
c
Z f3

f1

P ðuÞdu
�

þ h
�
�
Z f3

f2

cðuÞðPðuÞ � DðuÞÞeaðuÞ duþ
Z f4

f3

cðuÞDðuÞeaðuÞ du
�

þ b
�
� b

Z f1

0

uDðuÞduþ
Z f2

f1

uðPðuÞ � DðuÞÞdu
�
þ sð1� bÞ

Z f1

0

DðuÞduþ k
�

ð37Þ
Letting
lðSj;QjÞ ¼
LðSj;QjÞ

f4
() LðSj;QjÞ ¼ f4 � lðSj;QjÞ
Then the necessary conditions for having a minimum are
oL
oSj

¼ 0 and
oL
oQj

¼ 0 ð38Þ
which are, respectively, equivalent to
l0Sj � f4 � f 0
4;Sj

� l ¼ 0 ð39Þ
and
l0Qj
� f4 � f 0

4;Qj
� l ¼ 0 ð40Þ
where l0x and f 0
i;x are the derivatives of l and fi with respect to (w.r.t) x, respectively. But (39) and

(40) lead to
l0Qj � f 0
4;Sj

¼ l0Sj � f
0
4;Qj

ð41Þ
Taking the derivative of both sides of (21) w.r.t. Qj we have
f 0
3;Qj

Pðf3Þeaðf3Þ ¼ f 0
4;Qj

Dðf4Þeaðf4Þ
from which and (33)–(37) we obtain
l0Qj
¼ f 0

3;Qj
P ðf3Þfcþ heaðf3Þ½cðf4Þ � cðf3Þ�g ð42Þ
Also (33)–(37) lead to
l0Sj ¼ c½f 0
2;Sj

Pðf2Þ� f 0
1;Sj

P ðf1Þ� þ hf�f 0
3;Sj

cðf3Þ½P ðf3Þ�Dðf3Þ�eaðf3Þ þ f 0
2;Sj

cðf2Þ½P ðf2Þ�Dðf2Þ�eaðf2Þ

þ f 0
4;Sj

cðf4ÞDðf4Þeaðf4Þ � f 0
3;Sj

cðf3ÞDðf3Þeaðf3Þgþ bf�bf 0
1;Sj

f1Dðf1Þþ f 0
2;Sj

f2½Pðf2Þ�Dðf2Þ�
� f 0

1;Sj
f1½P ðf1Þ�Dðf1Þ�gþ sð1� bÞf 0

1;Sj
Dðf1Þ
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From (20), (33) and (21) we, respectively, have
bf 0
1;Sj

Dðf1Þ ¼ f 0
2;Sj

½Pðf2Þ � Dðf2Þ� � f 0
1;Sj

½P ðf1Þ � Dðf1Þ�; f 0
1;Sj

Dðf1Þ ¼
1

b

and
f 0
3;Sj

P ðf3Þeaðf3Þ � f 0
2;Sj

½Pðf2Þ � Dðf2Þ�eaðf2Þ ¼ f 0
4;Sj

Dðf4Þeaðf4Þ
Substituting in l0Sj we obtain (recall that f 0
3;Sj

¼ f 0
2;Sj

by (31))
l0Sj ¼ c½f 0
2;Sj

P ðf2Þ � f 0
1;Sj

P ðf1Þ� þ hf 0
2;Sj

Pðf3Þeaðf3Þ½cðf4Þ � cðf3Þ�

þ f 0
2;Sj

½Pðf2Þ � Dðf2Þ�fbðf2 � f1Þ � heaðf2Þ½cðf4Þ � cðf2Þ�g þ
sð1� bÞ

b
ð43Þ
From (41)–(43) we have
f 0
4;Sj

f 0
3;Qj

Pðf3Þfcþ heaðf3Þ½cðf4Þ � cðf3Þ�g

¼ f 0
4;Qj

c½f 0
2;Sj

Pðf2Þ
�

� f 0
1;Sj

P ðf1Þ� þ hf 0
2;Sj

P ðf3Þeaðf3Þ½cðf4Þ � cðf3Þ� þ f 0
2;Sj

½P ðf2Þ � Dðf2Þ�

� fbðf2:� f1Þ � heaðf2Þ½cðf4Þ � cðf2Þ�g þ
sð1� bÞ

b

�
ð44Þ
Also, (40) () l ¼ l0Qj
:f4=f 0

4;Qj
or
L ¼ l
f4

¼
l0Qj

f 0
4;Qj

ð45Þ
where L is given by (37) and l0Qj
is given by (42). Recalling (32) and the definition of P ðtÞ as in-

troduced in (iv) Section 1, we have
Pðf1Þ ¼ 1=t1j ð46Þ

Pðf2Þ ¼
Sj þ b

R f2
f1
DðtÞdt

f2
¼

b
R f2
0
DðtÞdt
f2

ð47Þ
and
Pðf3Þ ¼
Sj þ b

R f2
f1
DðtÞdt þ Qj

f3
¼

b
R f2
0
DðtÞdt þ Qj

f3
ð48Þ
The two eqs. (44) and (45) can, now, be used to determine the optimal values of Qj and Sj. Then
the minimum total cost can be determined from (45). This will be illustrated in the following
example.
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5. Illustrative example for the (FTL) case, numerical verification and concluding remarks

The application of the above theoretical results are illustrated in the following example.
Consider a production lot size inventory model with linear demand rate function given by
DðtÞ ¼ 2at þ d tP 0
The parameter ‘‘a’’ represents the rate of change in the demand rate. The case a > 0 implies an
increasing demand rate, the case a < 0 implies a decreasing demand rate and the case a ¼ 0
allows the possibility for a constant demand rate where then DðtÞ ¼ d; 8tP 0. Note also that
d ¼ Dð0Þ represent the demand rate at time t ¼ 0. And a deterioration rate given by
hðtÞ ¼ a1
b1 � b2t

; tP 0; b1 P a1 P 0 and b1 > b2 P 0
Here b1 is to be taken sufficiently larger than b2 in order to keep hðtÞP 0 (viz b1=b2 P T4j). Note
that hðtÞ is an increasing function of t. The parameters a1, b1 and b2 are just function parameters
so that a1=b1 represent the deterioration rate at time t ¼ 0. If b2 ¼ 0 then hðtÞ ¼ a1=b1, 8tP 0
which means that we have a constant rate of deterioration. If a1 ¼ 0 then hðtÞ ¼ 0, 8tP 0 which
corresponds to the without deterioration case.

Next we calculate the theoretical functions aðtÞ, cðtÞ and Sj, Qj,
R
PðtÞdt, fi, f 0

i;Si
, f 0

i;Qi
(i ¼ 1, 2, 3

and 4) and l as they defined in the previous sections for the above demand and deterioration rates.
Now, from (9) we have
aðtÞ ¼
Z

a1
b1 � b2t

dt ¼ lnðb1 � b2tÞ�a1=b2
(All constants of the indefinite integrals are ignored since we are going to use them in the definite
case.)
eaðtÞ ¼ elnðb1�b2tÞ�a1=b2 ¼ ðb1 � b2tÞ�a1=b2

cðtÞ ¼
Z

e�aðtÞdt ¼
Z

elnðb1�b2tÞa1=b2 dt ¼
Z

ðb1 � b2tÞa1=b2 dt ¼ c1ðb1 � b2tÞðb2þa1Þ=b2

where c1 ¼
�1

a1 þ b2
; cðtÞeaðtÞ ¼ c1ðb1 � b2tÞ
Now, from (32) we have Sj ¼ b
R f1
0
DðtÞdt ¼ b½af 2

1 þ df1� from which we have
f1 ¼
�bd �

ffiffiffiffiffi
D1

p

2ba
ð49Þ
where D1 ¼ b2d2 þ 4baSj.
(Negative values of (49) are to be rejected.)
From (29) and (30) we haveR
PðtjÞdtj ¼

R
ð1� rÞdi ¼ ð1� rÞi, from which, (20) and (32), we have
Sj ¼
Z f2

f1

PðuÞdu�
Z f2

f1

DðuÞdu
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Sj ¼ ð1� rÞðf2 � f1Þ � af 2
2 � df2 þ af 2

1 þ df1
or (recall that af 2
1 þ df1 ¼ 1=bSj from above equations)
af 2
2 � ðd þ 1� rÞf2 þ ð1� rÞf1 þ Sj 1

�
� 1

b

�
¼ 0
from which we have
f2 ¼
ðd þ 1� rÞ �

ffiffiffiffiffi
D2

p

2a
ð50Þ
where D2 ¼ ðd þ 1� rÞ2 � 4afð1� rÞf1 þ Sjð1� ð1=bÞÞg.
(Values of f2 < f1 or f2 < 0 are to be rejected.)
Substituting in (31) we obtain
f3 ¼ f2 þ t1j
Q1�r

j

1� r
ð51Þ
Rewriting (21) as
Z f3

f2

P ðuÞeaðuÞdu ¼
Z f4

f2

DðuÞeaðuÞ
or
ð1� rÞ
Z f3

f2

ðb1 � b2uÞ
�a1
b2 du ¼

Z f4

f2

ð2auþ dÞðb1 � b2uÞ�
a1
b2 du
To facilitate calculations we can assume (without loss of generality) that �a1=b2 ¼ m where m
is an integer value. For instance, let us consider (for our Example) that m ¼ �1, then the last
relation leads to
ð1� rÞ ln f3
f2

¼ 2aðf4 � f2Þ þ c2 ln
f4
f2

ð52Þ
where c2 ¼ ðdb2 þ 2ab1Þ=b2 from which, (50) and (51) we can find f4.
Now, from the above relations we have
f 0
1;Sj

¼ � 1ffiffiffiffiffi
D1

p ; f 0
3;Sj

¼ f 0
2;Sj

¼ � 1

��
� 1

b

�
þ ð1� rÞf 0

1;Sj

�� ffiffiffiffiffi
D2

p

(The choice of + or ) sign, here, must coincide with our choices in (49) and (50).) From (52) we
have
f 0
4;Sj

¼ f 0
2;Sj

ð1� rÞðf2 � f3Þ þ ð2af2 þ c2Þf3
f3f2ð2af4 þ c2Þ

� f4
f 0
3;Qj

¼ f 0
2;Qj

þ t1jQ�r
j ¼ t1jQ�r

j (Since f 0
2;Qj

¼ 0 by (31)). Again (52) implies
f 0
4;Qj

¼ f 0
3;Qj

ð1� rÞf4
f3ð2af4 þ c2Þ
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From (47) and (48) we, respectively, have
P ðf2Þ ¼ bðaf2 þ dÞ; and P ðf3Þ ¼
bðaf 2

2 þ df2Þ þ Qj

f3

Finally, from (37) and with some algebra we find
l ¼ �2ab2c1h
3

f 3
4 þ c1hð2ab1 � db2Þ

2
f 2
4 þ c1b1dhf4 þ

c1hð1� rÞ
3

f 2
3 þ cð1� rÞf3

þ 2ab2c1h
3

�
� 2ab

3

�
f 3
2 þ

�
� c1hð2ab1 � db2Þ

2
� c1hð1� rÞ

2b2
þ bð1� rÞ

2
� db

2

�
f 2
2

� c1b1dhf2 þ
2ab
3

�
� 2bab

3

�
f 3
1 þ bd

2

�
� ð1� rÞb

2
� bdb

2
þ sð1� bÞa

�
f 2
1

þ ½sð1� bÞd � c1ð1� rÞ�f1 þ k ð53Þ

Now, the above results are to be substituted in (44) and (45) in order to get the solution of the
given example.

5.1. Numerical verification

The above illustrative example has been verified for a wide range of the model parameters from
which we have chosen the following set of values.

Note that both demand and deterioration rates are increasing functions of time. A Nonlinear
Programming Package has been used to determine the optimal values of Sj, Qj, T1j, T2j, T3j, T4j,
and the corresponding total minimum cost for five successive cycles. Further, the total number of
units (say Q) produced in each cycle, the time required for their production and the production
rate are also calculated. The results are shown in Table 1. In the first cycle we have taken
t11 ¼ 0:0015 year which results in a total number of Q ¼ 134:35. Then from (28) we found that the
time required to produce the unit 135.35 (which is the first unit to be produced in the second cycle)
is equal to t135:35 ¼ 0:0015ð135:35Þ�0:075 ¼ 0:001038. The same procedure is repeated for the other
cycles. The tabulated results indicate that the time required to produce the first unit in a cycle (t1j
in column 2) decreases with the number of the cycle which is also reflected by an increasing
production rate as shown in column 7 in Table 1. Such increase is, in fact, consistent with the large

The slope of the learning curve r ¼ 0:075
Time required to produce the first unit in
the first cycle

t11 ¼ 0:0015 year

Percentage of backordered items b ¼ 0:85
Unit production cost c ¼ $50
Unit shortage cost per year s ¼ b ¼ $0:5
Unit holding cost per year h ¼ $0:1
Set-up cost per set-up k ¼ $200
Parameters of demand rate a ¼ 250 units/year and d ¼ 125 units/year
Parameters of deterioration rate a1 ¼ b2 ¼ 10 units/year and

b1 ¼ 1000 units/year



Table 1

Optimal results under FTL for the illustrative example with: r ¼ 0:075, t11 ¼ 0:0015, b ¼ 0:85, a ¼ 250, d ¼ 125, a1 ¼ b2 ¼ 10, b1 ¼ 1000, c ¼ 50,

s ¼ b ¼ 0:5, h ¼ 0:1 and k ¼ 200

Cycle no.

j
Time re-

quired to

produce

the first

unit t1j

No. of

shortage

units Sj

No. of

units pro-

duced in

½T1; T3� Qj

Total

number

of units

produced

Q

Time re-

quired to

produce

Q units

Produc-

tion rate

Produc-

tion start

time T1j

End of

shortage

period T2j

End of

produc-

tion pe-

riod T3j

Cycle

end T4j
Minimum

total cost

1 0.0015 81.37 29.55 134.35 0.150849 890.63 0.417398 0.537310 0.568247 0.892341 6784.41

2 0.001038 83.41 21.42 125.38 0.097843 1281.44 0.424561 0.506839 0.522494 0.872341 6427.53

3 0.000722 84.94 20.82 122.91 0.066876 1837.88 0.429875 0.486355 0.496751 0.859469 6379.62

4 0.000503 84.98 20.53 120.98 0.045914 2634.93 0.430012 0.468673 0.475926 0.849959 6332.22

5 0.000351 87.58 19.52 120.18 0.031816 3774.20 0.438946 0.465949 0.470765 0.849063 6283.63

Z
.T
.
B
a
lk
h
i
/
A
p
p
l.
M
a
th
.
M
o
d
ellin

g
2
7
(
2
0
0
3
)
7
6
3
–
7
7
9

7
7
7



778 Z.T. Balkhi / Appl. Math. Modelling 27 (2003) 763–779
increase of the demand rate (a ¼ 250 and d ¼ 125) and the large decrease in the time ðt1jÞ required
to produce the first unit for successive cycles. Note that the results show some kind of settlement
in the number of units produced (Q in column 5) and a decrease in the minimum of the total
relevant cost (last column) which coincides with the main objective.

To sum up, in this paper, we have formulated and solved a (GPLS) model for two cases. The
first (in general) the effects of learning are not considered. In the second (FTL) is incorporated. In
both cases, the production, demand and deterioration rates are functions of time. Shortages are
allowed but are partially backlogged. Though the problem in the (FTL) case is a constrained
problem as in the general case, but it has been reduced to unconstrained one of two decision
variables. Namely Sj and Qj as they defined above. An illustrative example for the FTL case which
explains the application of the theoretical results and a numerical verification of this illustrative
example are also given. The numerical results clearly reflected the incorporated learning effects in
the proposed model. This seems to be the first time where such models are introduced and verified.
Acknowledgements

The author would like to express his thanks for one of the referees for his valuable remarks and
comments on the paper.
References

[1] G.L. Adler, R. Nanda, The effects of learning on optimal lot size determination, single product case, AIIE

Transactions 6 (1974) 14–20.

[2] Z.T. Balkhi, On the global optimality of a general production lot size inventory model for deteriorating items,

Belgium Journal of Operations Research, Statistics and Computer Science 38 (1998) 33–44.

[3] Z.T. Balkhi, View point on the optimal production stopping and restarting times for an EOQ model with

deteriorating items, Journal of the Operational Research Society 51 (2000) 999–1003.

[4] S.E. Elmaghraby, Economic manufacturing quantities under conditions of learning and forgetting (EMQ/LaF),

Production Planning Control 1 (1990) 196–208.

[5] S. Globerson, A. Seidmann, The effects of imposed learning curves on performance improvement, IIE Transactions

20 (1988) 317–323.

[6] J.H. Glover, Manufacturing progress functions, an alternative model and its comparison with existing functions,

The International Journal of Production Research 4 (1966) 279–300.

[7] E.C. Keachie, R.J. Fontana, Effects of learning on optimal lot size, Management Science 13 (1966) B102–B108.

[8] M.Y. Jaber, M.K. Salameh, Optimal lot sizing under learning consideration: shortages allowed and backordered,

Applied Mathematical Modelling 19 (1995) 307–310.

[9] M.Y. Jaber, M. Bonney, Optimal lot sizing under learning consideration: the bounded learning case, Applied

Mathematical Modelling 20 (1996) 750–755.

[10] M.Y. Jaber, M. Bonney, Production breaks and the learning curve: the forgetting phenomenon, Applied

Mathematical Modelling 20 (1996) 162–169.

[11] M.Y. Jaber, M. Bonney, The effect of learning and forgetting on the economic manufactured quantity (EMQ) with

consideration of intracycle backorders, International Journal of Production Economics 53 (1997) 1–11.

[12] M.Y. Jaber, M. Bonney, The economic manufactured/order quantity (EMQ/EOQ) and the learning curve: past,

present and future, International Journal of Production Economics 59 (1999) 93–102.

[13] M.Y. Jaber, M. Bonney, The effect of learning and forgetting on the optimal lot size quantity of intermittent

production runs, Production Planning and Control 9 (1998) 20–27.



Z.T. Balkhi / Appl. Math. Modelling 27 (2003) 763–779 779
[14] E.J. Muth, K. Spremann, Learning effects in economic lot sizing, Management Science 29 (1983) 264–269.

[15] D.A. Nembhard, V.M. Uzumeri, An individual-based description of learning within an organization, IEEE

Transactions on Engineering Management 47 (2000) 370–378.

[16] M.K. Salameh, M.U. Abdul-Malak, M.Y. Jaber, Mathematical modelling of the effect of human learning in the

finite production inventory model, Applied Mathematical Modelling 17 (1993) 613–615.

[17] S.M. Shafer, D.A. Nembhard, V.M. Uzumeri, The effects of worker learning, forgetting and heterogeneity on

assembly line productivity, Management Science 47 (2001) 1639–1653.

[18] T. Wright, Factors affecting the cost of airplanes, Journal of Aeronautical Science 3 (1936) 122–128.

[19] Y.-W. Zhou, H.-S. Lau, Optimal production lot––sizing model considering the bounded learning case and

shortages backordered, Journal of the Operational Research Society 49 (1998) 1206–1211.


	The effects of learning on the optimal production lot size for deteriorating and partially backordered items with time varying demand and deterioration rates
	Introduction
	Model formulation in general (without learning)
	Solution procedure for the general model
	Model motivation and formulation under (FTL)
	Model motivation
	Model formulation

	Illustrative example for the (FTL) case, numerical verification and concluding remarks
	Numerical verification

	Acknowledgements
	References


