
JOURNAL OF NUMBER THEORY 30, 156-166 (1988) 

An Inequality about Irreducible Factors 
of Integer Polynomials 

MAURICE MIGNOTTE 

Unit~ersitP Louk Paslew. Marh&natque, 67084 Slrusbuurg, France 

Communicated by M. Wuldschmidt 

Received July 31. 1987; revised January 18. 1988 

We give a new upper bound for the height of an irreducible factor of an integer 
polynomial. This paper also contains several bounds for the case of polynomials 
with complex coefficients. t 1988 Academic Press. Inc. 

1. INTRODUCTION 

1. In the sequel we need the following definitions which describe the 
“size” of a polynomial with complex coefficients. 

Let 

F= i a,XI, a,, # 0, 
I = 0 

be a polynomial with complex coefficients; we use the following classical 
notations: 

H(F)= max la,l, 
o<i<,, 

the height of F, 

IlFllz = ( i luf) ‘3 the norm of F, 

IIFII, = c la,l, 
,=o 

the length of F, 

IFI =max{IF(:)I; 11’) = 1 ). 

A very imortant notion was introduced by K. Mahler: the measure of F, 
which is defined by 
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M(F) = IanI fi max{ 1, 1~~1 1, 
j= I 
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where ;, , . . . . z, are the complex roots of F. Notice that M is multiplicative: 

Wf’Q) = M(P) .MQ). 

All these sizes, except the measure, have the same order of magnitude up 
to a factor bounded by the degree. We have 

H(F) < IIFll, < IFI < IIFII, < (n + 1) H(F); 

all these relations are trivial except perhaps 11 FIjz d I FI, which is a 
consequence of Parseval’s formula. 

2. We consider the relations between the measure and the size of a 
polynomial&for example, its length. We are mostly interested in the case of 
polynomials over the integers, and especially in the case of irreducible 
polynomials. 

If P is a polynomial over the complex numbers, the relations between the 
coefficients of P and its roots lead at once to the inequality 

IIPII I G 2”MPL where d = deg( P). (1) 

In some sense, this relation is the best possible even if P has integer coef- 
ficients: the equality holds for P = (X+ 1 )d. 

But what happens when P is irreducible? 
Consider now the polynomial 

E(X)=a(X+ 1)d+2, 

where a is a positive odd integer. This polynomial is irreducible over the 
integers (since aYd+ 2 is irreducible over Z). It satisfies IlEil, = u2*+ 2. We 
want to bound its measure. 

First, we choose a = 1, We use one step of Graeffe’s method. Consider 
the polynomial 

which is equal to 

E,(X)=(l -X)d+2 
k.O<Zk<d ” = 0 

xk+4. 

The roots of E, are the squares of the roots of E, and 

llEl /I 1 d 2"+' + 4. 
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If we apply Landau’s inequality (i.e., M(F) 6 lIFllz; see (3) below) to E,, 
we get 

M(E) = M(E,)‘/’ 6 (2d+ ’ + 4)“‘. 

Thus we see that, in the case of irreducible manic polynomials over the 
integers, the constant 2 in inequality (1) cannot be replaced by J2 - E, for 
any fixed E > 0. 

Taking now u = hd2, where h is a large odd integer, all the roots of E are 
close to 1 and its measure is at most 2a. This shows that, for irreducible 
polynomials over Z, the constant 2 in inequality (1) cannot be replaced by 
2 -E, for any fixed E > 0. 

It is easy to verify that M(E) 3 Cd for some absolute constant C > 1. 
This example shows that (1) cannot be much improved when M(P) is big, 
even if P is irreducible. 

But what happens if P is irreducible and its measure not too big? 
The following theorem, which is a simple instance of the main result of 

this paper (Theorem 5), shows that (1) is not the best possible in that case. 

THEOREM 1. Let P be un irreducible integer polynomiul, then 

IlPllz~e~‘~(d+2jm+2)‘+\“M(P)’ + k’, nlhere d = deg P. 

3. Estimates like (1) have applications to the following question: 
given an integer polynomial F, find a number B such that the coefficients of 
any irreducible factor P of F have absolute values bounded above by B. 
This problem is important in modern algorithms for the factorization of 
polynomials: for the Berlekampzassenhaus algorithm (see Knuth,* 
Vol 2), in the famous LenstraaLenstra-Lovasz algorithm, called also the 
L3-algorithm, B plays an important role (see [LLL]), and also for factor- 
ing polynomials with algebraic coefficients. The case of irreducible factors is 
the only one used in these algorithms and our result decreases their cost in 
an obvious way. 

Suppose that F is an integer polynomial and that P is some integer 
polynomial which divides F. Then the following inequality is well known: 

IIPII I d zd /IFlIz> where d = deg( P). (2) 

The proof of (2) is the following. Use (1) and the bound 

M(P) d M(F), 

* The Art of Computer Programming, Vol. 2, Addison Wesley, Reading, Mass., 1969 



IRREDUCIBLE FACTORS 159 

which comes from the two following facts: 

(i) the roots of P are roots of F, 
(ii) the leading coefficient of P divides the leading coefficient of F. 

This proves that 

llpll, d 2”MF). (2’) 

Then the conclusion follows from Landau’s inequality 

M(F) G IlFIlz. (3) 

Of course (2’) is generally sharper than (2). 
As I was told by A. Schinzel, inequality (3) goes back to Landau [L]; it 

has been rediscovered several times (Specht [S], Vicente Goncalves [V], 
Mignotte [Ml]; these two last papers contain a slight refinement of (2); 
the last one seems to be the first where this result is applied to bound the 
coefficients of the factors of a polynomial). See also [O]. 

We give here a brief proof of (3) since some ideas of this proof will be 
used later to obtain Theorem 3. Recall that a Blaschke factor relative to a 
complex number x is 

cc: - 1 
B(z; a) =-. 

Let z,. . . . . zk be the roots of F which lie outside of the unit circle and let 

B(z) = fi B(2; Zi) 
i=l 

be the product of the Blaschke factors relative to these roots. Put 
F*(,-)=F(z)B(z). 

For 1~1 = 1 we have the relation 

IF* (;)I = IF(: 

which comes from the well-known (and easily proved) fact that a Blaschke 
factor has modulus one when the variable is on the unit circle. 

By Parseval’s formula and the previous relation, we get 

Then (3) follows by an application of Parseval’s formula to the polynomial 
F* and the fact that its leading coefficient is nothing but M(F). 

4. The fact that (2)-and a fortiori (2’)-is almost the best possible 
for general integer polynomials has been (at least impliciteiy) proved in 
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exists an integer polynomial F, divisible by P, of height equal to 1 with 
deg( F) G d * log d. 

This shows that the constant 2 in inequality (2) cannot be replaced by 
2 -E, for any fixed E > 0. 

Applying Theorem 1 we get 

THEOREM I'. Let F he a nonzero integer polynomial and P an irreducible 
factor of F. Then 

IIPI12~eJ~(d+2~+2)‘+~‘dM(F)‘f,‘a, where d = deg P. 

This result is better than (2)-or even (2’)-for M(F) d eJdiz, when d is 
large enough. We remark that Theorem 1’ implies Theorem 1: take F= P. 

5. In practice, to apply Theorem 1’ (or estimate (2’)) we can use 
Landau’s inequality, M(F) d 11 FII *, or compute directly some upper bound 
for M(F). This second way leads to sharper estimates and is studied in 
[CMP]. The simplest method being some variant of Graeffe’s method. (In 
a few words: if F,,, is the polynomial whose roots are the 2” powers of the 
roots of F, then we have the inequality 

logM(F)<2-“‘.log ~IF,l12 

which is generally rather sharp for m > 4. This method was used above to 
study E.) 

2. GENERAL INEQUALITIES ABOUT FACTORS OF POLYNOMIALS 

We give here a list of bounds for the sizes of the factors of a polynomial 
with complex coefficients. The last two are new, others are more or less 
classical. 

In this section (but only in this section), we use the following notations: 
P and Q are nonconstant polynomials with complex coefficients. We put 

P = deg(P) and q = deg(Q). 

1. Classical inequalities. The multiplicativity of the measure and 
inequality (2’) lead to 

IIPII, M(Q) < 2PWf’QI. (4) 

A variant, proved in the same way, is 

IIPII, lIQll1 G2P+yWPQ). (5) 
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[M2]. The example consists of P(X) = (X+ 1)” and of some integer 
polynomial F of height one (see Sect. 5, corollary to Theorem 4’): there 

2. Girting’s inequality. Giiting [G], Lemma H, proved the following 
result: 

3. Durand’s inequality. If a is any real number then A. Durand [Dl] 
proved the inequality, 

IPI G((p+ 1)/f 

which implies 

l+ Ial)) lP(‘v.(X-a)l, 

IPI IIQII 

4. An application of real analysis. In [DR], Donaldson and Rahman 
obtained the following inequality. 

LEMMA 1. Let P be a complex polynomial of degree d and p any complex 
number. Then 

IIPll2b 1+ 1812-2181 cos & 
( ( >> 

~ l/2 
lIP(W(X- BJll2. 

Proof. Their proof consists of translating this problem into the search 
of the maximum of a real function in several variables. Applying differential 
calculus, they compute explicitly the solution for the maximum, so their 
inequality is sharp. A shorter proof, using Lagrange’s interpolation, was 
given by Durand (see [D2, Vol. 2, Sect. 5, C. 81). 

Considering the cases I p I < 1 and I(3 ( > 1, we get the following corollary. 

COROLLARY. Let P and /I as in Lemma 1. Then 

IIPl12~maxil, IPI) .(“in(~))~‘.l,P(X)(X-p)ll*. 

An obvious induction gives 

THEOREM 2. Let P and Q be po@omials with complex coefficients, with 
respective degrees p and q. Then 

P+Y--l 
IIf’llz~MQ,~ n 

1 
k=p sin(a/(k+2)) . IIPQll2, (8) 

which is the best possible when q = 1 (but not for q > 1). 
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5. Use of complex analysis. 

THEOREM 3. Let P and Q he polynomials tiith complex coefficients of 
respective degrees p and q. Then 

(9) 

Proof Let z, , . . . . zk be the roots of Q which lie outside of the unit circle 
and let B be the product of the Blaschke factors relative to these roots. Put 

Q*(z) = Q(z) B(z), F= PQ,. F* = PQ*. 

By the maximum modulus principle, for p > 1 we have 

IPI dmax{lP(--)I; 121 =p}, 

so that 

lpI GmaxW’*(z)l; 1~1 =P) 
min(jQ*(z)l; 121 =pj’ 

To bound the numerator we apply again the maximum modulus 
principle (to the polynomial reciprocal to F*) to get 

max{ IF*(z)I; I:( = p} 6 IF*1 pp+“, 

and the equality 

IF*l = IFI (implied by [B(z)1 = 1 if /zl = 1). 

For the denominator, we notice that the leading coefficient of Q* is 
equal to M(Q) and that any point of the circle 121 = p is at a distance at 
least p - 1 from any root of Q* (indeed all the roots of Q* lie in the unit 
disk), so that 

minj lQ*(z)l; IzI =p} 3 M(Q)@ - 1)“. 

The theorem follows from the choice p = (p + q)/p. 

Remark. Suppose that the product PQ and the degree of P are known 
and that we want to estimate IPI (for example). In the general case, all the 
previous inequalities cannot be completely compared. Roughly speaking, 
one can say that 

l (4) is the best when q is not too small, say for q 3 p/log p; 

l (6) or (7) are better than (4) for q < p/log p, but in this range (8) 
is better than (6) and (7) 

l (9) gives better results than (8) for q3 10. 
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3. CONSTRUCTION OF SOME MULTIPLE OF P WITH Low HEIGHT 

THEOREM 4. Let P he a polynomial with integer coefficients, irreducible, 
of degree d 3 2. Let N be an integer, N 3 d. Then there exists a nonzero 
polynomial G with integer coefficients, divisible hv P, of degree at most N 
Mhich satisfies 

tt’here M is the measure of P. 

Proof This is a direct application of the sharpening of Siegel’s lemma 
obtained by Bombieri and Vaaler [BVl]. 

Remark. A similar result was proved in [M2], where we get the slightly 
weaker bound 

H(G)<(2(N+ l)dMN)“(N+‘Pd’. 

But the proof is much easier than that of Theorem 4: it uses only the 
pigeon-hole principle. 

4. A RELATION BETWEEN THE HEIGHT AND THE MEASURE 
OF AN IRREDUCIBLE INTEGER POLYNOMIAL 

Let P be an irreducible integer polynomial of degree d. Let N be an 
integer >d and consider the polynomial G constructed in Theorem 4. 
Using some estimates of Sect. 2, we get the following result. 

THEOREM 5. Let P be an irreducible integer polynomial qf degree d and 
measure at most M. Then, for any integer N 3 d, we have 

(PI <CN.((N+2)d’2MN)1’(N+‘-d), 

where 

Taking some suitable values of N we get the following corollaries. 

COROLLARY 1. Let P be an irreducible integer polvnomial of degree d 
and measure at most M. Then 
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Proof. Wechoose N=d+[Jrd] and C,6NN(N+1)d-d(N-d)pN+d. 
The details of computation are not difficult. We them. 

We wrote down Corollary 1 because of its relative simplicity. The 
following result is sharper than Corollary 1 in the range A43 es” and 
sharper than (1) for 

COROLLARY 2. Let P he an irreducible integer polynomial of degree d 
and measure at most M. Then 

Proof: For M < e’, Corollary 2 is implied by Corollary 1. Whereas in 
the range 

Mb t?jJd 

it is implied by (1). Moreover, (1) implies Corollary 2 for d d 4. Thus we 
suppose that 

e2 < M < e”/xd and d> 5. 

In Theorem 5, put N = d + x. Then we get 

Choose now 

Then 

and the conclusion follows easily. 

5. COMMENTS 

1. Theorem 2 can be generalized in the following way. In [M2], we 
proved 
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THEOREM 4’. Let P be a nonzero polynomial with integer coefficients. of 
degree d> 2, whose decomposition over Z[X] is of the form 

the P, being pairwise distinct irreducible polynomials. Let N and T be positive 
integers, N > dT. Then there exists a nonzero polynomial Q, with integer 
coefficients, divisible by P, of degree at most N which satisfies 

H(Q)< {2”(N+ l)d*(T+I)/ZM(p)N}l/(N+i d7) 

where 

d, = deg P,, l<j<k, a=r,+ ... +r,, d* =t$d, + ... +rid,. 

This theorem can be used in an obvious way to generalize Theorem 5. It 
also implies that there exists an integer polynomial F of degree <d’ log d, 
with height one, and divisible by the polynomial P(X) = (X+ 1)‘. 

Moreover, Theorem 4’ has been sharpened and generalized to 
polynomials with algebraic coefficients by Bombieri and Vaaler; see 
[BV2]. Thus, Theorem 5 can also be generalized to polynomials with 
algebraic coefficients. 

2. It is difficult to guess whether Theorem 4 is sharp or not. The 
following example shows that it is not sharp when the measure is equal 
to 1. Consider the cyclotomic polynomial QR. Then it is known (see [EV] ) 
that 

log( ) @,/ ) 6 &log log n, 

for some positive constant c, and that this result is essentially best possible. 
But our theorem gives only 

log( /@,,I ) < n”’ + ‘. 
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