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Abstract

Since music conveys as well as evokes a wealth of emotions in a listener, there has been tremendous research and commercial
development to automatically organize music using smart machine learning techniques. In this work, various features are
extracted from the music signal for an effective representation to aid in genre classification. The feature set comprises of
dynamic, thythm, tonal, and spectral features comprising a total of 144 features. The size of feature set is further reduced to 39
features using correlation-based feature selection mechanism to remove the correlated features. Support vector machine classifier
is used to train the genre classification system with a flexible Pearson Universal Kernel (PUK) that can adapt its behavior to
various functions (from linear to Gaussian). The reduced feature set, consisting mostly rhythm and spectral features, significantly
outperforms the complete feature set leading to an accuracy of 82% for classifying 5 genres.
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1. Introduction

Music plays an important role in modern information technology oriented society due to abundant availability of
digital music on Apple’s iTunes store, Amazon store, etc. hosting more than 2 million songs. The research area of
Music Information Retrieval (MIR) has seen significant work in the past decade ranging from cover song detection,
music recommendation, beat tracking, to audio fingerprinting. In this work, we focus on automatic music genre
classification, since music genre is an important music descriptor that can be used to automatically organize large
collections of music into playlists as per user’s mood. Commercial applications such as Shazam, Pandora, Last.FM,
and Spotify have been developed to aid this goal in the recent years. Applications are envisaged for smartphones
where the music collection can be automatically grouped as per genre to enrich user’s listening experience. From
machine learning perspective, the task of genre classification is non-trivial due to the fact that the definition of
genres are still ill-defined, as well as the music signals are time-varying complex signals requiring processing of
high-dimensional values. Thus, a reduced feature representation is required for most work in MIR, followed by
feature classification stage for genre classification problem.

1.1. Related Work

Mel-frequency cepstral coefficients (MFCC) features were extracted and Gaussian Mixture Model (GMM)
classifier was used by Flexer' followed by a statistical evaluation of the genre classification experiment. Modulation
spectral contrast features using octave music scale were proposed by Lee et al? as a modification of the conventional
octave spectral contrast features. Musical surface and rhythm features were extracted by Tzanetakis® to develop
GenreGram user interface for easy visualization of different genre songs. Support vector machine (SVM) with
different kernels were used by Xu et al* for genre classification to achieve 93% accuracy; however, they used only
60 total samples with 15 samples for 4 genres, which is too small database in our opinion for training and testing the
system. Daubechies Wavelet coefficient histograms were used by Tao et al’ as discriminative features for 10 genres,
along with the standard timbral and rhythm features. Block-level feature comprising of spectral contrast pattern, and
correlation pattern among others were fused by Seyerlehner et al® using distance space normalization for various
music genre datasets. Instance selection process was used by Miguel et al” prior to SVM classifier training resulting
in faster classification with about 59% classification for 10 genres from Latin Music Dataset®. North Indian
devotional music genres were classified by Sujeet et al’ using tempo and modulation spectra of timbral features.
Chromagram related features were used by Boonmatham et al'® based on diatonic and chromatic scale for Thai
music genre classification. Novel features using fluctuation patterns were proposed by Pampalk'' using a sonogram
representation of the music. The concept of compressive sampling was used by Chang et al'? for both short-time and
long-time music features, achieving high accuracies similar to non-negative tensor factorization approach!® for 10-
genre classification task. Rhythm patterns and rhythm histogram features were proposed by Lidy et al'* as a means
of psycho-acoustic transformations of the music signal. A self-adaptive harmony search technique was proposed by
Huang et al'® for selecting the most appropriate features from the set of conventional features. Aucouturier and
Pachet!® rightly claimed that it is only with efficient content management techniques (such as automatic genre
classification) that millions of music songs from industry can be distributed to millions of users. However, there
seems to be no clear identification of music features relevant in classifying various genres so far. In this work, we
extract music features from 4 broad categories: dynamic, rhythm, tonal, and spectral to check the efficacy of each
feature set for a 5 genre classification task.

2. Music Features

Various features are extracted for each music signal, broadly categorized into computational features and
perceptual features. The computational features do not convey any specific meaning about the genre of the song, but
only describe the mathematical analysis of music signal. They are further categorized into dynamics and spectral
feature set. The perceptual features mathematically represents the music properties based on the human auditory
system. They are further categorized into rhythm and tonal feature set. In the following, we use the notation of x to
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represent a discrete music signal sampled at frequency f; with duration 7 in seconds and N in samples, and X the
spectrum.

2.1. Dynamic Features

The dynamic feature set comprises of root-mean-square (RMS) energy, zero-crossing-rate (ZCR), and low energy
rate. The RMS feature, which represents the global energy of the music signal, is computed by taking the root
average of amplitude square of all samples. The ZCR rate is an indicator of noisiness of the music signal, and is
computed by counting the number of times a signal crosses zero: (x(n-1) <0 AND x(n) > 0), OR (x(n-1) > 0 AND
x(n) <0), OR (x(n-1) # 0 AND x(n) = 0). The low energy rate feature conveys the information about the proportion
of silence or near-silence in the music signal. The threshold is set as the average energy determined from the energy
envelope of signal and the low energy rate is computed as the fraction of frames which have energy less than this
threshold.

2.2. Rhythm Features

Rhythmic features play a dominant role for differentiating music genres and are based on the time intervals
between various note attacks, onsets, duration of notes, tempo, etc. The rhythm feature set comprises of beat
histogram features, pulse clarity, fluctuation patterns (FP) features, and onsets features. The beats in music are the
steady pulses that drives music forward and provides a temporal framework for a music piece to which a human taps
along when listening to the music.

10, - 115 10 - 115 15
| Electronic Genre Jazz Genre Pop Genre | Hiphop Genre | Rock Genre
E| |
10+ | 10- 10 |
j |
4 {
5§ | 5t 5
i weln. -
il Il |} i o <, m M = i o i o |
80 BO 120 140 120 121 122 80

100 120 140 160 180 60 80 100 120 140 160 180 = 60 100 100 120 140
Beats per minute (BPM) Beats per minute (BPM) Beats per minite (BPM) Beats per minute (BPM) Beats per minute (BPM)

o <

-2}

IS

ra

Fig. 1. Beat histograms of samples of electronic, jazz, pop, hiphop and rock genres (from left to right)

The tempo measured in beats per minute (BPM) is computed from the beat histogram (BH)!”. The music signal is
given to discrete wavelet transform (DWT) filter bank to decompose the signal into various octave bands. The
envelope of each band is extracted and repeating events (pulses) are determined through auto-correlation. The peaks
from the resulting periodogram are selected and converted into a beat histogram. Beat tracking is especially useful in
applications such as DJ editing to match the tempo of two songs played on different decks. Fig. 1 shows the beat
histogram for samples of 5 genres, where we observe a different distribution of the tempo measurement for these
genres. Each bin indicates the relative strength of each rhythmic pulse within the music piece. The average tempo
value is computed from the beat histogram, along with the beat sum (addition of all beats), strongest beat present in
BH, and the strength of strongest beat.

Pulse clarity determines the strength of rhythmic periodicities and pulses in the music signal and conveys the
information about how easily listeners can perceive the underlying pulsation in the music. It is estimated by the
relative Shannon entropy from the auto-correlation function'®. Fluctuation patterns (FP) describe the amplitude
modulation of the loudness (dB) per each frequency band of the spectrogram!!. The resolution of the modulation
frequency is 30 in the range of 0 to 10 Hz, where the perception of fluctuation strength is maximum around 4 Hz
and decreases gradually. The modulation frequencies are weighted according to a model of perceived fluctuation
strength followed by Gaussian smoothing filter to enhance the patterns. The resulting FP is a two-dimensional
matrix with rows indicating frequency bands, and columns indicating modulation frequencies, and each element
indicates the fluctuation strength. The features computed from FP are the peak position, peak magnitude and
centroid. Additionally, the maximum value (FP_Max), bass (FP_Bass), domination of low frequencies (FP_DLF),
gravity (FP_G), and focus (FP_F) features are computed from the FP matrix, given by Eqgs. (1 — 3). The bass is
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computed as the sum of values in the two lowest frequency bands of FP. DLF is computed as the ratio between the
sum of FP values in 4 highest and 3 lowest frequency bands. Gravity feature (FP_G) denotes the center of gravity of
FP on the axis of modulation frequency, and usually models the effect of tempo, vibrato and tremolo in the music''.
Focus feature (FP_F) denotes the distribution of energy in FP and is computed as the normalized mean of all FP
values.
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Fig. 2. Onset detection for electronic genre sample (left) and jazz genre sample (right)

Onsets are detected from the music signal, which represents the start times of perceptually relevant acoustic
portions of the music. Onsets are determined with the following steps: a) the amplitude of the music samples is
squared, b) windowing operation is performed for local analysis, ¢) differentiation and d) half-wave rectification is
performed, to finally e) pick the peaks resulting in onsets. Fig. 2 shows the onsets detected for samples of electronic
and jazz genre. The features determined from onsets are peak position, peak magnitude, attack time, and attack
slope.

2.3. Tonal Features

Inspired by music theory, various features are computed from the pitch class profile (PCP) of the music signal.
The tonal feature set comprises of chromagram peak position, peak magnitude, centroid, key clarity, key mode, and
harmonic change detection function (HCDF) features. The 12 standard pitches in Western music are C, C#, D, D#,
E, F, F#, G, G#, A, A#, and B. The chromagram is a spectrogram that shows the distribution of spectral energy
among each of the 12 pitches by mapping the frequencies onto an octave music scale. To compute the chroma
features, the audio signal is transformed to frequency domain using DFT followed by log-frequency filter-bank with
linear center frequencies f: on a log scale given by Eq. (4), where f.i, is the minimum analysis frequency, f = bins
per octave, Z = number of octaves, and kj = integer filter index between 0 to fZ-1. The chroma is determined by
summing the amplitude values across octaves, resulting in chroma vector Cr(b) given by Eq. (4), where Xj is the
log-frequency spectrum, z = integer octave index between 0 to Z-1, and b = pitch class (chroma index) between 0 to

B-1.
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Fig. 3 shows the chroma histograms of the samples of 5 genres where we observe that electronic music mostly
plays at selected few pitches but hiphop music contains significant contribution of all pitch classes. From the
chromagram, the features extracted are peak position, peak magnitude, and centroid. Since there are 12 major scales
and 12 minor scales in music, key clarity can be computed with cross-correlation of the chromagram to give the key
strength associated with the best key candidate in the music signal. To estimate the modality of music (i.e. major or
minor), the key mode is also computed by summing the key strength differences between all major keys and their
relative minor keys. A 6-dimensional tonal centroid is computed, which corresponds to a projection of the pitch
classes along circles of fifths, of minor thirds, and of major thirds'®, resulting in its flux denoted as harmonic change
detection function (HCDF) {,, given by Eq. (5). The transformation matrix @ represents the basis of the 6-
dimensional tonal space'®. Formally, HCDF indicates the overall rate of change of the smoothed tonal centroid of
the music signal.
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Fig. 3. Chroma histograms of samples of electronic, jazz, pop, hiphop and rock genres (from left to right)
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2.4. Spectral Features

Finally, features are extracted from the spectrum of music signal, and the spectral feature set comprises of
standard statistical features including spectral centroid, spectral spread, spectral skewness, spectral kurtosis, spectral
flatness, spectral flux, spectral brightness, spectral entropy, spectral roll-off (at 85% and 95%), spectral roughness,
spectral irregularity, and spectral compactness, along with Mel-frequency cepstral coefficients (including delta and
double-delta features).
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Fig. 4. Spectral computation of music signal leading to MFCC

Fig. 4 illustrates the various steps in computation of several spectral features leading to Mel-frequency cepstral
coefficients (MFCC). The DFT is applied to windowed frames (of small duration in milliseconds) of music signal
followed by log scaling, resulting in the power spectrum or spectrogram for the entire signal. The spectral centroid
(first moment) refers to the center of mass of the power spectrum and perceptually indicates how “dark” or “bright”
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the sound of music feels like. The spectral spread (second central moment) refers to the standard deviation of the
spectrum. The spectral skewness (third central moment) refers to the measure of symmetry of the spectral
distribution. The spectral kurtosis (fourth central moment) refers to the peakiness of the spectral distribution. The
spectral flatness indicates whether the spectrum distribution is smooth/flat or spiky, and is computed as the ratio
between the geometric mean and the arithmetic mean of the spectrum. The spectral flux refers to variability of the
spectrum between frames and is computed as the distance between the spectra of each successive frames. The
spectral brightness refers to amount of energy above a specific cut-off frequency. The spectral entropy refers to
relative Shannon entropy, and is computed using the normalized power spectral density to determine the
probabilities. If the probability distribution is towards flat, then the spectral entropy will be towards maximum, and
minimum for a peaked distribution. The spectral roll-off refers to the frequency below which p% of the total spectral
energy is accounted for (p = 85 and 95, in this work). The spectral roughness refers to the sensory dissonance due to
beating phenomena between close frequency peaks, according to Plomp-Levelt curve?. The spectral irregularity
(S_IR) refers to the degree of variation of the successive peaks in the spectrogram, and is computed as the sum of
square of the difference in spectral amplitude, given by Eq. (6) where X(k) denotes the spectrum of each frame using
N point FFT. The spectral compactness (S_CT) refers to noisiness of the music signal and is computed by Eq. (7) by
summing over all frequency bins of FFT spectrum.

N

S IR = (X(k) - X(k+1)) / ZXZ(k) (6)

k=1

@)

S CT= Nzl(log (X (k) — 0B =) +log(X () +log (X (k + 1)))

3

For the computation of MFCC features, the spectrum is converted to a perceptually motivated Mel frequency
scale. Discrete cosine transform is applied to the Mel-filtered log spectrum from which only the first 13 de-
correlated coefficients are extracted, as illustrated in Fig. 5. Further, to consider the temporal evolution of MFCC
features, delta (DMFCC) and double-delta (DDMFCC) features are computed, referring to velocity and
acceleration?!.

Table 1. Features extracted from music signal

Feature Set  # Features Feature Set  # Features
Dynamics 1-2 RMS energy (m, std) Spectral 41-42 Centroid (m, std)
3-4 ZCR (m, std) 43-44 Spread (m, std)
5 Low Energy Rate (m) 45-46 Skewness (m, std)
Rhythm 6-7 Tempo (m, std) 47-48 Kurtosis (m, std)
8-9 Beat Sum (m, std) 49-50 Flatness (m, std)
10-11  Strongest Beat (m, std) 51-52 Flux (m, std)
12-13  Strength of Strongest Beat (m, std) 53-54 Brightness (m, std)
14 Pulse Clarity (m) 55-56 Entropy (m, std)
15-16  FP Peak (pos, mag) (m) 57-60 Roll-off (85% and 95%) (m, std)
17 FP Centroid (m) 61-62 Roughness (m, std)
18-22  FP Statistics (Maximum, Bass, 63-64 Irregularity (m, std)
DLF, Gravity, Focus)
23-24  Onsets Peak (pos, mag) (m) 65-66 Compactness (m, std)
25-28  Rhythm Attack (time, slope) (m, std) 67-92 MECC (m, std)
Tonal 29-32  Chromagram Peak (pos, mag) (m, std) 93-118 DMFCC (m, std)

33-34  Chromagram Centroid (m, std) 119-144 DDMFCC (m, std)

191
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For the various features extracted, we compute the mean (m) and standard deviation (std) for a reduced
description of each feature contour. Thus, overall 144 features are extracted from each music signal as shown in
Table 1. Although the extracted 144 features are able to capture relevant aspects of the music signal, it is desirable to
reduce the number of features to avoid the curse of dimensionality for the classifier. Further, it is desirable to
remove any correlation between the extracted features, since the correlated features will mislead the classifier during
training. The aim of feature selection mechanism is to maximize inter/intra class ratio, i.e. maximize the feature
variance between various genres and minimize the feature variance for same genre. We use Correlation-based
Feature Selection (CFS) technique? to reduce the feature set size, since it can determine only those useful features
that are correlated with or predictive of the genre class. The Best First search method is used for CFS that searches
the space of feature subsets with greedy hill climbing technique. At each stage, a local optimum choice of feature
subset is found to determine the globally optimum feature set. From the 144 extracted features, CFS resulted in 39
features as shown in Table 2, and these 39 features are given as representation of each music signal to the classifier.
Fig. 5 shows the box plots of selected features across 5 genres, where each box has a line at the lower quartile,
median, and upper quartile values. The whiskers extend to the most extreme feature value within 1.5 times the inter-
quartile range. Outliers are feature values beyond the whiskers and marked with ‘“+’. We observe that hiphop genre
has distinguishing features relative to other genres, and the median values of features are mostly distinct for all
genres.

Table 2. Reduced features by CFS feature selection technique

Feature Set  # Features Feature Set  # Features

Dynamics 1 RMS energy (std) Spectral 17 Centroid (std)

2 ZCR (std) 18 Skewness (1)
Rhythm 3 Beat Sum (m) 19 Entropy (m)
4 Strongest Beat (std) 20 Flatness (m)
5 Strength of Strongest Beat (std) 21-22 Roughness (m, std)
6 FP Centroid (m) 23 Irregularity (m)
7 Pulse Clarity 24 Compactness ()
8-12 FP Statistics (Maximum, Bass, 25-29 MECC 1 (m), 2 (std), 4 (m), 5(m),
DLF, Gravity, Focus) 9 (std)
Tonal 13 Chromagram Peak (pos) (std) 30-34 DMFCC 1, 2, 4, 10, 13 (std)

14 Key Clarity (m) 35-39 DDMEFCC 2, 4, 6, 10, 12 (std)
15-16  Key Mode (m, std)
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3. Feature Classification using PUK Kernel

The majority of music classification tasks such as genre classification, music segmentation, and chord
recognition typically use k-nearest neighbor (KNN), support vector machines (SVM), and Gaussian mixture model
(GMM). SVMs have been shown to perform best for music related features as input’. Thus, we use the supervised
SVM classifier using the implementation of sequential minimal optimization (SMO) algorithm, implemented in
WEKA (Waikato Environment for Knowledge Analysis) data mining toolkit?*. In its standard form, SVM is a binary
classifier that separates the features of two classes with an optimal hyperplane such that a) the largest possible
instances of same class belong to same side of the hyperplane, and b) the distance of either class features from the
hyperplane is maximum. The output class prediction of SVM for an unseen test instance z is either y+=1 or y- = -1,
given by the decision function pred(z) = sgn(wz + b), where b is the bias term, and the hyperplane w is determined
with the help of Lagrange optimization given by Eq. (8), subject to the constraints 0 < a; < C, where C is the cost
penalty parameter for outliers, i = 1, 2, ..., [, and sum(a-y) = 0. The kernel function K maps the feature vector x to a
high-dimensional space where linear separation may be possible. Various kernels have been used in SVM that
satisfy Mercer’s condition: linear kernel, polynomial kernel, radial basis function (RBF) kernel, and sigmoid kernel.
Typically, a k-fold cross validation is performed to optimally determine the kernel parameters as well as the cost
parameter C.

K(Xiax,'): >

1
! 1 I - 2
w(a):Za,.—EZZaiajyiyjK(xi,xj); " 2\“X,~-Xj||2\l2(1/ )1 ®)
i=1
o

i=l j=1

In this work, we use the Pearson VII Universal Kernel (PUK)?* which is a generic kernel adapting the behavior of
various common kernels mentioned above. The choice of PUK kernel for SVM ensures that SVM will perform
accurately even if the kernel function chosen is not appropriate. The choice of kernel parameters for PUK allows it
to exhibit behavior of linear, higher-order polynomials as well as Gaussian kernels?*. Furthermore, the PUK kernel
K given by Eq. (8) satisfies the condition of being symmetric kernel matrix, and positive semi-definite. The
parameters @ and o control the Pearson-width (half-width) and the tailing factor of the peak, respectively. Thus, by
varying these two parameters, flexibility can be achieved for the SVM to function properly. For the purpose of
multi-class genres, one-vs.-one SVM technique is used where pair-wise classification is done using binary SVM and
the final decision is taken with the help of majority voting. An internal 10-fold cross validation is done to optimally
determine the SVM parameters via a grid-search technique.

4. Experimental Results

We evaluate the various features extracted above for classification of 5 popular genres, viz. Electronic, Jazz, Pop,
Hiphop, and Rock, for 500 music samples (100 samples/genre) from the freely available Benchmark database?.
Each sample is 10 second duration drawn from a random position of the corresponding song, encoded using mp3 at
a sampling rate of 44.1 kHz. The dataset is divided into 60% training and 40% testing samples. The cross-validation
is performed on the training samples to choose the optimum parameters for PUK kernel and all experiments are
done using the reduced feature set from Table 2. Fig. 6 illustrates the classification accuracy (%) for individual
feature sets mentioned in Sec. 2 for 5 genres, where we observe that the overall performance achieved by feature
sets follow the trend: Spectral > Rhythm > Tonal > Dynamics. Better accuracies are obtained for hiphop genre due
to its distinct beat patterns, and pop genre suffers poor performance because it is often confused with rock genre?S.
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Fig. 6. Classification accuracy for individual feature sets (values in %)

We evaluate the performance of combinations of feature set to determine their contributions in maximizing the
classification accuracy. Table 3 shows the accuracy of various feature sets for 5 genre classification. Using only 33
rhythm and spectral features, the accuracy is 78.5% with an improvement of 1.5% using additional 4 tonal features
and a further improvement of 2% with additional 2 dynamic features. The maximum accuracy of 82% is obtained by
considering all 39 features from all feature sets, whereas with taking all 144 features, the overall accuracy obtained
is only 65%. The area under curve (AUC) of the receiver operating characteristics (ROC) is 0.84 for all 144 features,
whereas AUC is 0.92 for the reduced feature set. The proposed system performs better than existing work (though
on a different database) where the classification accuracy was reported to be 75.6%' and 62%° for 5 genre
classification task. Table 4 shows the confusion matrices with precision and recall values obtained on 200 test
samples by considering all features as well as reduced feature set. Due to dimensionality reduction by CFS
technique, the overall accuracy, precision, and recall values are significantly increased. Using AdaBoost boosting
technique with SVM classifier, the accuracy increased only marginally to 82.3%. From all the 5 genres, music
samples of pop suffers most confusion due to unclear meaning and definition of the pop genre, whereas hiphop
genre outperforms all other genres since it contains distinct intense rhythmic beats and rapping parts. Also, PUK
kernel based SVM outperformed other classifiers for the music genre classification task under consideration: J48
Decision Tree (58%), k-Nearest Neighbors (65%), Random Forest (65%), Naive Bayes (70%), SVM with
Polynomial kernel (72.5%), Multi-Layer Perceptron (77.5%), SVM with radial basis function (RBF) kernel (78%),
and SVM with PUK kernel (82%).

Table 3. Classification results for combination of feature sets (D: Dynamic, R: Rhythm, T: Tonal, S: Spectral)

Feature Sets  Accuracy  No. features Feature Sets Accuracy  No. features
S+D 62.5% 24 D+R+S 78.5% 35
S+R 78.5 % 33 D+T+S 74 % 28
S+T 70 % 26 D+R+T 67 % 17
D+R 62 % 13 R+T+S 80 % 37
D+T 44 % 6
R+T 64.5 % 15 D+R+T+S 82 % 39

Table 4. Confusion matrices for all 144 features (left), and reduced 39 features (right) (E: Electronic, J: Jazz, P: Pop, H: Hiphop, R: Rock)

E J P H R Recall E J P H R Recall
E 23 12 2 4 56.1 E 32 2 3 1 2 80
J 1 32 2 2 1 84.2 J 4 30 3 2 1 75
P 4 11 15 3 10 34.9 P 2 2 30 4 3 73.2
H 1 2 32 91.4 H 1 1 36 94.7
R 3 2 7 3 28 65.1 R 4 1 36 87.8
Prec. | 71.9 | 542 | 62.5 | 76.2 | 65.1 Prec. | 82.1 857 | 75 | 81.8 85.7
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5. Conclusions

In this work, 500 samples of 5 music genre (electronic, jazz, pop, hiphop, and rock) were obtained from the
benchmark database®, and music features were extracted for each in 4 categories: dynamic, rthythm, tonal, and
spectral. Since no single feature is discriminative enough for accurate classification of multiple genres, various
combinations were explored to maximize the accuracy. Dimensionality reduction technique such as CFS plays an
important role in removing redundant features and improving the overall accuracy. The PUK kernel based SVM
classifier outperformed other classifier techniques due to its flexibility to adapt to various functionalities (from
linear to Gaussian) depending on the input feature data. The proposed music genre classification system is capable
of classifying 5 genres with a maximum accuracy of 82% with features mostly from the rhythm and spectral
category. For future work, genre relations can be enforced with multi-level hierarchy, since not all genres are
equidistant (i.e. genres do not have a flat hierarchy). For example, soft rock songs are closer to pop songs than heavy
metal songs. Also, higher-level dimensions such as temporal integration of features with multi-variate auto-
regressive modelling?’ and Gaussian process regression®® can be explored from an auditory perspective.
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