
International Journal of Solids and Structures 46 (2009) 651–676

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
On non-local and non-homogeneous elastic continua

Francesco Marotti de Sciarra *

Dipartimento di Ingegneria Strutturale, Università di Napoli Federico II, via Claudio, 21, 80125 Napoli, Italy
a r t i c l e i n f o

Article history:
Received 13 June 2008
Received in revised form 4 August 2008
Available online 27 September 2008

Keywords:
Non-local elastostatics
Thermodynamics
Non-homogeneous materials
Variational formulations
Non-local finite element method
0020-7683/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.ijsolstr.2008.09.018

* Tel.: +39 081 7683734; fax: +39 081 7683332.
E-mail address: marotti@unina.it.
a b s t r a c t

A thermodynamic framework endowed with the concept of non-locality residual is
adopted to derive non-local models of integral-type for non-homogeneous linear elastic
materials. Two expressions of the free energy are considered: the former yields a one-com-
ponent non-local stress, the latter leads to a two-component local–non-local stress since
the stress is expressed as the sum of the classical local stress and of a non-local component
identically vanishing in the case of constant strains. The attenuation effects are accounted
for by a symmetric space weight function which guarantees the constant strain require-
ment as well as the dual constant stress condition everywhere in the body. The non-local
and non-homogeneous elastic structural boundary-value problem under quasi-static loads
is addressed in a geometrically linear range. The complete set of variational formulations
for the structural problem is then provided in a unitary framework. The solution unique-
ness of the non-local structural model is proved and the non-local FEM is addressed start-
ing from the non-local counterpart of the total potential energy. Numerical applications are
provided with reference to a non-homogeneous bar in tension using the Fredholm integral
equation and the non-local FEM. The solutions show no pathological features such as
numerical instability and mesh sensitivity for degraded bar conditions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Non-local continua have been proposed in the literature with the purpose of accounting for long distance cohesive forces
appearing in many materials such as concretes, ceramics, soils, rocks and to avoid some troubles appearing in classical con-
tinuum elasticity such as strain softening, size effects and stress singularities in crack tips.

Non-local theories introduce in classical material models the intrinsic length which is a material parameter accounting
for non-local effects in the continuum. Accordingly an elastic material can transmit information regarding the behaviour
of the material microstructure to neighbouring points within a certain distance. The contributions of Bažant and Cedolin
(1991), Bažant and Planas (1998), Mühlhaus (1995), de Borst and van der Giessen (1998), Bažant and Jirásek (2002) and
Aifantis (2003), among many others, can be referred to for more details.

The formulation of a constitutive theory for a non-local elastic model has been presented in Polizzotto et al. (2006). The
approach and the ideas contributed in Polizzotto et al. (2006) are interesting and deserve a special attention. Starting from
the cited work, in the present paper two non-local models for non-homogeneous elastostatics in isothermal conditions are
proposed and are cast in a thermodynamic framework which constitutes an appropriate theoretical basis to develop a con-
sistent phenomenological non-local constitutive model. The former is called one-component non-local model because the
related stress is provided in a non-local form by means of a unique term, the latter is called two-component non-local model
because the corresponding stress is expressed as the sum of the local stress and of a non-local contribution vanishing in the
. All rights reserved.
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case of constant strains. It is worth emphasizing that the non-homogeneity of the model refers to the macroscopic scale by
means of the spatial variation of the elastic stiffness.

The non-locality residual was introduced in the framework of non-local continuum theories by Edelen and Laws (1971),
Eringen and Edelen (1972), Eringen (1972, 1987) in which almost all the state variables were treated as non-local. However
such theories turn out to be quite unsuitable for modelling the strain-softening behaviour of real materials in which only a
limited number of state variables such as the strain tensor in elasticity, a measure of plastic strain in plasticity or a damage
variable in damage mechanics need to be treated as non-local.

Nowadays a single non-locality residual in the internal energy balance equation (first thermodynamics principle) for
every non-locality source is considered. The residual meets the so-called insulation condition (Polizzotto and Borino,
1998) which guarantees that there are no interactions of the body with the exterior world at the constitutive level. This con-
dition is imposed by the vanishing of the integral of the non-locality residual over the volume of the body.

The second thermodynamics principle (entropy production inequality) is assumed to hold pointwise (see e.g. Polizzotto,
2003) as in classical (local) thermodynamics in order to guarantee that the energy dissipation density is non-negative every-
where in the body for any irreversible deformation process. Deformation processes are qualified as reversible if the second
principle is satisfied as an equality.

The energy dissipation density is assumed to exhibit a bilinear form in terms of local strain rates and related non-local
stresses. Well-known procedures of classical thermodynamics can then be extended to non-local non-homogeneous elastic-
ity. Accordingly the relevant state equations, i.e. stress–strain law and the expression of the residual, can be derived in terms
of local and non-local quantities.

In particular the elastic energy and the stress tensor of the considered models can be expressed as the sum of the classical
local term and of a non-local term.

In addition to the internal length and to a space variable elastic stiffness, the proposed models contain a parameter which
controls the proportion of the non-local addition to the local part of the free energy and of the stress. In existing models (see
e.g. Polizzotto et al., 2004, 2006) such a parameter is directly added to the non-local part of the free energy as a multiplicative
term. In the proposed approach this parameter is added to the expression of the space weight function in a suitable form
such that the normalizing condition involving the weight function (constant strain requirement) is unaffected by its value.
As a consequence, once the expression of the free energy is defined, the parameter consistently appears as a multiplicative
term of the non-local part of the elastic energy and of the stress.

Then the considered non-homogeneous non-local models and the non-local model for piecewise non-homogeneous
bodies proposed in Marotti de Sciarra (2008) are comparatively analyzed. Moreover it is shown that the two-component
non-local model coincides to the one proposed by Polizzotto et al. (2006).

It is worth noting that the two-component non-local model behaves as a local one under any uniform strain field since the
elastic energy and the stress tensor coincide to their local counterparts and the non-local residual vanishes everywhere in
the body. In this case the non-local model does not interchange energy at the microstructural level. On the contrary, the
one-component non-local model and the non-local model for piecewise non-homogeneous bodies behave as a local one un-
der any uniform strain field only if the elastic stiffness is constant. In the case of a non-homogeneous material the elastic
strain energy and the non-local stress do not reduce to their local counterparts under any uniform strain field due to the
space variability of the elastic stiffness (see Polizzotto et al., 2006). The residual is pointwise vanishing and, at the global
level, the non-local elastic energy functional coincides to the local one.

The boundary-value problem associated with the considered non-local elastic models can be formulated in a unified
framework. The complete set of non-local mixed variational principles is then provided. Variational formulations can then
be specialized to a particular model by considering the relevant expression of the elastic or complementary energy function-
als. The extension to non-local linear elasticity of the classical principles of the total potential energy, complementary en-
ergy, mixed Hu-Washizu and Hellinger-Reissner principles are provided. A discussion on uniqueness of the solution of
the non-local structural model is then provided.

Starting from the non-local total potential energy, a non-local-type finite element method (NFEM) which encompasses
the considered non-local models is proposed. The symmetric global stiffness matrix contains the non-locality features of
the model and shows a larger band width than in the local-type FEM due to the long distance interelement influence. A
homogeneous bar having a piecewise constant elastic modulus or a continuous variable Young modulus is solved by the re-
course to the Fredholm equation and to the proposed NFEM for several load conditions. The solutions obtained following the
outlined procedures are in a good agreement one another and no pathological behaviours such as numerical instability, mesh
sensitivity and boundary effects are present.

The outline of the paper is the following. In Section 2, the non-local models are cast in the thermodynamic framework and
the residual function appears as an additional state variable. The non-local stress–strain relations for a linearly elastic non-
homogeneous body are then provided together with the related expressions of the residual. The non-local and non-homo-
geneous elastic structural model is then addressed in Section 3 where the complete set of variational formulations are pro-
vided. In Section 4 a NFEM is formulated and in Section 5 a one-dimensional bar in tension is considered from a
computational point of view by using the Fredholm integral equation and the proposed NFEM. The paper is closed with three
Appendices. The Appendices A and B are devoted to the explicit evaluation of the integrals pertaining, respectively, to the
one-component and two-component non-local models in terms of the attenuation function. The third Appendix deals with
the Fredholm integral equation of the second kind associated with the proposed non-local models.
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2. Non-local model

A non-local elastic structural problem is defined on a regular bounded domain X of an Euclidean space and is referred to
orthogonal axes with Cartesian co-ordinates x in its undeformed state. The classical linearized theory is considered so that
configurations assumed by the structure are sufficiently close to a reference one. Strains e and stresses r belong to dual
spaces R and S, respectively. The inner product h�; �i in the dual spaces has the mechanical meaning of the internal virtual
work and, for the Cauchy model, it is given by:
hr; ei ¼
Z

X
rðxÞ � eðxÞdx;
where � denotes the scalar product between dual local quantities (simple or double index saturation operation between vec-
tors or tensors) at a given point x of the body X. A compact notation is adopted throughout the paper with bold-face letters
associated with vectors and tensors. For convenience, non-local variables are denoted by a superposed bar.

Non-local strains due to long-range interactions arising in an elastic structure are provided by the following relation:
�eðxÞ ¼ ðReÞðxÞ ¼
Z

X
Wðx; nÞeðnÞdn 8x 2 X: ð1Þ
The linear regularization operator R : R! D transforms the local strains e into the related non-local strain �e since its va-
lue at the point x of the body X depends on the entire field e (Eringen and Kim, 1974; Eringen et al., 1977; Polizzotto et al.,
2004, 2006).

From a physical point of view the space weight function W appearing in (1) describes the mutual long-range elastic inter-
action. It is non-negative, have its maximum for x ¼ n and decreases monotonically and rapidly to zero approaching the
boundary of the interaction zone defined by the influence distance R which is a multiple of the internal length. Accordingly
the regularization takes place if the distance r between the source point n, at which a local variable is considered, and the
point x, where the non-local effect is considered, is such that rðx; nÞ 6 R.

Since a non-local behaviour is present for high space variation of the local strain e, the regularization operator R coincides
to the identity operator I for uniform fields e, that is R ¼ I. As a consequence the weight function W meets the normalizing
condition:
Z

X
Wðx; nÞdn ¼ 1 ð2Þ
for any x in X.
The following symmetric expression of the weight function W is considered in the present paper:
Wðx; nÞ ¼ 1� a
VðxÞ
V1

� �
dðx; nÞ þ a

V1
gðx; nÞ; ð3Þ
where the symbol dðx; nÞ denotes the Dirac delta distribution, the scalar function gðx; nÞ is the attenuation (or influence) func-
tion depending on the material internal length scale l and VðxÞ is the representative volume given by:
VðxÞ ¼
Z

X
gðx; nÞdn: ð4Þ
The value assumed by the representative volume VðxÞ for an unbounded body is denoted by V1 and a is an adimensional
scalar parameter which is concerned with the attenuations effects. The relation (3) is similar to the one proposed in Borino
et al. (2003) within the context of non-local damage. The first term appearing in (4) is a local one. Setting a ¼ 1, it is effective
for points x close to the boundary since, for points x far from the boundary, VðxÞ tends to V1 and the local term vanishes. The
second term is the classical non-local term associated with an unbounded body. The parameter a is added to the local and
non-local terms in order to control the proportion of the non-local addition since it will be shown in the sequel that a ap-
pears only in the non-local part of the free energy and of the stress.

The dual averaging R0 associated with the symmetric weight function (3) preserves constant fields since the regular-
ization operator is self-adjoint independent of the choice of the attenuation function g and for any value of the param-
eter a, i.e. R ¼ R0 (see Marotti de Sciarra, 2008). On the contrary, the dual averaging arising from the non-symmetric
weight functions typically adopted in the literature (see e.g. Jirásek and Rolshoven, 2003) does not fulfil the constant
requirement.

The attenuation function gðx; nÞ is a function of the Euclidean distance kx� nk or of the geodetical distance
rðx; nÞP kx� nk defined as the length of the shortest path joining x with n without intersecting the boundary of the body,
see Polizzotto (2001). The geodetical distance turns out to be useful if the domain X occupied by the body is not convex or an
obstacle, such as a hole, is located between the points x and n.

Typical choices for the attenuation functions are the Gauss-like function:
gðx; nÞ ¼ 1
l
ffiffiffiffiffiffi
2p
p expð�kx� nk2

=2l2Þ; ð5Þ



654 F. Marotti de Sciarra / International Journal of Solids and Structures 46 (2009) 651–676
the bi-exponential function:
gðx; nÞ ¼ 1
2l

expð�kx� nk=lÞ ð6Þ
or the bell-shaped polynomial function:
gðx; nÞ ¼
15

16R ð1� kx� nk2
=R2Þ2 if kx� nk 6 R;

0 if kx� nk > R:

(
ð7Þ
The Gauss-like and the bi-exponential functions have an unbounded support whereas the bell-shaped polynomial
function (7) has a bounded support since gðx; nÞ vanishes for kx� nk greater than the influence distance R. It is to
remark that the decay of the exponential attenuation functions (5) and (6) for increasing kx� nk=l is very fast. Hence,
from a computational point of view, it is possible to assume that the attenuation functions (5) and (6) are vanishing
if kx� nk > R where R is a multiple of the internal length l. In the examples of Section 5, the ratio R=l is set equal to
6.

In what follows, two non-local models are analyzed. The former is referred to as one-component non-local model since
the free energy is expressed in terms of a quadratic non-local form. The latter is named two-component non-local model
since the free energy is expressed as the sum of the standard local elastic energy and of a quadratic non-local contribution
vanishing in the case of uniform strains.

According to a mechanical requirement, it is shown in the sequel that the considered non-local models tend to local elas-
ticity if the material length scale l tends to zero.

2.1. Thermodynamical aspects

Let us assume, for simplicity, that the absolute temperature T is constant, i.e. isothermal conditions, and the density of
mass is constant. The first law of thermodynamics (see e.g. Lemaitre and Chaboche, 1994) for isothermal processes and
for a non-local behaviour can be formulated as follows:
Z

X

_edx ¼ h�r; _ei; ð8Þ
where e is the internal energy density depending on strain e and entropy s. The symbol �r denotes the non-local stress whose
expression will be identified in the sequel. A superimposed dot means time derivative. Dropping for simplicity the explicit
dependence on the variable x, the energy balance in (8) can be written pointwise in X in the form:
_e ¼ �r � _eþ P: ð9Þ
The non-locality residual function P takes into account the energy exchanges between neighbour particles (see e.g. Edelen
and Laws, 1971) and the residual P fulfils the insulation condition:
Z

X
P dx ¼ 0 ð10Þ
for any strain rate _e since the body is a thermodynamically isolated system with reference to energy exchanges due to non-
locality.

The second principle of thermodynamics for isothermal processes, in the non-local context, is written in its local form
_sT P 0 everywhere in X where _s is the internal entropy production rate per unit volume (see Polizzotto, 2002). In fact if
the second principle holds in the global form

R
X

_sT dx P 0, there would be a class of deformation mechanisms which are
reversible at the global level, being zero the global form of the second principle, but the same deformation mechanisms turn
out to be irreversible at the local level which is not physically acceptable.

Let /ðe; TÞ be the Helmholtz free energy defined by means of the Legendre transform / ¼ e� sT. Performing the
time derivative of the Helmholtz free energy in connection with the second principle and being _T ¼ 0, since the tem-
perature is assumed to be constant, the dissipation D at a given point of the body follows from the relation (9) in the
form:
D ¼ _sT ¼ �r � _e� _/þ P P 0 ð11Þ
which represents the Clausius–Duhem inequality for isothermal processes. The presence of the non-locality residual function
P guarantees the non-negativeness of the dissipation and accounts for material non-locality. The body energy dissipation W

follows by integrating the relation (11) to get:
W ¼
Z

X

_sT dx ¼ h�r; _ei �
Z

X

_/dx P 0: ð12Þ
The free energy function at a point x of the body X is defined, for each of the two non-local models, according to the following
relations.
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� One-component non-local model – the free energy is given in the form:
/ðeðxÞÞ ¼ 1
2
ðREReÞðxÞ � eðxÞ ð13Þ
where E denotes the elastic stiffness. The global free energy is the functional of the strain e obtained by integrating the spe-
cific free energy (13) over the domain of the body and represents the elastic energy stored in the whole structure. It is pro-
vided by the following quadratic functional:
UðeÞ ¼
Z

X
/ðeðxÞÞdx ¼ 1

2
hRERe; ei ¼ 1

2
hERe;Rei: ð14Þ
The last equality holds true since the regularization operator R is self-adjoint with respect to the scalar product in L2ðXÞ. The
complementary elastic energy is evaluated by means of the Fenchel’s conjugate of the elastic energy and is given by the fol-
lowing convex quadratic functional:
U�ð�rÞ ¼ 1
2
h�r; ðRERÞ�1�ri: ð15Þ
� Two-component non-local model – the two-component free energy is:
/ðeðxÞÞ ¼ 1
2

EðxÞeðxÞ � eðxÞ þ 1
2

EðxÞðAeÞðxÞ � ðAeÞðxÞ; ð16Þ
where A ¼ R � I being I the identity operator in the strain space. Hence the elastic energy stored in the whole structure is
provided by the quadratic functional:
UðeÞ ¼
Z

X
/ðeðxÞÞdx ¼ 1

2
hEe; ei þ 1

2
hEAe;Aei ¼ 1

2
hðAEAþ EÞe; ei ð17Þ
since it is immediate to show that the operator A is self-adjoint with respect to the scalar product in L2ðXÞ. The complemen-
tary elastic energy is the Fenchel’s conjugate of the elastic energy and is given by:
U�ð�rÞ ¼ 1
2
h�r; ðAEAþ EÞ�1�ri: ð18Þ
In what follows, let / denote the free energy of one of the above considered models. Expanding the inequality (12), it
results:
h�r; _ei � hd/ðeÞ; _eiP 0; ð19Þ
where d/ðeÞ denotes the derivative of the free energy with respect to the strain, so that it turns out to be:
h�r; _ei � hRERe; _eiP 0 one-component model;
h�r; _ei � hAEAeþ Ee; _eiP 0 two-component model:

�

The relation (19) must hold for any admissible deformation mechanism so that, following widely used arguments (see e.g.
Lemaitre and Chaboche, 1994), the state law is obtained:
�rðxÞ ¼ d/ðeÞ: ð20Þ
The expressions of the non-local stress related to the considered models are then given by:
�rðxÞ ¼ ðREReÞðxÞ one-component model;
�rðxÞ ¼ ðAEAeþ EeÞðxÞ two-component model:

�
ð21Þ
It is then apparent that the relation (19) becomes an equality. Moreover the inequality (11) holds as an equality too since,
recalling (10), it can be viewed as the non-negative integrand of (19). Hence the dissipation is pointwise vanishing due to the
presence of the non-local residual function according to the reversible nature of the model:
D ¼ �r � _e� _/þ P ¼ 0:
Then the expression for the non-locality residual function at a given point of the body X is given by:
P ¼ _/� �r � _e: ð22Þ
By using the free energy (13) or (16) in connection with the corresponding non-local stress reported in (21), the non-
locality residual function P pertaining to the two models is given by:
PðxÞ ¼ 1
2 eðxÞ � ðRER _eÞðxÞ � 1

2 ðREReÞðxÞ � _eðxÞ one-component model;
PðxÞ ¼ ðEAeÞðxÞ � ðA _eÞðxÞ � ðAEAeÞðxÞ � _eðxÞ two-component model:

(
ð23Þ
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Then the relation (20) represents the constitutive law for the non-local non-homogeneous elastic material endowed with the
elastic energy /. It is worth noting that the non-homogeneity of these models is referred to the spatial variation of the elastic
stiffness.

Accordingly the non-local elastic relation can be expressed in terms of the state variable fields �r and e in the following
equivalent forms:
�r ¼ dUðeÞ () e ¼ dU�ð�rÞ () UðeÞ þU�ð�rÞ ¼ h�r; ei; ð24Þ
where the last equality represents Fenchel’s relation.
In the following subsections the considered models are explicitly analyzed.

2.2. Elastic energy, stress and residual for the one-component non-local model

The elastic energy (13) for the one-component non-local model can be explicitly evaluated in order to make evident the
contribution of non-locality. In fact it results:
/ðeðxÞÞ ¼ 1
2

Z
X

Z
X

Wðn; xÞEðnÞWðn; zÞeðzÞdz dn � eðxÞ: ð25Þ
By inserting in the expression above the space weight function W given by (3), after some rearrangements of the various
terms and with the definitions:
K1ðx; zÞ ¼ 1� a
VðxÞ
V1

� �
EðxÞ þ 1� a

VðzÞ
V1

� �
EðzÞ

� �
gðx; zÞ;

K2ðx; zÞ ¼
Z

X
gðn; xÞEðnÞgðn; zÞdn;

Hðx; zÞ ¼ K1ðx; zÞ þ
a

V1
K2ðx; zÞ;

ð26Þ
a more synthetic expression (see Appendix A) can be given to the elastic energy /ðeðxÞÞ in the form:
/ðeðxÞÞ ¼ 1
2

1� a
VðxÞ
V1

� �2

EðxÞeðxÞ � eðxÞ þ a
2V1

Z
X

Hðx; zÞeðzÞdz � eðxÞ

¼ 1
2

EðxÞeðxÞ � eðxÞ þ a
2V1

Z
X

H1ðx; zÞeðzÞdz � eðxÞ; ð27Þ
where
H1ðx; zÞ ¼
a

V1
V2ðzÞ � 2V zð Þ

� �
EðzÞdðx; zÞ þHðx; zÞ: ð28Þ
For a homogeneous one-dimensional bar of length L ¼ 100 cm with a unitary elastic modulus E, the functions K1, K2 and
H are plotted in Fig. 1(a) and (b) in terms of z for a fixed x assuming that the attenuation function g is the bi-exponential
function (6). Different length scales l = 1, 2 and 6 cm are considered, the interaction distance is such that R=l ¼ 6 and
a ¼ �1. The functions K1ðx; �Þ;K2ðx; �Þ and Hðx; �Þ are reported in Fig. 1(a) with reference to a point x 2 X far from the bound-
ary. If the point x belongs to the boundary layer, the shape of the functions remain the same whereas they are cut by the
presence of the boundary, see Fig. 1(b).

According to (14), the elastic energy functional is obtained by performing the integral of (27) over X to get:
UðeÞ ¼ 1
2

Z
X

EðxÞeðxÞ � eðxÞdxþ a
2V1

Z
X

Z
X

H1ðx; zÞeðzÞdz � eðxÞdx: ð29Þ
The constitutive relation between strains eðxÞ and stresses �rðxÞ for the one-component non-local model is reported in
(21)1. It can be rewritten in terms of the attenuation function g as follows:
�rðxÞ ¼ 1� a
VðxÞ
V1

� �2

EðxÞeðxÞ þ a
V1

Z
X

Hðx; zÞeðzÞdz ¼ EðxÞeðxÞ þ a
V1

Z
X

H1ðx; zÞeðzÞdz: ð30Þ
From a mechanical point of view, the elastic energy (27) is given by the sum of the strain energy related to the local
behaviour and the strain energy due to the non-local constitutive behaviour. Note that the non-local term is symmetric
due to the symmetry of H, see (26).

Since the function H1 is vanishing for points z 2 X outside the influence region associated with a given point x 2 X, a non-
local term is added to the local strain energy (27) depending on strains belonging to the influence region. The amplitude of
the non-local addition is controlled by the parameter a. A similar remark holds for the non-local stress (30).

The expression for the non-locality residual function P at a point x of the body X is given by (23)1 and can be synthetically
expressed in terms of the attenuation function g in the form:



Fig. 1. Plots of the functions K1;K2 and H in terms of z for a fixed x assuming a bi-exponential attenuation function and a unitary elastic modulus. Three
different length scales l are considered, namely l ¼ 1 cm; l ¼ 2 cm; l ¼ 6 cm, the interaction distance R is such that R=l ¼ 6 and a ¼ �1: (a) the point x is far
from the boundary; (b) the point x is in the boundary layer.
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PðxÞ ¼ a
2V1

Z
X

Hðx; zÞ _eðzÞdz � eðxÞ � a
2V1

Z
X

Hðx; zÞeðzÞdz � _eðxÞ ð31Þ
as provided in Appendix A.
The non-locality residual P turns out to be a homogeneous function of the strain rate. Accordingly, for a given strain field e

corresponding to a prescribed configuration of the body, the residual P can be rewritten in the following form:
PðxÞ ¼
Z

X
f1ðx; zÞ � _eðzÞdz þ F1ðxÞ � _eðxÞ; ð32Þ
where:
f1ðx; zÞ ¼
a

2V1
Hðx; zÞeðxÞ;

F1ðxÞ ¼ �
a

2V1

Z
X

Hðx; zÞeðzÞdz ¼ �
Z

X
f1ðz; xÞdz:

ð33Þ
The non-locality residual P can then be evaluated by means of the functions f1 and F1 once the strain rate _e is assigned. Plots
regarding the functions f1 and F1, given by (33), are reported in the examples developed in Section 5 with reference to a non-
homogeneous one-dimensional bar.

Remark 1. From a mechanical standpoint, if the internal length l tends to vanishing, i.e. l! 0, the non-local material must
tend to a local behaviour. It is then useful to check whether the proposed model identifies to the local response for a
vanishing internal length. Since the attenuation function gðx; nÞ tends to the Dirac distribution dðx; nÞ for a vanishing internal
length l, it results VðxÞ ¼ V1 ! 1. Hence the following relations hold:
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K1ðx; zÞ ! ð1� aÞ½EðxÞ þ EðzÞ�dðx; zÞZ
X

K1ðx; zÞeðzÞdz! 2ð1� aÞEðxÞeðxÞZ
X

K2ðx; zÞeðzÞdz! EðxÞeðxÞZ
X

Hðx; zÞeðzÞdz! ð2� aÞEðxÞeðxÞ
so that
Z
X

H1ðx; zÞeðzÞdz! ða� 2ÞEðxÞeðxÞ þ ð2� aÞEðxÞeðxÞ ¼ 0
for any x 2 X and strain e. Accordingly, the non-local elastic energy (27) and the non-local stress (30) reduce to the related
local terms since the non-local quantities vanish. Moreover the relation (31) shows that the residual PðxÞ identically van-
ishes. Hence, the non-local model tends to the local model for the internal length l tending to zero.

In the case of a homogeneous elastic stiffness, i.e. EðxÞ ¼ E, the following simplifications hold true:
K1ðx; zÞ ¼ E 1� a
VðxÞ
V1

� �
þ 1� a

V zð Þ
V1

� �� �
gðx; zÞ ¼ Ek1ðx; zÞ;

K2ðx; zÞ ¼ E
Z

X
gðn; xÞgðz; nÞdn ¼ Ek2ðx; zÞ;

Hðx; zÞ ¼ E k1ðx; zÞ þ
a

V1
k2ðx; zÞ

� �
¼ Ehðx; zÞ;

H1ðx; zÞ ¼ E
a

V1
V2ðzÞ � 2VðzÞ

� �
dðx; zÞ þHðx; zÞ ¼ Eh1ðx; zÞ:

ð34Þ
The non-local elastic energy (27) is then provided in the form:
/ðeðxÞÞ ¼ 1
2

EeðxÞ � eðxÞ þ a
2V1

E
Z

X
h1ðx; zÞeðzÞdz � eðxÞ: ð35Þ
Analogous simplifications hold for the non-local stress (30):
�rðxÞ ¼ EeðxÞ þ a
V1

E
Z

X
h1ðx; zÞeðzÞdz ð36Þ
and for the non-locality residual function (31):
PðxÞ ¼ a
2V1

E
Z

X
hðx; zÞ _eðzÞdz � eðxÞ � a

2V1
E
Z

X
hðx; zÞeðzÞdz � _eðxÞ: ð37Þ
2.3. Elastic energy, stress and residual for the two-component non-local model

The elastic energy /ðeðxÞÞ, the non-local stress �rðxÞ and the non-locality residual function PðxÞ for the two-component
non-local model are, respectively, reported in (16), (21)2 and (23)2.

It is useful to compare the present two-component non-local model with the non-local and non-homogeneous model
contributed in Polizzotto et al. (2006). With the present notations, the space weight function adopted in Polizzotto et al.
(2006) can be written in the form Wpðx; nÞ ¼ �VðxÞdðx; nÞ þ gðx; nÞ and the related non-local strain is given as
�epðxÞ ¼ ðRpeÞðxÞ.

The non-local strain (1) can then be rewritten in terms of the regularization operator Rp in the form:
�eðxÞ ¼ ðReÞðxÞ ¼ eðxÞ þ a
V1
ðRpeÞðxÞ ¼ Iþ a

V1
Rp

� �
e

� �
ðxÞ
so that the regularization operator R is expressed in terms of Rp as R ¼ Iþ a=V1Rp. As a consequence, it turns out to be
A ¼ R � I ¼ a=V1Rp and the elastic energy (16) becomes:
/ðeðxÞÞ ¼ 1
2

EðxÞeðxÞ � eðxÞ þ a2

2V2
1

EðxÞðRpeÞðxÞ � ðRpeÞðxÞ: ð38Þ
The above expression coincides to the elastic energy assumed in Polizzotto et al. (2006) provided that the parameter
introduced in Polizzotto et al. (2006) (therein denoted as a) is equal to a2=V2

1. It is worth noting that the non-local regular-
ization operator Rp acts in a similar way as the strain gradient in gradient-dependent materials. In fact constant strains be-
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long to the kernel of the non-local regularization operator Rp. As a consequence, the corresponding weight function Wp

meets a ‘‘zero” condition, that is
R

X Wpðx; nÞdn ¼ 0, instead of the usual normalizing condition (4) of the non-local inte-
gral-type models.

The approach proposed in the present paper has the advantage to cast the two-component non-local model in the same
framework of the one-component non-local model so that a comparison between them can be straightforwardly carried out.
Accordingly the main relations pertaining to the two-component non-local model are hereafter provided in the proposed
framework.

The elastic energy (16) for the two-component non-local model at a point x of a non-homogeneous body can be explicitly
evaluated in order to make evident the contribution of non-locality. In fact it results (see Appendix B):
/ðeðxÞÞ ¼ 1
2

EðxÞeðxÞ � eðxÞ þ a2 V2ðxÞ
2V2
1

EðxÞeðxÞ � eðxÞ � a2 VðxÞ
V2
1

Z
X

gðx; zÞeðzÞdz � EðxÞeðxÞ

þ a2

2V2
1

EðxÞ
Z

X

Z
X

gðx; nÞgðx; zÞeðnÞ � eðzÞdndz: ð39Þ
The elastic energy functional pertaining to the body X is then obtained by performing the integral of (39) over X
according to (17). After some rearrangements of the various terms, the following expression for the elastic energy
(39) is obtained:
UðeÞ ¼ 1
2

Z
X

EðxÞeðxÞ � eðxÞdxþ a2

2V2
1

Z
X

Z
X

J1ðx; zÞeðzÞdz � eðxÞde; ð40Þ
where
J1ðx; zÞ ¼ V2ðzÞEðzÞdðx; zÞ þ J x; zð Þ ð41Þ
with the definitions:
C1ðx; zÞ ¼ ½VðxÞEðxÞ þ VðzÞEðzÞ�gðx; zÞ;

C2ðx; zÞ ¼
Z

X
gðn; xÞEðnÞgðn; zÞdn;

Jðx; zÞ ¼ C2ðx; zÞ � C1ðx; zÞ:

ð42Þ
The constitutive relation for the two-component non-local model is reported in (21)2 and can be rewritten in the form:
�rðxÞ ¼ ðREAeÞðxÞ � ðEAeÞðxÞ þ EðxÞeðxÞ ¼ ðAEReÞðxÞ � ðAEeÞðxÞ þ EðxÞeðxÞ: ð43Þ
The relation above is evaluated in Appendix B so that a more synthetic expression, which will be used in the sequel for com-
putations, can be given to the non-local stress in the form:
�rðxÞ ¼ 1þ a2 V2ðxÞ
V2
1

" #
EðxÞeðxÞ � a2

V2
1

Z
X

C1ðx; zÞeðzÞdz þ a2

V2
1

Z
X

C2ðx; zÞeðzÞdz

¼ 1þ a2 V2ðxÞ
V2
1

" #
EðxÞeðxÞ þ a2

V2
1

Z
X

Jðx; zÞeðzÞdz ¼ EðxÞeðxÞ þ a2

V2
1

Z
X

J1ðx; zÞeðzÞdz:

ð44Þ
It is immediate to show that the relations among the functions K1;K2;H;H1 related to the one-component non-local mod-
el and the corresponding functions C1;C2, J; J1 pertaining to the two-component non-local model are given by:
K1ðx; zÞ ¼ ½EðxÞ þ EðzÞ�gðx; zÞ � a
V1

C1ðx; zÞ

K2ðx; zÞ ¼ C2ðx; zÞ

Hðx; zÞ ¼ ½EðxÞ þ EðzÞ�gðx; zÞ þ a
V1

Jðx; zÞ

H1ðx; zÞ ¼ ½EðxÞ þ EðzÞ�gðx; zÞ � 2VðzÞEðzÞdðx; zÞ þ a
V1

J1ðx; zÞ:

ð45Þ
For the homogeneous one-dimensional bar considered in Fig. 1, the functions C1;C2 and J are plotted in Fig. 2(a) and (b) in
terms of z for a fixed x assuming that the attenuation function g is the bi-exponential function (6) and a ¼ �1. Moreover, the
functions �1=V1

R
X Hðx; zÞeðzÞdz, pertaining to the one-component model, and 1=V2

1
R

X Jðx; zÞeðzÞdz, referred to the two-com-
ponent model, are reported in Fig. 2(c) for the reported step strain function. A comparison shows the similarity of the shape
of the two functions.

Analogously to the one-component non-local model, the elastic energy (39) for the non-homogeneous body is given by
the sum of the strain energy related to the local behaviour and the strain energy due to the non-local constitutive behaviour.
The non-local terms depend on strains belonging to the influence region and the amplitude of the non-local addition is con-



Fig. 2. Plots of the functions C1;C2 and J in terms of z for a fixed x assuming a bi-exponential attenuation function and a unitary elastic modulus. The length
scales are l ¼ 1 cm; l ¼ 2 cm, l ¼ 6 cm, the interaction distance R is such that R=l ¼ 6 and a ¼ �1: (a) the point x is far from the boundary; (b) the point x is in
the boundary layer; (c) plot of the functions �1=V1

R
X Hðx; zÞeðzÞdz for the one-component model and 1=V2

1
R

X Jðx; zÞeðzÞdz for the two-component model
assuming l ¼ 2 cm and the reported step function e.
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trolled by the parameter a. Note that the elastic energy functional (40) is symmetric due to the symmetry of J, see (42). Anal-
ogous observations hold for the non-local stress (44).

For a given state of the body characterized by a strain eðxÞ, the residual P at a point x of the body X is reported in (23)2 and
can be explicitly expressed in terms of the attenuation function g in the form:



Table 1
Unified

Non-loc

Elastic

Non-loc

One-co

Two-co
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PðxÞ ¼ �a2 VðxÞ
V2
1

EðxÞ
Z

X
gðx; nÞ _eðnÞdn � eðxÞ

þ a2

V2
1

EðxÞ
Z

X

Z
X

gðx; nÞgðx; zÞ _eðnÞ � eðzÞdndz

þ a2

V2
1

Z
X

VðnÞgðn; xÞEðnÞeðnÞdn � _eðxÞ

� a2

V2
1

Z
X

Z
X

gðn; xÞEðnÞgðn; zÞeðzÞdz dn � _eðxÞ

ð46Þ
as proved in Appendix B.
The non-locality residual P turns out to be a homogeneous function of the strain rate. For a given strain field e, the residual

P can then be rewritten in a similar form to the one pertaining to the one-component non-local model:Z

PðxÞ ¼

X
f2ðx; nÞ � _eðnÞdnþ F2ðxÞ � _eðxÞ; ð47Þ
where the functions f2 and F2 are hereafter reported:
f2ðx; nÞ ¼ �a2 VðxÞ
V2
1

EðxÞgðx; nÞeðxÞ þ a2

V2
1

EðxÞgðx; nÞ
Z

X
gðx; zÞeðzÞdz

F2ðxÞ ¼
a2

V2
1

Z
X

VðnÞgðn; xÞEðnÞeðnÞdn� a2

V2
1

Z
X

gðn; xÞEðnÞ
Z

X
gðn; zÞeðzÞdz

� �
dn ¼ �

Z
X

f2ðn; xÞdn:

ð48Þ
The non-locality residual P can then be evaluated by means of the functions f2 and F2 once the strain rate _e is assigned.
Plots regarding the functions f2 and F2, given by (48), are reported in the examples developed in Section 5.

The non-local stress �r and the elastic energy functional U pertaining to the considered non-local models of non-homo-
geneous elasticity can be collected in a unified form as reported in Table 1.

A reasoning analogous to the one reported in Remark 1 can be followed for the two-component non-local model in order
to show that the non-local material tends to a local behaviour if the internal length tends to vanishing.

2.4. A non-local model for piecewise non-homogeneous media

A non-local model for piecewise non-homogeneous bodies has been provided in Marotti de Sciarra (2008). The main rela-
tions are hereafter briefly summarized and cast in the present framework in order to make reasonably self-contained the paper.

The domain X occupied by the piecewise non-homogeneous body is partitioned in N homogeneous subdomains Xi # X
fulfilling the conditions [N

i¼1Xi ¼ X and Xi \Xj ¼ ; for any i–j. Accordingly the boundaries between subdomains of the piece-
wise non-homogeneous body constitute discontinuity surfaces for the elastic stiffness. The elastic stiffness associated with a
homogeneous subdomain Xi is denoted by Ei.

The space weight function has the expression (3) and the elastic energy is assumed in the following form:
/ðeðxÞÞ ¼ 1
2
ðREeÞðxÞ � eðxÞ ¼ 1

2

XN
j¼1

Ej

Z
Xj

Wðx; zÞeðzÞdz

" #
� eðxÞ

¼ 1
2

1� a
VðxÞ
V1

� �
EieðxÞ � eðxÞ þ

a
2V1

XN
j¼1

Ej

Z
Xj

gðx; zÞeðzÞdz � eðxÞ;
ð49Þ
where x 2 Xi and z 2 Xj. After some algebra, the elastic energy can be rewritten as the sum of the local elastic energy and of a
non-local contribution:
/ðeðxÞÞ ¼ 1
2

EieðxÞ � eðxÞ þ
a

2V1

XN
j¼1

Z
Xj

Lðx; zÞeðzÞdz � eðxÞ; ð50Þ
expressions of the non-local stress and of the non-local elastic energy functional associated with the considered non-homogeneous formulations

al stress rðxÞ EðxÞeðxÞ þ
R
X Zðx; zÞeðzÞdz

energy functional UðeÞ 1
2

R
X EðxÞeðxÞ � eðxÞdxþ 1

2

R
X

R
X Zðx; zÞeðzÞdz � eðxÞdx

Zðx; zÞ
al model for piecewise non-homogeneous bodies a

V1
Lðx; zÞ ¼ �a VðxÞ

V1
Eidðx; zÞ þ a

V1
Ejgðx; zÞ where x 2 Xi; z 2 Xj

mponent non-local model a
V1

H1ðx; zÞ ¼ a
V1
½EðxÞ þ EðzÞ�gðx; zÞ � 2a VðzÞ

V1
EðzÞdðx; zÞ þ a2

V2
1

J1ðx; zÞ

mponent non-local model a2

V2
1

J1ðx; zÞ
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where Lðx; zÞ ¼ �VðxÞEidðx; zÞ þ Ejgðx; zÞ with x 2 Xi; z 2 Xj and EiðEjÞ denotes the elastic stiffness pertaining to the homoge-
neous subdomains XiðXjÞ with i; j ¼ 1; . . . ;N.

The elastic energy functional is then given by:
UðeÞ ¼ 1
2

XN
i¼1

Ei

Z
Xi

eðxÞ � eðxÞdxþ a
2V1

XN
i;j¼1

Z
Xi

Z
Xj

Lðx; zÞeðzÞdz � eðxÞdx ð51Þ
with x 2 Xi and z 2 Xj. The stress–strain relation is provided by the relation:
�rðxÞ ¼ ðREeÞðxÞ ¼ 1� a
VðxÞ
V1

� �
EieðxÞ þ

a
V1

XN
j¼1

Ej

Z
Xj

gðx; zÞeðzÞdz ¼ EieðxÞ þ
a

V1

XN
j¼1

Z
Xj

Lðx; zÞeðzÞdz ð52Þ
with x 2 Xi and z 2 Xj.
The non-locality residual function is then given by:
PðxÞ ¼ 1
2
ðRE _eÞðxÞ � eðxÞ � 1

2
ðREeÞðxÞ � _eðxÞ ¼ 1

2
1� a

VðxÞ
V1

� �
Ei _eðxÞ � eðxÞ

þ a
2V1

XN
j¼1

Ej

Z
Xj

gðx; zÞ _eðzÞdz � eðxÞ � 1
2

1� a
VðxÞ
V1

� �
EieðxÞ � _eðxÞ

� a
2V1

XN
j¼1

Ej

Z
Xj

gðx; zÞeðzÞdz � _eðxÞ ¼ a
2V1

XN
j¼1

Ej

Z
Xj

gðx; zÞ _eðzÞdz � eðxÞ

� a
2V1

XN
j¼1

Ej

Z
Xj

gðx; zÞeðzÞdz � _eðxÞ

ð53Þ
with x 2 Xi and z 2 Xj. The non-local elastic energy functional (51) and the non-local stress (52) pertaining to the piecewise
non-homogeneous model are cast in the unified framework as reported in Table 1.

2.5. A comparison between the non-local models

Let us now analyze the behaviour of the non-local models in the case of homogeneous or non-homogeneous elasticity
subject to uniform or non-uniform strains eðxÞ and strain rates _eðxÞ in X. The results are summarized in Table 2 where
the labels u and n, respectively, stand for uniform and non-uniform in X with reference to the elastic stiffness E, strain e
and strain rate _e. For conciseness, the dependence of E and e on the variables x and n is written as a subscript in Table 2.

� Two-component non-local model

Let us consider a uniform strain e in a non-homogeneous body X. The elastic energy /ðeðxÞÞ, the elastic energy functional
UðeÞ and the non-local stress �rðxÞ, respectively, given by (16), (17) and (21)2, reduce to their local counterparts (see Table
2) since Ae ¼ ðR � IÞe ¼ 0 being �e ¼ Re ¼ e. The same results can be obtained by considering the explicit expressions of
/;U and �r in terms of the attenuation function g, respectively, given in (39), (40) and (44).

Trivially, if the elastic stiffness is constant (homogeneous body), analogous results hold with EðxÞ ¼ E.
Similar arguments lead to the result that the non-locality residual function P, see the relations (23)2 and (46) in terms of

the attenuation function g, vanishes in the case of homogeneous or non-homogeneous elasticity for any uniform strain rate _e
in X which is the locality recovery condition (Polizzotto et al., 2006).

Let us consider a non-uniform strain field e in a non-homogeneous body X. The elastic energy /ðeðxÞÞ, the elastic energy
functional UðeÞ and the non-local stress �rðxÞ have the explicit expressions (39), (40) and (44). The non-locality residual P
given by (46) does not vanish independently of the elastic stiffness EðxÞ for any strain rate _e. In particular, assuming a uni-
form strain rate in X, it results:
PðxÞ ¼ �a2 V2ðxÞ
V2
1

EðxÞeðxÞ � _eþ a2 VðxÞ
V2
1

EðxÞ
Z

X
gðx; zÞeðzÞdz � _e

þ a2

V2
1

Z
X

VðnÞgðn; xÞEðnÞeðnÞdn � _e� a2

V2
1

Z
X

Z
X

gðn; xÞEðnÞgðn; zÞeðzÞdz dn � _e:

ð54Þ
For a homogeneous body, analogous results hold with EðxÞ ¼ E. For sake of conciseness the specialization of the constitutive
relations are omitted and the results are reported in Table 2 in which the following function is used:
j1ðx; zÞ ¼ V2ðzÞdðx; zÞ þ jðx; zÞ;
where:
jðx; zÞ ¼ k2ðx; zÞ � c1ðx; zÞ; c1ðx; zÞ ¼ ½VðxÞ þ VðzÞ�gðx; zÞ



Table 2
Comparison among the nonlocal model for piecewise non-homogeneous bodies and for the one-component and two-component nonlocal models (respectively denoted by the subscripts 0, 1 and 2)

EðxÞ u u n n
eðxÞ u n u n

/1ðexÞ 1
2 Ee � e 1

2
Eex � ex þ

aE
2V1

ðh1eÞx � ex
1
2

Exe � e�
a

2V1
VxExe � eþ

a
2V1

Z
X

gðx; nÞEndne � e 1
2

Exex � ex þ
a

2V1
ðH1eÞx � ex

U1ðeÞ 1
2 EXe � e 1

2
Ehe; ei þ aE

2V1
hh1e; ei

1
2 hEe; ei 1

2
hEe; ei þ a

2V1
hH1e; ei

�r1ðxÞ Ee Eex þ
aE
V1
ðh1eÞx Exe� a

Vx

V1
Exeþ

a
V1

Z
X

gðx; nÞEndne Exex þ
a

V1
ðH1eÞx

/2ðexÞ 1
2 Ee � e (39) with Ex=E 1

2 Exe � e (39)

U2ðeÞ 1
2 EXe � e 1

2
Ehe; ei þ a2E

2V2
1
hj1e; ei

1
2 hEe; ei 1

2
hEe; ei þ a2

2V2
1
hJ1e; ei

�r2ðxÞ Ee
Eex þ

a2E
V2
1
ðj1eÞx

Exe Exex þ
a2

V2
1
ðJ1eÞx

/oðexÞ 1
2 Ee � e 1

2
Eex � ex þ

aE
2V1

ðleÞx � ex
1
2

Eie � eþ
a

2V1

XN
j¼1

Z
Xj

Lðx; zÞdze � e
1
2

Eiex � ex þ
a

2V1
ðLeÞx � ex

UoðeÞ 1
2 EXe � e 1

2
E
X

i

he; eii þ
aE

2V1

X
i

hle; eii
1
2

PN
i¼1EiXie � e 1

2

X
i

hEie; eii þ
a

2V1

X
i

hLe; eii

�roðxÞ Ee Eex þ
aE
V1
ðleÞx Eieþ

a
V1

XN
j¼1

Z
Xj

Lðx; zÞdze Eiex þ
a

V1
ðLeÞx

_eðxÞ u u n u u n

P1ðxÞ 0 (60) (37) 0 (58) (31)
P2ðxÞ 0 (54) with Ex=E (46) with Ex=E 0 (54) (46)
PoðxÞ 0 (65) with Ej=E (53) with Ej=E 0 (65) (53)
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and k2 is defined according to (34)2.

� One-component non-local model

Let us consider a uniform strain field e in a non-homogeneous body X. The relation (13) providing the elastic energy becomes:
/ðeðxÞÞ ¼ 1
2
ðREÞðxÞe � e ¼ 1

2
EðxÞe � e� a

2V1
VðxÞEðxÞ �

Z
X

gðx; nÞEðnÞdn

� �
e � e: ð55Þ
It is then immediate to show that the elastic energy functional (14) coincides to its local counterpart, i.e. UðeÞ ¼ 1
2 hEe; ei. The

relation (21)1 for the non-local stress �rðxÞ yields:
�rðxÞ ¼ ðREÞðxÞe ¼ EðxÞe� a
V1

VðxÞEðxÞ �
Z

X
gðx; nÞEðnÞdn

� �
e: ð56Þ
The non-locality residual P vanishes for any uniform strain rate _e. In fact, the relation (23)1 yields:
PðxÞ ¼ 1
2
e � ðREÞðxÞ _e� 1

2
ðREÞðxÞe � _e ¼ 0 ð57Þ
since �e ¼ Re ¼ e, R _e ¼ ðReÞ� ¼ _e and it can be easily proved that e � ðREÞðxÞ _e ¼ ðREÞðxÞe � _e.
The values of the elastic energy (55) and of the non-local stress (56) pertaining to a non-homogeneous body in a uniform

strain state do not coincide to the relevant local counterparts due to the non-homogeneity of the material, i.e. to the space
variation of the elastic stiffness. Further the elastic energy functional (pertaining to the whole body) coincides to its local
counterpart.

It is worth noting that the insulation condition (10) is fulfilled and the dissipation D, given by (11), is pointwise vanishing
according to the reversible nature of the model since _/ ¼ �r � _e.

As a consequence, the vanishing of the residual function everywhere in the body for any uniform strain (see the locality
recovery condition in Polizzotto et al., 2006) ensures that there is no energy exchanges between neighbour particles. Nev-
ertheless the presence of a spatial variation of the elastic stiffness yields a non-local expression for the free energy and for the
stress.

In fact the non-local behaviour is due to the non-homogeneity of the material and is effective even if the strain is uniform
in X and the non-locality residual is pointwise vanishing.

Hence the considered model follows the heuristic considerations advanced by Polizzotto et al. (2004, 2006) according to
which the presence of non-homogeneity due to the space variation of the elastic stiffness EðxÞ contributes to the interactions
between distant particles. In fact if a subdomain Xo � X pertaining to an initially homogeneous non-local elastic body X, has
a completely deteriorated elastic modulus, no long distance interactions between points inside and outside Xo are allowed to
occur. In any intermediate state of this degradation process, the interactions between particles inside and outside Xo are
influenced by the non-homogeneity of the elastic modulus with respect to the initial non-local homogeneous situation. In
Polizzotto et al. (2006) the particle interaction attenuation effects due to non-homogeneity of the elastic modulus are con-
ventionally accounted for by means of a larger equivalent distance. Experimental data seems to be lacking on this issue and
further analyses are necessary.

Let us consider a uniform strain e in a homogeneous body X, i.e. EðxÞ ¼ E. The elastic energy /ðeðxÞÞ, the elastic energy
functional UðeÞ and the non-local stress �rðxÞ given by (13), (14) and (21)1 reduce to their local counterparts (see Table 2)
being Re ¼ e and RERe ¼ Ee.

Similar arguments show that the non-locality residual function P, given by (23)1, vanishes for any uniform strain rate _e by
the symmetry of the elastic stiffness E and the condition R _e ¼ ðReÞ� ¼ _e.

Let us consider a non-uniform strain field e in a non-homogeneous body X. The elastic energy /ðeðxÞÞ, the elastic energy
functional UðeÞ and the non-local stress �rðxÞ have the expressions (27), (29) and (30). The non-locality residual P is given by
(31) and does not vanish, independently of the elastic stiffness EðxÞ, for any strain rate _e. In particular, assuming a uniform
strain rate, it results:
PðxÞ ¼ 1
2
eðxÞ � ðREÞðxÞ _e� 1

2
ðREReÞðxÞ � _e ð58Þ
and explicitly it results:
PðxÞ ¼ a
VðxÞ
2V1

1� a
VðxÞ
V1

� �
EðxÞ _e � eðxÞ þ a

2V1

Z
X

EðzÞgðx; zÞdz _e � eðxÞ � a
2V1

Z
X

Hðx; zÞeðzÞdz � _e: ð59Þ
For a homogeneous body, analogous results hold with EðxÞ ¼ E. The non-local elastic energy, stress and residual are, respec-
tively, given by (35)–(37). In the case of a uniform strain rate _e, the expression (37) becomes:
PðxÞ ¼ a
VðxÞ
2V1

2� a
VðxÞ
V1

� �
E _e � eðxÞ � a

2V1
E
Z

X
hðx; zÞeðzÞdz � _e: ð60Þ
Clearly the same result is obtained starting from the expression (59) by setting EðxÞ ¼ E.
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� Piecewise non-homogeneous model

Let us consider a uniform strain field e in a non-local model for a piecewise non-homogeneous body X. The relation (50)
can be easily rewritten by setting eðxÞ ¼ e in the form:
/ðeðxÞÞ ¼ 1
2

Eie � eþ
a

2V1

XN
j¼1

Z
Xj

Lðx; zÞdze � e ð61Þ
with x 2 Xi and z 2 Xj. The elastic energy functional (51) coincides to its local counterpart:
UðeÞ ¼ 1
2

XN
i¼1

EiXie � e; ð62Þ
being Xi the measure of the ith homogeneous subdomain, since it results:
XN
i;j¼1

Z
Xi

Z
Xj

Lðx; zÞdz dx ¼ 0
with x 2 Xi and z 2 Xj. The non-local stress (52) becomes:
�rðxÞ ¼ Eieþ
a

V1

XN
j¼1

Z
Xj

Lðx; zÞdze ð63Þ
and the non-locality residual (53) vanishes for any uniform strain rate being:
PðxÞ ¼ a
2V1

XN
j¼1

Ej

Z
Xj

gðx; nÞdn _e � e� a
2V1

XN
j¼1

Ej

Z
Xj

gðx; nÞdne � _e ¼ 0 ð64Þ
with x 2 Xi and z 2 Xj.
It is worth noting that, similarly to the one-component non-local model, the elastic energy and the non-local stress do not

reduce to the relevant local counterparts. The non-locality residual function vanishes for any uniform strain rate, the insu-
lation condition is fulfilled and the dissipation is pointwise vanishing according to the reversible nature of the model. More-
over the global elastic energy (62) coincides to its classical (local) counterparts.

Accordingly the considered non-local model for piecewise non-homogeneous bodies follows the considerations advanced
in Polizzotto et al. (2006) upon the possibility that a non-homogeneous elastic stiffness contributes to interactions between
distant particles.

Let us consider a uniform strain field e in a homogeneous body X. The elastic energy (50), the elastic energy functional
(51) and the non-local stress (52) reduce to their local counterparts. The residual P vanishes for any uniform strain rate _e.

Let us consider a non-uniform strain field e in a non-homogeneous body X. The elastic energy /ðeðxÞÞ, the elastic energy
functional UðeÞ and the non-local stress �rðxÞ, respectively, follow from the relations (50)–(52). The non-locality residual P
does not vanish for any strain rate _e. In particular, assuming a uniform strain rate, it results:
PðxÞ ¼ a
2V1

XN
j¼1

Ej

Z
Xj

gðx; nÞdn _e � eðxÞ � a
2V1

XN
j¼1

Ej

Z
Xj

gðx; nÞeðnÞdn � _e: ð65Þ
For a homogeneous body, analogous results hold with EðxÞ ¼ E where the function lðx; zÞ ¼ �VðxÞdðx; zÞ þ gðx; zÞ is intro-
duced in Table 2.

3. The non-local elastostatic problem

The analysis of linear structural models makes reference to the following pairs of dual Hilbert spaces: the kinematic-force
pair U;F and the strain–stress pair R;S. The kinematic operator B 2 LinfU;Rg gives the linearized strain due to a prescribed
displacement field and the dual equilibrium operator B0 2 LinfS;Fg provides the force system in equilibrium with a given
stress field. Stress and strain spaces may be identified with a pivot Hilbert space (square integrable fields). The duality pair-
ing in F�U is denoted by h�; �i having the physical meaning of external virtual work. For avoiding proliferation of symbols,
the internal and external virtual works are denoted by the same symbol. Linear boundary constraints define a linear sub-
space Lo � U of conforming displacement fields v (see Marotti de Sciarra, 2008; Romano, 2002; Showalter, 1997).

The relations governing the non-local and non-homogeneous elastic structural problem for a given load history ‘ðtÞ are
given in the form:
B0�r ¼ ‘þ r equilibrium
B vþwð Þ ¼ e compatibility
�r ¼ dUðeÞ constitutive relation
v 2 o� �ðrÞ external relation:

8>>><
>>>:

ð66Þ



666 F. Marotti de Sciarra / International Journal of Solids and Structures 46 (2009) 651–676
The load functional ‘ ¼ ft;bg 2F collects tractions t and body forces b. Reactions of the external constraints are denoted by
r and w 2 U represents a displacement field which fulfils the non-homogeneous boundary conditions.

The structural model encompasses the one-component and two-component non-local models and the non-local model
for piecewise non-homogeneous bodies since the elastic energy in (66)3 can assume the expressions provided in (29),
(40), (51) as reported in Table 1.

The external relation between reactions r 2F and displacements v 2 U is expressed in terms of two conjugate concave
functionals � : U! R [ f�1g and � � : F! R [ f�1g by means of the following equivalent relations:
Table 3
The non

Mðv; �r;
H1ðv; �r;
H2ðv; �r;
R1ð�r; eÞ
R2ðv; �rÞ
R3ðv; rÞ
P1ð�rÞ ¼
P2ðvÞ ¼
P3ðeÞ ¼
P4ðrÞ ¼
r 2 o� ðvÞ () v 2 o� �ðrÞ () � ðvÞ þ � �ðrÞ ¼ hr; vi ð67Þ

where the symbol o denotes the superdifferential of concave functionals (Rockafellar, 1970).

Different expressions can be given to the concave functionals � and � � depending on the particular type of external con-
strains. In the case of external unilateral constraints, the set of conforming displacements is given by the convex cone Co. The
subspace of external reactions is the positive polar cone Cþo of Co defined as the set of reactions r 2F such that the external
virtual work is non-negative, i.e. hr; viP 0, for any conforming displacement v 2 Co. Then the functionals � and � � are de-
fined in the form:
� ðvÞ ¼ uCo vð Þ ¼
0 if v 2 Co

�1 otherwise

�
� �ðrÞ ¼ uCþo ðrÞ ¼

0 if r 2 Cþo ¼ R

�1 otherwise:

�

The external constraint relation (66)4 then yields v 2 Co and r 2 R ¼ Cþo , i.e. hr; viP 0 for any conforming displacement
v 2 Co.

In the sequel, external frictionless bilateral constraints with non-homogeneous boundary conditions are considered in the
examples. Hence the admissible set of displacements is the subspace L ¼ wþLo where Lo collects conforming displace-
ments which satisfy the homogeneous boundary conditions. The subspace of the external constraint reactions R is the
orthogonal complement of Lo, that is R ¼L?

o . Then the functional � turns out to be the indicator of Lo defined in the form:
� ðvÞ ¼ uLoðv�wÞ ¼
0 if v�w 2Lo

�1 otherwise

�
ð68Þ
and its conjugate � � is given by:
� �ðrÞ ¼ hr;wi þ uL?o
rð Þ ¼ hr;wi þ 0 if r 2L?

o ¼ R

�1 otherwise:

(
ð69Þ
Accordingly the external relation (66)4 are equivalent to state v 2 wþLo and r 2 R ¼L?
o , i.e. hr; vi ¼ 0 for any conforming

displacement v 2Lo.
The non-local model (66) turns out to be coincident to the non-local model for piecewise non-homogeneous bodies pro-

posed in Marotti de Sciarra (2008) if the non-local elastic energy functional appearing in (66)3 assumes the expression (51).
From a mechanical point of view the one-component and the two-component non-local models can describe a fully non-
homogeneous continuum while the non-local model provided in Marotti de Sciarra (2008) is limited to a piecewise non-
homogeneous medium.

A comparison among the considered non-homogeneous models is provided in Section 5 with reference to a non-homo-
geneous one-dimensional bar.

It is possible to follow the same procedure shown in Marotti de Sciarra (2008) to prove that the non-local problem at hand
admits variational formulations. The complete set of non-local variational formulations containing all the possible combina-
tions of the state variables is provided by the ten functionals reported in Table 3. By enforcing the fulfilment of the relations
(66), the state variables appearing in the mixed variational formulations of Table 3 can be alternatively eliminated and the
variational formulations can be obtained from one another. All the functionals attain the same value at a solution point of the
non-local and non-homogeneous elastic problem.

The potentials P2; P1;H1 and R2 turn out to be the non-local counterparts of the total potential energy, complementary
energy and mixed principles of Hu-Washizu and Hellinger-Reissner in classical local elasticity (Washizu, 1982) in the case
of convex external constraints.
-local elastic functionals with non-homogeneous boundary conditions

e; rÞ ¼ UðeÞ þ � �ðrÞ þ h�r;BðvþwÞ � ei � h‘þ r;vi
eÞ ¼ UðeÞ � � ðvÞ þ h�r;BðvþwÞ � ei � h‘;vi
rÞ ¼ �U�ð�rÞ þ � �ðrÞ þ h�r;BðvþwÞi � h‘þ r; vi
¼ UðeÞ þ � �ðB0�r� ‘Þ � h�r; ei þ h�r;Bwi
¼ �U�ð�rÞ � � ðvÞ þ h�r;BðvþwÞi � h‘; vi
¼ UðBðvþwÞÞ þ � �ðrÞ � h‘þ r;vi
�U�ð�rÞ þ � �ðB0�r� ‘Þ þ h�r;Bwi
UðBðvþwÞÞ � � ðvÞ � h‘;vi
UðeÞ � ð� � 	 B0Þ�ðeÞ
�ðU 	 BÞ�ð‘þ rÞ þ � �ðrÞ þ hr;wi



F. Marotti de Sciarra / International Journal of Solids and Structures 46 (2009) 651–676 667
The solution uniqueness of the boundary-value problem (66) for non-homogeneous non-local elastic materials requires
the strictly convexity of the non-local elastic energy. In fact, if the non-local elastic energy functional U is strictly convex, the
total potential energy P2 turns out to be strictly convex so that the solution displacement is an absolute minimum for P2 and
the non-local elastic structural problem (66) admits a unique solution (if any).

3.1. Total potential energy for non-homogeneous non-local elasticity

From a computational standpoint, the non-local total potential energy P2 provides a useful tool to derive the finite ele-
ment method for non-homogeneous non-local elasticity as discussed in Section 4. The expression of the non-local total po-
tential energy P2 for the Cauchy model in the case of external frictionless bilateral constraints is given by:
P2ðvÞ ¼ UðBðvþwÞÞ � h‘; vi;
where v 2Lo is a conforming displacement. The unified form of the elastic energy functional U is reported in Table 1 so that
it follows:
P2ðvÞ ¼
1
2

Z
X

EðxÞB vðxÞ þwðxÞ½ � � B½vðxÞ þwðxÞ�dxþ 1
2

Z
X

Z
X

Zðx; zÞB½vðzÞ þwðzÞ� � B½vðxÞ þwðxÞ�dz dx

�
Z

X
bðxÞ � vðxÞdx�

Z
oX

tðxÞ � vðxÞdx ð70Þ
with v 2Lo The explicit expressions of U are given by (29), (40) and (51) depending on the considered model.
4. A non-local finite element discretization

The non-local elastic problem can be numerically solved by a non-local finite element method (NFEM) starting from the
total potential energy P2. A NFEM requires to build up a non-local stiffness matrix which reflects the non-locality features
of the structural problem (Polizzotto et al., 2006). Such a non-local stiffness matrix contains the contributions from all the
elements of the mesh which lie within the influence distance from the considered element. Accordingly the non-local stiff-
ness matrix turns out to be banded with a band width larger than in the standard FEM.

The domain X occupied by the non-homogeneous body is partitioned in subdomains Xe # X, with e ¼ 1; . . .N, fulfilling
the conditions [N

e¼1Xe ¼ X and Xe \Xj ¼ ; for any e–j.
Adopting a conforming finite element discretization, the unknown displacement field vðxÞ is given, for each element, in

the interpolated form ve
hðxÞ ¼ NeðxÞqe with x 2 Xe where qe is the vector collecting the nodal displacement of the e-th finite

element and NeðxÞ is the chosen shape-function matrix.
A conforming displacement field vh ¼ fv1

h; v
2
h; . . . ; vN

h g satisfies the interelement continuity conditions and the homoge-
neous boundary conditions so that the rigid-body displacements are ruled out.

The displacement parameters qe can be expressed in terms of nodal parameters q by means of the standard assembly
operator Ae according to the parametric expression qe ¼Aeq. The interpolated counterpart P2h of the non-local total poten-
tial energy P2 can be obtained by adding up the contributions of each non-assembly element and imposing the conforming
requirement to the interpolating displacement to get:
P2hðvhÞ ¼ U½Bðvh þwhÞ� � h‘; vhi;
with vh 2Lo. Accordingly the total potential energy P2h can be rewritten as follows:
P2hðvhÞ ¼
1
2

XN
e¼1

Z
Xe

EðxÞBðve
h þwe

hÞðxÞ � Bðve
h þwe

hÞðxÞdx

þ 1
2

XN
e¼1

XN
m¼1

Z
Xe

Z
Xm

Zðx; zÞBðvm
h þwm

h ÞðzÞ � Bðve
h þwe

hÞðxÞdz dx

�
XN
e¼1

Z
Xe

bðxÞ � ve
hðxÞdx�

XN
e¼1

Z
Se

tðxÞ � ve
hðxÞdx;
where Se ¼ oX \ oXe and Zðx; zÞ is reported in Table 1.
The matrix form of the discrete problem is obtained by imposing the stationarity of P2h with respect to vh and is

given by:
XN

e¼1
AT

e KeeAeqþ
XN

e¼1

XN

m¼1
AT

e KNL
emAmq ¼

XN

e¼1
AT

e fe ð71Þ
in which the component submatrices and subvectors are defined in the form:
Kee ¼ KL
ee þ KNL

ee ; fe ¼ fL
e þ fNL

e :



Table 4
The functions K1 and K2 for the considered non-local formulations

Non-local model for piecewise non-homogeneous bodies One-component non-local model Two-component non-local model

K1ðxÞ �a VðxÞ
V1

a2 V2ðxÞ
V2
1
� 2a VðxÞ

V1
a2 V2ðxÞ

V2
1

K2ðx; zÞ a
V1

gðx; zÞEm
a

V1
Hðx; zÞ ¼ a

V1
½EðxÞ þ EðzÞ�gðx; zÞ þ a2

V2
1

Jðx; zÞ a2

V2
1

Jðx; zÞ
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The stiffness matrices are:
Fig. 3.
linearly
W is ex
respect
KL
ee ¼

Z
Xe

ðBNeÞTðxÞEðxÞðBNeÞðxÞdx

KNL
ee ¼

Z
Xe

ðBNeÞTðxÞK1ðxÞEðxÞðBNeÞðxÞdx

KNL
em ¼

Z
Xe

Z
Xm

ðBNeÞTðxÞK2ðx; zÞðBNmÞðzÞdz dx

ð72Þ
and the force vectors are:
fL
e ¼

Z
Xe

NT
e ðxÞbðxÞdxþ

Z
Se

NT
e ðxÞtðxÞdx�

Z
Xe

ðBNeÞTðxÞEðxÞðBNeÞðxÞdxwe

fNL
e ¼ �

Z
Xe

ðBNeÞTðxÞK1ðxÞEðxÞðBNeÞðxÞdxwe �
Z

Xe

Z
Xm

ðBNeÞTðxÞK2ðx; zÞðBNmÞðzÞdz dxwe;

ð73Þ
where K1 and K2 are defined in Table 4.
The integrations appearing in (72) are performed elementwise so that KL

ee turns out to be the standard stiffness matrix
while KNL

ee and KNL
em given by (72)2-3 turn out to be the non-local symmetric stiffness matrices reflecting the non-locality of

the model. The band width of the matrix KNL
em is larger than in the standard stiffness matrix since the elements of KNL

em vanish
if the related elements are too far with respect to the influence distance. The solving linear equation system follows from
(71) and is given by:
Kq ¼ ðKL þ KNLÞq ¼ f;
where the global stiffness matrix K is symmetric and positive definite.
In the case of a local elastic behaviour, the non-local terms disappear and the solving equation system reduces to the stan-

dard local FEM given by KLq ¼ fL.

5. Examples

Let us consider an elastic bar in tension having a unit cross-section and a length L. It is clamped at the end x ¼ 0 and is
subjected to a given displacement w at the other end x ¼ L.

The characteristics of the one-dimensional bar are length L ¼ 100 cm, elastic modulus Eo ¼ 21� 104 MPa, internal length
l ¼ 2 cm, influence distance R ¼ 12 cm and parameter a ¼ �1. The displacement w ¼ 0:2 cm is imposed at the end x ¼ L. The
Strain plots of a non-homogeneous bar with a piecewise continuous Young modulus having a constant value EðxÞ ¼ 0:4Eo for 0 6 x 6 L=2 and a
increasing Young modulus EðxÞ within 0:4Eo and Eo for L=2 6 x 6 L subjected to an imposed displacement at the end x ¼ L. The symmetric function

pressed in terms of different attenuation functions g, the labels (1) and (2) are referred to the one-component and two-component non-local models,
ively.
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parameter a in the two-component non-local model always appears as a square so that positive or negative values play the
same role.

The stress �r ¼ r in the considered bar X ¼ ½0; L� is then constant for the equilibrium requirement and the problem is
solved by means of the Fredholm integral equation. In fact the relations (30), (44) and (52) can be specialized to the present
one-dimensional case in the following unique integral equation:
Fig. 4.
displac
the non
r ¼ ½1þ K1ðxÞ�EðxÞeðxÞ þ
Z

X
K2ðx; zÞeðzÞdz X ¼ ½0; L�; ð74Þ
where K1ðxÞ and K2ðx; zÞ are reported in Table 4.
The relation (74) can be transformed into a Fredholm integral equation of the second kind as shown in Appendix C and the

strain eðxÞ can be obtained from the solution of Fredholm equation (80) according to the expression (83) of Appendix C.
In the case of a homogeneous material, the solution of the integral equation (74) yields eðxÞ ¼ w=L ¼ 2 � 10�3 and

r ¼ Eow=L ¼ 420 MPa by (78)3 (see Appendix C) since the solution of the Fredholm equation (77) is provided by hðxÞ ¼ 1.
Accordingly, the local values of strains and stresses for an homogeneous continuum are recovered independently of the
internal length.

A non-homogeneous bar with a piecewise continuous Young modulus having a constant value EðxÞ ¼ 0:4Eo for
0 6 x 6 L=2 and a linearly increasing Young modulus within 0:4Eo and Eo for L=2 6 x 6 L has been analyzed by means of
the considered one-component and two-component non-local models. The strain response e is provided in Fig. 3. Three dif-
ferent attenuation functions g, given by the Gauss-like function (5), the bi-exponential function (6) and the bell-shaped poly-
nomial function (7), are employed in the expression of the weight function W of the type (3). For comparison the strain plot
analytically derived in the case of a local behaviour is reported. The stress r evaluated for the local behaviour is 208:5 MPa.
The one-component and two-component non-local models provide the following constant stresses (the subscripts 1 and 2
are referred to the one-component and two-component models, respectively): r1 ¼ 205:3 MPa;r2 ¼ 208:6 MPa using the bi-
exponential function, r1 ¼ r2 ¼ 208:6 MPa using the bell-shaped polynomial function and r1 ¼ r2 ¼ 208:6 MPa using the
Gauss-like function.

The close-up at the section x ¼ 50 shows that the two-component model with the Gauss-like or bi-exponential functions
provides similar results and the related curves are the closest to the knee of the local response. The curve associated with the
one-component model with the bell-shaped polynomial function is the most distant one from the local response and it
shows a higher slope on the left side of the middle section than the other curves. On the right side all the curves tend to
coincide going away from the middle section.

In the case of a non-homogeneous bar with a piecewise Young modulus EðxÞ ¼ 0:1Eo for 0 6 x 6 L=2 and EðxÞ ¼ Eo for
L=2 6 x 6 L, the strain response e is reported in Fig. 4. For comparison purposes, the space weight function W is defined
in terms of the attenuation functions (5)–(7) and the one-component and two-component non-local models and the non-
local model for piecewise non-homogeneous bodies are adopted. It is apparent the presence of the non-local response in
a narrow layer around the middle section of the bar in which the strain e smoothly varies depending on the considered
non-local models and the chosen attenuation function.

The comparison shows that the one-component model and the non-local model for piecewise non-homogeneous bodies
provide the best fit of the constant strain. Moreover, the bell-shaped function presents a lower slope around the middle sec-
tion of the bar than the one corresponding to the other two attenuation functions independent of the considered non-local
model. The local stress value is r ¼ 76:3 MPa. The evaluated constant stresses pertaining to the non-local models vary from
r ¼ 75:2 MPa using the bi-exponential function in the one-component non-local model to r ¼ 79:1 MPa using the bell-
shaped function in the two-component non-local model.

It is worth noting that the maximum strain gap in the left part of the bar is provided by the constant strain
(e ¼ 3:765 � 10�3), obtained using the two-component model with the bell-shaped attenuation function, and the constant
Strain plots of a piecewise non-homogeneous bar in tension with EðxÞ ¼ 0:1Eo for 0 6 x 6 L=2 and EðxÞ ¼ Eo for L=2 6 x 6 L subjected to an imposed
ement at the end x ¼ L. The symmetric function W is expressed in terms of different attenuation functions g. The labels (0), (1) and (2) are referred to
-local model for piecewise non-homogeneous bodies and to the one-component and two-component non-local models.



Fig. 5. Profile of the strain for different finite element discretizations, different load conditions and different non-homogeneous bars: (a) Applied forces
F ¼ 30 kN at x ¼ L=2 and x ¼ L on a non-homogeneous piecewise continuous bar having a linearly decreasing elastic modulus EðxÞ within Eo and 0:2Eo for
0 6 x 6 L=2 and a constant value EðxÞ ¼ 0:2Eo for L=2 6 x 6 L; (b) Imposed displacement w ¼ 0:2 cm on a non-homogeneous piecewise bar having a
constant elastic modulus EðxÞ ¼ 0:4Eo for 0 6 x 6 L=2 and a linearly increasing elastic modulus EðxÞ within 0:4Eo and Eo for L=2 6 x 6 L.
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local value of strain (e ¼ 3:636 � 10�3). Such a gap is less than 4%. The gap between the strains obtained by using other atten-
uation functions or non-local models and the constant local strain is even less.

Further, the non-homogeneous elastic bar in tension is solved by adopting the proposed NFEM and the bi-exponential
attenuation function. The problem is discretized with a different number of elements, all of equal size, namely
n ¼ 28;n ¼ 42;n ¼ 84 and n ¼ 168.

The elastic bar in tension is loaded by two external forces of magnitude F ¼ 30 kN applied at the sections x ¼ L=2 and
x ¼ L. The strain plot is reported in Fig. 5(a). The non-homogeneous bar has a linearly decreasing Young modulus EðxÞ
within Eo and 0:2Eo for 0 6 x 6 L=2 and a constant Young modulus EðxÞ ¼ 0:2Eo for L=2 6 x 6 L. The curves related to
the FE subdivision with n ¼ 28;n ¼ 42 and n ¼ 84 are constructed from straight segments connecting individual points
that are quite far apart since they are evaluated using coarse meshes in order to show the effectiveness of the models.
The picture shows that the strain plots tend to the one obtained by the FE solution with a refined mesh of n ¼ 168 ele-
ments for both the one- and two-component models. It is worth noting that the strains associated with the FE two-com-
ponent model tends to the strain curve obtained with n ¼ 168, for increasing n, from below, i.e. at a fixed point x strains
grow up if the mesh is refined so that the model tends to relax. On the contrary, the strain curves provided by the FE one-
component model show the opposite behaviour with increasing n, i.e. at a fixed point x strains decrease if the mesh is
refined so that the model tends to stiff.

The strain plot in Fig. 5(b) is referred to the elastic bar in tension loaded by the displacement w ¼ 0:2 cm at the end sec-
tion x ¼ L. The non-homogeneous bar has a constant Young modulus EðxÞ ¼ 0:4Eo for 0 6 x 6 L=2 and a linearly increasing
Young modulus EðxÞ within 0:4Eo and Eo for L=2 6 x 6 L. The stress assumes the values 222:6 MPa (n = 28), 211:5 MPa
(n = 42), 208:7 MPa (n = 84) and 208:6 MPa (n = 168).

On comparing the strain results, no mesh dependence or boundary effects are pointed out by the considered non-local
model. The strain plot reported in Fig. 5(a) shows that a minor approximation is exhibited by the one-component non-local
model for the coarser meshes n = 42 and n = 28.

The plots of the two-dimensional function f1 and of the one-dimensional function F1, see (33), pertaining to the one-com-
ponent non-local model is reported in Fig. 6 with reference to the bar analyzed in Fig. 5(a).



Fig. 6. Plots of the functions f1 and F1 providing the non-locality residual P for the one-component non-local model related to the non-homogeneous bar
analyzed in Fig. 5(a): (a) the two-dimensional function f1; (b) the one-dimensional function F1.
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Similarly, the functions f2 and F2, see (48), related to the non-locality residual (47) are reported in Fig. 7(a) and (b) with
reference to the two-component non-local model. In the second half of the bar beyond the boundary layer of the middle sec-
tion, the strain is constant so that the functions f2 and F2 identically vanish according to the relations (48).

The non-locality residual P, associated with the one-component and two-component non-local models, is evaluated in
Fig. 7(c) for the non-homogeneous bar analyzed in Fig. 5(a) by considering a uniform strain rate _eðxÞ ¼ 0:004. According
to the results provided in Table 2, the residual P in the first half of the bar is non-vanishing. On the contrary, beyond the
boundary layer of the middle section, the non-locality residuals P are vanishing being the strain e uniform.

Figs. 6 and 7 show that the non-locality residual component functions f1 and F1, pertaining to the one-component non-
local model, and the non-locality residual functions f2 and F2, related to the two-component non-local model, appears to be
quite different. Nevertheless the non-locality residual functions P pertaining to the two models have a similar shape so that
the energy exchanges between neighbour particles occur in a similar manner. Accordingly the considered examples show
that the macroscopic behaviour of the non-local and non-homogeneous models turns out to be similar.

A non-homogeneous bar with a constant Young modulus EðxÞ ¼ 0:4Eo for 0 6 x 6 L=2 and a linearly increasing Young
modulus EðxÞ within 0:4Eo and Eo for L=2 6 x 6 L is considered. The bar is subjected to a constant strain e ¼ 0:001 and the
related stress plot is reported in Fig. 8. According to the results reported in Table 2, the non-local stress associated with
the one-component non-local model coincides to the local one where the elastic modulus EðxÞ is constant. Approaching
the boundary layer of the middle section of the bar, the non-local stress does not coincide to the local one due to the
non-homogeneity of the bar.

6. Closure

A contribution in the framework of non-local constitutive models for non-homogeneous elastic materials is addressed.
Different stress–strain laws follow from suitable definitions of the free energy in terms of local and non-local strains.

A thermodynamic analysis is developed in order to consistently derive the non-local model. The two-component model
satisfies the condition that the elastic energy and the stress coincide to their local counterparts whenever the strain field is



Fig. 7. Plots of the functions f2 and F2 providing the non-locality residual P for the two-component non-local model related to the non-homogeneous bar
analyzed in Fig. 5(a): (a) the two-dimensional function f2; (b) the one-dimensional function F2; (c) the non-locality residual P associated with the one-
component and two-component non-local models is evaluated for a uniform strain rate _eðxÞ ¼ 0:004.
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uniform in the body. The elastic energy and the stress pertaining to the one-component model and to the non-local model for
piecewise non-homogeneous bodies do not reduce to the local one under uniform strain fields in order to account for non-
locality effects due to the non-homogeneity of the material.

The complete family of variational principles with different combinations of the state variables is provided in a unified
framework. Uniqueness of the solution of the non-local elastic problem is also discussed.

The extension to the non-local elasticity of total potential energy, complementary energy, mixed Hu-Washizu and Hel-
linger-Reissner principles of classical (local) elasticity are provided.

A non-homogeneous bar under different load conditions is addressed. The numerical solution is obtained by the recourse
to the Fredholm integral equation and the NFEM showing no pathological behaviours such as mesh dependence, numerical
instability or boundary effects. Extensions of the present model to materials with a non-homogeneous internal length and
with voids or holes are of practical interest and are the subject of ongoing researches.



Fig. 8. Plot of stress for a non-homogeneous bar with a constant Young modulus EðxÞ ¼ 0:4Eo for 0 6 x 6 L=2 and a linearly increasing Young modulus EðxÞ
within 0:4Eo and Eo for L=2 6 x 6 L subjected to a constant strain e ¼ 0:001.
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Appendix A. One-component non-local model

� The integrals appearing in (25) can be transformed in the following form:
Z
X

Z
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ð75Þ
Using the definitions (26), the integrals in (75) become:
Z
X

Z
X
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� The residual P at the point x is given by (23)1. Noting that:
ðRER _eÞðxÞ ¼
Z

X

Z
X

Wðn; xÞEðnÞWðn; zÞ _eðzÞdz dn;
and recalling the expression (75), it results:
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Accordingly, recalling the definitions (26), it follows:
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Appendix B. Two-component non-local model

� The elastic energy appearing in the relation (16) can be given in the form:
/ðeðxÞÞ ¼ 1
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2
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Recalling the expression of the space weight function W, it results:
/ðeðxÞÞ ¼ EðxÞeðxÞ � eðxÞ þ 1
2

1� a
VðxÞ
V1

� �2

EðxÞeðxÞ � eðxÞ

þ 1� a
VðxÞ
V1

� �
a

V1
EðxÞ

Z
X

gðx; nÞeðnÞdn � eðxÞ

þ a2

2V2
1

EðxÞ
Z

X
gðx; nÞeðnÞdn �

Z
X

gðx; zÞeðzÞdz

� EðxÞeðxÞ � 1� a
VðxÞ
V1

� �
eðxÞ � EðxÞeðxÞ � a

V1

Z
X

gðx; nÞeðnÞdn
and rearranging the terms it turns out to be:
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� Let us evaluate the non-local stress (43). Recalling the expressions (1) and (3) of the regularization operator R and
of the weight function W, together with the expression of the operator A, the non-local stress (43) turns out to be:
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ð76Þ
The first integral in (76) has been evaluated in terms of the attenuation function g in (75). The second integral in (76)
becomes:
Z

X
Wðx; nÞEðnÞeðnÞdn ¼ 1� a

VðxÞ
V1

� �
EðxÞeðxÞ þ a

V1

Z
X

gðx; nÞEðnÞeðnÞdn
and the third integral in (76) turns out to be:
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Hence it results:
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� The non-local residual function P is reported in (23)2 for the two-component non-local model and can be rewritten in the
form:
PðxÞ ¼ ðEAeÞðxÞ � ðA _eÞðxÞ � ðREAeÞðxÞ � _eðxÞ þ ðEAeÞðxÞ � _eðxÞ
so that it follows:
PðxÞ ¼ EðxÞ½ðReÞðxÞ � eðxÞ� � ½ðR _eÞðxÞ � _eðxÞ� � ½ðREReÞðxÞ � ðREeÞðxÞ� � _eðxÞ þ EðxÞ½ðReÞðxÞ � eðxÞ� � _eðxÞ
¼ EðxÞðReÞðxÞ � ðR _eÞðxÞ � EðxÞeðxÞ � ðR _eÞðxÞ � ðREReÞðxÞ � _eðxÞ þ ðREeÞðxÞ � _eðxÞ:
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Recalling the expression of the space weight function W, it results:
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As a consequence it turns out to be:
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Finally it results:
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Appendix C. Fredholm integral equation

The relation (74) can be transformed into a Fredholm integral equation since it can be rewritten in the form:Z

AðxÞhðxÞ þ

X
Bðx; zÞhðzÞdz ¼ 1; ð77Þ
where
AðxÞ ¼ ½1þ K1ðxÞ�
EðxÞ
Eo

Bðx; zÞ ¼ K2ðx; zÞ
Eo

hðxÞ ¼ Eo

r
eðxÞ: ð78Þ
Setting:
aðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
AðxÞ

p B�ðx; zÞ ¼ Bðx; zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxÞAðzÞ

p h�ðxÞ ¼ hðxÞ
ffiffiffiffiffiffiffiffiffi
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ð79Þ
the relation (77) becomes:
h�ðxÞ þ
Z

X
B�ðx; zÞh�ðzÞdz ¼ aðxÞ ð80Þ
which is a Fredholm integral equation of the second kind for the unknown function h� (Tricomi, 1985). The kernel B�ðx; zÞ is
symmetric and, if aðxÞ ¼ 0, the integral equation is said to be homogeneous. The functions wi fulfilling the homogeneous
equation
wiðxÞ ¼ li

Z
X

B�ðx; zÞwiðzÞdz ð81Þ
are called the eigenfunctions and the scalars li are the eigenvalues of B� in X. The solution of the Fredholm integral equation
of the second kind (80) is then given by:
h�ðxÞ ¼ aðxÞ �
X1
i¼0

R
X aðzÞwiðzÞdz

li þ 1
wiðzÞ
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if the term ð�1Þ is not an eigenvalue.
On the contrary, if le ¼ �1 is an eigenvalue, the solution of the Fredholm equation (80) is provided in the form:
h�ðxÞ ¼ aðxÞ þ cweðxÞ þ le

X1
i¼0ði–eÞ

R
X aðzÞwiðzÞdz

li � le
wiðzÞ;
where c is an undetermined constant, we is the eigenfunction corresponding to le and the function a has to be orthogonal to
the eigenfunction we, that is:
Z

X
aðzÞweðzÞdz ¼ 0: ð82Þ
Accordingly if the orthogonality condition (82) is not fulfilled, a solution of the equation (80) does not exist. Otherwise, if the
orthogonality condition (82) is fulfilled, the solution is not fully determined.

Hence if the term ð�1Þ is not an eigenvalue, the solution exists and the Fredholm equation (80) provides the function
h�ðxÞ. Noting that the equality (79)3 yields hðxÞ ¼ h�ðxÞ=

ffiffiffiffiffiffiffiffiffi
AðxÞ

p
, the strain eðxÞ can be obtained from the relation (78)3 in

the form:
eðxÞ ¼ hðxÞr
Eo
¼ hðxÞR

X hðzÞdz
w ð83Þ
being
 Z
X

hðzÞdz ¼ Eow
r

:
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