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a b s t r a c t

In many randomized trials, subjects enter the sample sequentially. Because the covariates for all units are
not known in advance, standard methods of stratification do not apply. We describe and assess the
method of DA-optimal sequential allocation (Atkinson, 1982) for balancing stratification covariates across
treatment arms. We provide simulation evidence that the method can provide substantial improvements
in precision over commonly employed alternatives. We also describe our experience implementing the
method in a field trial of a clean water and handwashing intervention in Dhaka, Bangladesh, the first time
the method has been used. We provide advice and software for future researchers.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Randomized-controlled trials (RCTs) are an increasingly im-
portant tool for policy evaluation and estimation of economic
parameters. However, they are expensive, and efficient use of
limited resources (funding, inputs from implementation partners,
and researchers' time) requires that they be designed carefully. In
an important contribution, Bruhn and McKenzie (2009) reviewed
stratification methods that were common in economics RCTs at
the time, and showed that large gains in precision were available
by adopting more sophisticated stratification methods from the
clinical trials literature. These stratification methods require re-
searchers to obtain stratification covariates from all subjects prior
to randomization. However, this is not always feasible. In clinical
trials, subjects are often allocated to treatment as they arrive. In
field trials, operational constraints may prevent defining and sur-
veying the full sample frame in advance. In such situations, sub-
jects must be assigned sequentially, with the researcher only
learning the value of the stratification variables for that subject's at
the time of enrollment and assignment.1

In this paper, we propose the use of DA-optimal sequential
Ltd. This is an open access article u

eras).
nomics include Beaman and
cation, and Bronchetti et al.
tion method we describe in
allocation (Atkinson, 1982) to improve balance and power when
subjects are enrolled sequentially. The DA-optimal method mini-
mizes imbalance given the constraint of not knowing covariate
values in advance. We describe the method and its properties, and
provide an algorithm for its implementation. We conduct a set of
simulations, based on Bruhn and McKenzie (2009), and show that
the DA-optimal method offers clear benefits relative to commonly
used sequential alternatives. In fact, surprisingly, optimal se-
quential designs are comparably well-balanced to stratifications
performed with full knowledge of covariates in advance. In spite of
these practical advantages, the method had not, to our knowledge
and according to three survey articles, ever been employed in the
field.2 We describe our experience implementing the method in a
water treatment and hygiene intervention in Dhaka, Bangladesh
(Guiteras et al., 2015), and offer practical advice on its im-
plementation under field conditions. Implementation was feasible
with standard software (Stata), and produced an allocation that
was well-balanced both on the stratification variables chosen
ex ante and, ex post, on other important variables that were not
included in the stratification.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2 See McEntegart (2003), Table 1 in Taves (2010), and Ciolino et al. (2011).
Confirmed by personal communication with J. Cicolino, Northwestern University,
January 17, 2014.
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2. Theory

Our exposition follows Atkinson (2002), with some changes in
notation. First, we lay out the model and notation. Second, we
develop the theory for the traditional situation of a fixed popula-
tion of N subjects, for whom covariates X have been collected in
advance. Third, we introduce sequential designs using a simplified
case where the researcher is concerned with the precision of all
estimated parameters, both treatment effects and nuisance para-
meters (coefficients on stratification variables). Finally, we adapt
the sequential design to the standard situation where only pre-
cisely estimated treatment effects are of interest.

2.1. Model and notation

Suppose the researcher is conducting an individual-level trial
with J treatments, including the control treatment. We first con-
sider a linear model with homogeneous treatment effects and i.i.d.
errors. In Section 3, we discuss extensions, including hetero-
scedasticity, nonlinear models, and cluster designs. The model for
unit i is

α β ε θ ε= ′ + ′ + = ′ + ( )y d x w , 1i i i i i i

where di is a J�1 vector of indicator variables assigning unit i to a
single treatment (i.e., exactly one element of di is equal to one), xi
is a ×K 1 vector of covariates, and εi is an error term. Without loss
of generality, we order the treatments with the control condition
first. Let ( )d ji indicate assignment to the jth treatment; that is,

( ) = ( ⋯ )′d 1 1 0 0i , ( ) = ( … )′d 2 0 1 0 0i , etc. We are interested in es-
timating contrasts between the elements of α; that is, α α−1 2,
α α−1 3, etc. The control group mean is a nuisance parameter,3 as
are the K elements of β (the coefficients on the covariates), so we
have Kþ1 nuisance parameters and −J 1 parameters of interest.4

2.2. Optimal designs with baseline covariates

First, consider a population of N subjects, for whom the re-
searcher has obtained baseline covariates X prior to randomiza-
tion. The population regression model is given by

α β θ[ ] = + = ( )E Y D X W , 2

where D is the ×N J matrix assigning all subjects to treatment (i.e.,
= ( ⋯ )′D d dn1 ). X is the ×N K matrix of covariates, and α and β are

as before. Given the covariates X, our goal is to choose D to
minimize the variance of our estimated treatment effect. As a
simple example, with one treatment plus a control condition, J¼2,
we are interested in the contrast α α−1 2 and wish to minimize

α α[^ − ^ ]V 1 2 .
A useful matrix to create contrasts is

′ =
−

−
−

( − )×

⎡

⎣
⎢
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⎤

⎦
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1 1 0 0
1 0 1 0
1 0 1

.J J1

Now we can create a vector of contrasts by premultiplying α by ′L :

α
α α

α α
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⎥L .

J
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1

3 We are not interested in α1 per se, but a precise estimate α̂1 is necessary to
estimate contrasts precisely.

4 A more familiar setup for economics readers would include an intercept term
as a covariate, so α∼1 would have −J 1 elements (corresponding to the −J 1
treatment conditions excluding the control) and the augmented covariate vector
( ′)′x1, would have +K 1 elements including the intercept. This turns out to be less
convenient for some of the matrix algebra below.
To annihilate the nuisance parameters, we augment ′L with a
( − ) ×J K1 matrix of zeros, and define

′ = [ ′ ]A L 0 .

The variance of α̂ is proportional to square root of the de-
terminant of the generalized variance5:

{ }( ) ( )′ ′ = ′ ′ − ′ ′ ′
( )

− − −
A W W A L D D D X X X X D L .

3
1 1 1

This quantity is minimized when ′ =D X 0; that is, when the
treatment assignment is orthogonal to the covariates, which is to
say that the treatments are balanced across the covariates. When

′ =D X 0, the generalized variance simplifies, and the determinant
is

( ) ( )′ ′ = ′ ′ =− − −A W W A L D D L J N/J J1 1 1

This minimum possible value is the standard against any other
treatment assignment D. Note that this value is increasing in J and
decreasing in N, which matches our intuition that the variance will
increase with the number of treatments and decrease with the
number of observations.

The relative efficiency of a design D is the ratio of the de-
terminant of the generalized variance to this minimal value:

( )
=

′ ′

−

−

( − )

⎪ ⎪
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J N
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J J
J

1

1

1/ 1

where ( − )J1/ 1 is a scale factor. A smaller denominator
′ ( ′ )−A W W A1 leads to higher , implying a more efficient design.

Note that = 1 for an exactly balanced design. A useful re-
presentation is the loss

= ( − )N 1 ,

which is expressed as the effective loss of observations relative to
an optimal design. That is, a non-optimal design D with N units is
as precise as an optimal design with ( − )N 1 fewer units. For an
exactly balanced design, = 0.

Although not the focus of this paper, this framework can be
used for near-optimal randomization in cases where a researcher
can collect baseline data prior to randomization. Specifically, cre-
ate a large number S of random allocations { … … }D D D, , , ,s S1 and
choose the allocation Ds with lowest associated loss.6 Kasy (2013)
considers a more general Bayesian framework, and provides a
search algorithm to find an optimal allocation.7

2.3. Sequential D-optimality

To extend to sequential randomized trials, we first consider the
simple case where all elements of θ α β= ( ′ ′)′, are of interest. Our

goal is to minimize the variance of θ̂ . The variance of θ̂ is pro-
portional to the inverse of the design matrix ( ′ )−W W 1, so we want
to minimize ( ′ )−W W 1 or, equivalently, maximize ′W W , which will
give us a D-optimum design.

Suppose the first n units have been allocated, with the resulting
several terms.
6 To conduct randomization inference, rather than choose the allocation with

minimum , the researcher can instead specify an acceptable maximum , retain
+R 1 draws with loss less than , select one of these +R 1 at random, and retain

the remaining R for randomization inference. Code is available from the authors on
request.

7 This optimal allocation is unique if any element of x is continuous, and may
be unique (in finite samples) even for discrete x with a large number of treatments
and covariate cells. See also Bertsimas et al. (2015).
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as above, the second term in the inverse becomes
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1 2 , so we increase the penalty for imbalance in x1

by replacing ′D Xn n1 with ′mD Xn n1 .
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design given by = [ ]W D Xn n n . Suppose that unit +n 1 arrives, with
covariate vector +xn 1. By the Generalized Equivalence Theorem of
Kiefer and Wolfowitz (1960), maximizing ′W W is equivalent to
minimizing the maximum variance of the predicted response,
where this maximum is taken over the space of w. That is, given
the current allocation Wn, the variance of ŷ at a point = ( ′ ′)′w d x, is

( ) ( )^ ∝ ( ) = ′ ′ ( )
−⎡⎣ ⎤⎦V y w s w W w W W w, , 4n n n

1

where ( )s w W, n is the standardized variance at w given the allo-

cation Wn. Because minimizing θ[ ^]V is equivalent to minimizing
the maximum variance of the predicted mean, we can restate our
objective as minimizing

^ ( )
⎛
⎝⎜

⎞
⎠⎟V y wsup .

w

That is, given the existing design Wn and the covariate values +xn 1,
the optimal assignment for unit +n 1 is

( ) = (^ ( )+
⁎

+
⎧⎨⎩

⎞
⎠⎟

⎫⎬⎭d x W V y w, arg min sup .n n n
d w

1 1

In other words, we want to allocate this unit to the treatment
where the variance is greatest. To accomplish this, for unit +n 1,
write the set of possible values for +wn 1 as

( ) = ( ( )′ ′ )′ … ( ) = ( ( )′ ′ )′+ + + +w d x w J d J x1 1 , , ,n n n n1 1 1 1 , where ( )d j denotes
allocation to treatment j. For each ( )+w jn 1 , we calculate

( ) ( )= ( ) = ( )′ ′ ( ) ( )+ +
−

+s s w j W w j W W w j, . 5j n n n n n n1 1
1

1

The best allocation for unit +n 1 is the ( )d j with the largest value
of s .j In this simplest case, we mechanically assign person +n 1 to
this treatment. The intuition is that the unit is being assigned to
the treatment where it is most needed, which is where the var-
iance is highest. In Section 3.7, we discuss non-deterministic or
“biased coin” assignment.

2.4. Sequential DA-optimality

The D-optimal procedure in the previous subsection minimizes

θ[ ^]V . That is, it maximizes precision for estimates of both treat-
ment effects and the coefficients on baseline characteristics.
However, in most cases our goal is to maximize precision for the
estimated treatment effects. That is, our objective is to minimize

α[^]V , and we are not per se interested in minimizing β[ ^]V . Atkinson
calls this problem DA-optimality. The intuition and the basic pro-
cedures are the same, but the formula for the standardized var-
iance ( ( ) )+s w j W,A n n1 is slightly more complicated:

{ }
( )

( ) ( ) ( )
( )

= ( )′ ′ ′ ′ ′ ′ ( ) ( )

+

+
− − − −

+

s w j W

w j W W A A W W A A W W w j

,

, 6

A n n

n n n n n n n n

1

1
1 1 1 1

1

where ′ = [ ′ ]A L 0 , as above.
The assignment algorithm follows the logic of Section 2.3.

Suppose that n units have been allocated, and the current matrix
of assignments and covariates is = [ ]W D Xn n n . When unit +n 1
arrives with covariates +xn 1, check the value of = ( ( ) )+s s w j W,j A n n1

for each possible assignment j. The optimal allocation of unit +n 1
is where sj is greatest.

2.5. Algorithm

The procedure described above cannot be used for the first
units, because ′W W is singular as long as the number of ob-
servations, n, is less than the number of incidental parameters, J.
These first units could be assigned randomly, or the ′W W matrix
could be made invertible by adding a small amount of random
noise to the diagonal.

Having allocated n units, allocate unit +n 1 as follows:

1. Subject +n 1 arrives with +xn 1

2. For each treatment j, calculate ( ( ) )+s w j W,A n n1 using (6).
3. Assign treatment to the study arm where ( ( ) )+s w j W,A n n1 is

greatest.
4. Update Wn to +Wn 1.
3. Extensions

3.1. Unequal allocations

The basic exposition assumes that the researcher places equal
weight on the precision of each element of α (that is, on the
coefficient of each treatment effect). However, the researcher may
wish to weight these unequally – if, for example, the cost of
treatments vary, or if external constraints require unequal num-
bers of treated units. To create unequal allocations, inflate or de-
flate the corresponding values of = ( ( ) )+s s w j W,j A n n1 . For example,
to overweight treatment j, premultiply sj by an appropriate weight
mj. These weights { }mj can be calculated analytically in some
simple cases, or the researcher can conduct simulations to tune
the weights. See Section 6 for an example.

3.2. Heteroscedasticity

If the variance of the outcome of interest is a function of
treatment, equal allocations may be inefficient because coeffi-
cients corresponding to treatments that increase variance will be
less precisely estimated. If the researcher has a strong prior that
the variance of the outcome of interest is likely to be greater under
certain treatment conditions, she can allocate more units to that
treatment following the weighting strategy described in the pre-
vious subsection.

3.3. Unequal penalties for imbalance

The researcher may wish to emphasize balance in one covariate
or set of covariates over others. Suppose one set of K1 covariates x1
have very strong predictive power for the outcome variable, while
the remaining K2 covariates x2 have some predictive power but
less than x1. The researcher wants to balance against both cov-
ariates, but imbalance in x1 will cause greater efficiency loss than
imbalance in x2. To assign a greater penalty to imbalance in x1,
note from Eq. (3) that efficiency is maximized when ′D X is zero,
and decreases as ′ ( ′ ) ′−D X X X X D1 becomes larger. Partition X into

= [ ]X X X1 2 . Now

( ) ( )
( )

′ ′ ′ = ′[ ] ′ ′

= [ ′ ′ ] ′ ′ ′ ′ ( )

− −

−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

D X X X X D D X X X X X X D

D X D X X X D X D X , 7

1
1 2

1
1 2

1 2
1

1 2

so to penalize imbalance in x1 simply multiply ′D X1 – but not ′D X2 –

by a scalar weight >m 1. The same logic applies in the sequential
algorithm: in the standardized variance formula (6), replace ′D Xn n1
with ′mD Xn n1 .8 Again, simulations can help choose the appropriate
weights.



Fig. 1. Imbalance at baseline. Notes: (a–d) show the distribution of differences in means between the treatment and control groups at follow-up for each dataset at all three
sample sizes: 30, 100 and 300 observations. Distributions are kernel density plots, using the Epanechnikov kernel, based on 10,000 bootstrap iterations. In each iteration, the
difference in means is divided by the standard deviation of the outcome variable. No mean normalization is done; means are close to zero as the result of the balancing
methods used.
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3.4. Subgroups and interactions

As described, the algorithm maximizes marginal balance. That
is, it minimizes the variance of the estimates of the treatment
effects overall, not for any particular value of the covariates. To
optimize estimates for subgroups, augment the vector containing
the covariates of interest, α, with the relevant interaction coeffi-
cients. Similarly, if the interaction of two treatments is of interest,
augment α and d appropriately. See Section 6 for an example.

3.5. Nonlinear models

The algorithm is motivated by linear regression, so the alloca-
tion it produces may not be optimal for nonlinear designs. In
particular, for linear regression, the optimal design does not de-
pend on the value of the unknown parameters, but it does for
nonlinear or generalized linear models (Atkinson and Haines,
1996). Therefore, the optimal design, for a non-sequential or se-
quential trial, in a nonlinear model requires that the researcher
specify her prior belief distribution about the parameter of inter-
est. While the intuition is similar (maximizing the log of the de-
terminant of the information matrix), the calculation can be quite
difficult. However, it is difficult to imagine a scenario where bal-
ancing to minimize the variance of OLS estimates would severely
worsen the precision of nonlinear estimators. Therefore, we
speculate that such concerns are of second order, and that, while
the method may not produce the optimal design for a nonlinear
model, it is likely to produce a good approximation. In highly
specialized situations, there may be some efficiency gains to more
specialized solutions.9
9 For an example, see Zocchi and Atkinson (1999), who derive the optimal
design to study the relationship between a discrete treatment (dose of gamma
3.6. Time trends

Because the algorithm seeks to maintain balance at each point
in the sequence, it is robust to trends or fluctuations in potential
outcomes that occur as sample enrollment proceeds. For example,
neither a geographic pattern to enrollment nor a change in re-
cruitment methods would cause bias, even if these were corre-
lated with potential outcomes (e.g., moving from richer to poorer
neighborhoods, or making a greater effort to recruit poor subjects).

3.7. Biased coin methods

The DA-optimal method will produce unbiased estimates as
long as each unit's exact place in the sequence is uncorrelated with
potential outcomes. This assumption could be violated if, for ex-
ample, an intake nurse in a clinical trial knows the algorithm and
current allocation. The nurse could then manipulate the order in
which subjects are processed to ensure that a particular subject
receives a particular treatment.

To reduce the possibility of gaming, a “biased coin” version of
the sequential allocation algorithm allocates a subject probabil-
istically, putting highest probability on the study arm that would
reduce the variance of estimated treatment effect, ( ( ) )+s w j W,A n n1 ,
the most. Following the logic of Efron (1971) and of Atkinson
(1982) suggests this formula for the probability for allocation to
study arm:

( )
( )( )

( )
π ( ) =

∑ ′

+

′ +

j
s w j W

s w j W

,

,
.

A n n

j A n n

1

1

(footnote continued)
radiation) and a multinomial, ordered outcome (whether housefly pupae die before
opening, die during emergence, or survive past emergence).



Table 1
How do the different methods compare in terms of baseline balance?

(Sample size of 100)

Simple random Block (2 variables) Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

Panel A. Average difference in BASELINE between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) �0.003 0.001 �0.001 0.000 0.000
Housing expenditure (Indonesia) 0.000 0.000 �0.001 0.000 0.000
Labor income (Mexico) �0.002 �0.002 0.000 0.000 0.000
Height z-score (Pakistan) 0.000 �0.002 0.001 0.000 0.000
Math test score (Pakistan) �0.005 0.001 0.000 0.000 0.000
Baseline unobservables (Sri Lanka) 0.000 0.000 0.000 0.000 0.000
Baseline unobservables (Mexico) 0.000 �0.001 0.000 0.001 0.000

Panel B. Ninety-fifth percentile of difference in BASELINE between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.390 0.194 0.244 0.055 0.064
Housing expenditure (Indonesia) 0.391 0.148 0.193 0.038 0.058
Labor income (Mexico) 0.389 0.283 0.305 0.074 0.078
Height z-score (Pakistan) 0.389 0.160 0.203 0.038 0.055
Math test score (Pakistan) 0.396 0.164 0.237 0.039 0.055
Baseline unobservables (Sri Lanka) 0.434 0.417 0.414 0.434 0.427
Baseline unobservables (Mexico) 0.457 0.448 0.439 0.448 0.429

Panel C. Proportion of p-values <0.1 for testing difference in BASELINE means
Microenterprise profits (Sri Lanka) 0.101 0.000 0.005 0.000 0.000
Housing expenditure (Indonesia) 0.100 0.000 0.001 0.000 0.000
Labor income (Mexico) 0.103 0.017 0.031 0.000 0.000
Height z-score (Pakistan) 0.098 0.000 0.001 0.000 0.000
Math test score (Pakistan) 0.106 0.000 0.006 0.000 0.000
Baseline unobservables (Sri Lanka) 0.101 0.096 0.094 0.096 0.092
Baseline unobservables (Mexico) 0.108 0.094 0.095 0.102 0.096

Notes: Statistics are based on 10,000 simulations of each method.
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Randomization may also be useful for expositional purposes, to
explain to subjects that the process is fair and to regulators or
other consumers of the research who are used to hearing about
“randomized,” rather than “optimally allocated,” trials.

3.8. Cluster designs

The development above is based on individual-level treat-
ments, but can be adapted for cluster designs. The first application
is to interventions where the treatment is assigned at a cluster
level. In this case, the DA-optimal method applies directly, using
cluster-level covariates.

A second application is when treatments are assigned to in-
dividuals, but individuals belong to clusters and for logistical
reasons these clusters are enrolled sequentially. For example,
consider a study of the demand for water filters among N house-
holds in V villages.10 The researcher wishes to vary a sales treat-
ment at the household level. However, villages are enrolled – and
stratification covariates collected – sequentially, so at the time of
assigning treatments in village v, the researcher only knows cov-
ariates for households in villages … v1, , , and the history of as-
signments in villages … −v1, , 1. This is not a purely sequential
allocation, since the researcher knows the values of the covariates
for all households in village v, and can assign treatments si-
multaneously within village v. However, the researcher does not
know the value of covariates for households in future villages

+ …v V1, . The tools of sequential allocation can be usefully ap-
plied in this situation. Suppose that the matrix of assignments and
covariates through village −v 1 is = [ ]− − −W D Xv v v1 1 1 . The re-
searcher obtains covariate data for households in village v, re-
sulting in the covariate matrix Xv for all v villages. The researcher
then creates a large number S of random treatment allocations for
10 This example is inspired by Berry et al. (2015), who, regrettably, were not
aware of the DA-optimal method at the time of implementation, and used a com-
plicated version of the block method described in Section 5.1.2.
village v, resulting in a set of assignment matrices
{ … … }D D D, , , ,v v

s
v
S1 and corresponding design matrices

{ … … }W W W, , , ,v v
s

v
S1 . For each s, we can calculate the associated

determinant ′ ( )′ −A W W Av
s

v
s 1 , where, as in Section 2.2, the matrix A

allows us to focus on the parameters of interest. Since this de-
terminant is proportional to the expected variance of α̂ , we select
the allocation that minimizes this determinant.
4. Inference

Confidence intervals can be constructed from the usual re-
gression-based methods, and the standard covariance matrices
can also be used for t-tests of hypotheses. Shao et al. (2010) prove
that controlling for balancing variables will yield tests of the cor-
rect size. As emphasized by Bruhn and McKenzie (2009), re-
searchers should commit ex-ante to controlling for the balancing
variables, since this increases power on average, but retaining the
option to analyze without controlling for the balancing variables
gives the researcher a degree of freedom that can distort the size
of a test.

Randomization inference can be conducted by following the
“reasoned basis for inference” logic of Fisher (1935): because the
design assumption is that the precise order of arrival of units is
arbitrary, one can construct counterfactual distributions by re-
shuffling this order in which subjects arrive (Simon, 1979). If the
study incorporates a biased coin (as in Section 3.7), then one can
instead re-randomize the biased coin flips, holding the order of
arrival fixed. Shao and Yu (2013) also propose a covariate-aug-
mented bootstrap method and show that it provides valid tests for
generalized linear models. Bugni et al. (2015) generalize the results
of Shao et al. (2010) by showing that the traditional t-test provides
asymptotically conservative inference, and that asymptotically
non-conservative inference can be achieved by using tests based
on covariate adaptive permutations or based on regressions with
strata-specific dummies. The use of these asymptotically non-



Fig. 2. Imbalance at follow-up. Notes: (a–d) show the distribution of differences in means between the treatment and control groups at follow-up for each dataset at all three
sample sizes: 30, 100 and 300 observations. Distributions are kernel density plots, using the Epanechnikov kernel, based on 10,000 bootstrap iterations. In each iteration, the
difference in means is divided by the standard deviation of the outcome variable. No mean normalization is done; means are close to zero as the result of the balancing
methods used.

Table 2
How do the different methods compare in terms of balance on future outcomes?

(Sample size of 30)

Simple random Block (2 variables) Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

Panel A. Average difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) �0.001 0.004 �0.001 �0.001 �0.001
Child schooling (Indonesia) �0.003 0.001 0.000 0.008 �0.002
Housing expenditure (Indonesia) 0.000 �0.004 0.000 �0.002 0.005
Labor income (Mexico) 0.001 0.006 0.000 0.000 �0.001
Height z-score (Pakistan) �0.004 0.005 �0.005 �0.002 0.001
Math test score (Pakistan) �0.003 0.000 0.001 �0.001 �0.004

Panel B. Ninety-fifth percentile of difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.713 0.610 0.717 0.700 0.700
Child schooling (Indonesia) 0.556 0.745 0.699 0.652 0.652
Housing expenditure (Indonesia) 0.722 0.655 0.673 0.687 0.652
Labor income (Mexico) 0.703 0.713 0.696 0.731 0.754
Height z-score (Pakistan) 0.712 0.619 0.663 0.497 0.504
Math test score (Pakistan) 0.716 0.441 0.641 0.515 0.526

Panel C. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference as if pure randomization was used (e.g., no adjustment for strata or balancing
variables)

Microenterprise profits (Sri Lanka) 0.103 0.054 0.105 0.101 0.105
Child schooling (Indonesia) 0.050 0.110 0.088 0.084 0.059
Housing expenditure (Indonesia) 0.105 0.074 0.080 0.087 0.071
Labor income (Mexico) 0.101 0.103 0.092 0.117 0.128
Height z-score (Pakistan) 0.102 0.056 0.073 0.015 0.016
Math test score (Pakistan) 0.098 0.005 0.064 0.019 0.023

Panel D. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference which takes account of randomization method (i.e., controls for stratum, or
balancing variables)

Microenterprise profits (Sri Lanka) 0.103 0.084 0.085 0.111 0.109
Child schooling (Indonesia) 0.095 0.120 0.087 0.087 0.101
Housing expenditure (Indonesia) 0.104 0.099 0.126 0.102 0.100
Labor income (Mexico) 0.101 0.105 0.082 0.115 0.122
Height z-score (Pakistan) 0.105 0.093 0.148 0.101 0.095
Math test score (Pakistan) 0.095 0.095 0.105 0.114 0.102

Notes: The coefficients in panels A and B are for specifications without controls for balancing variables or stratum dummies. Statistics are based on 10,000 simulations of each
method.
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Table 3
How do the different methods compare in terms of balance on future outcomes?

(Sample size of 300)

Simple random Block (2 variables) Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

Panel A. Average difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.001 0.000 0.003 �0.002 0.000
Child schooling (Indonesia) 0.000 0.002 0.001 �0.002 �0.001
Housing expenditure (Indonesia) 0.001 0.000 0.001 �0.001 0.001
Labor income (Mexico) 0.000 0.000 �0.001 �0.001 �0.002
Height z-score (Pakistan) 0.001 0.001 0.000 �0.001 �0.001
Math test score (Pakistan) 0.001 0.000 0.001 0.000 0.000

Panel B. Ninety-fifth percentile of difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.219 0.211 0.211 0.210 0.213
Child schooling (Indonesia) 0.227 0.219 0.212 0.227 0.216
Housing expenditure (Indonesia) 0.226 0.195 0.190 0.199 0.193
Labor income (Mexico) 0.226 0.196 0.195 0.198 0.195
Height z-score (Pakistan) 0.227 0.188 0.193 0.187 0.188
Math test score (Pakistan) 0.224 0.182 0.183 0.175 0.174

Panel C. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference as if pure randomization was used (e.g., no adjustment for strata or balancing
variables)

Microenterprise profits (Sri Lanka) 0.095 0.086 0.086 0.085 0.091
Child schooling (Indonesia) 0.115 0.087 0.083 0.111 0.088
Housing expenditure (Indonesia) 0.099 0.059 0.050 0.060 0.054
Labor income (Mexico) 0.101 0.058 0.058 0.062 0.058
Height z-score (Pakistan) 0.099 0.048 0.054 0.046 0.047
Math test score (Pakistan) 0.097 0.042 0.043 0.033 0.034
Panel D. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference which takes account of randomization method (i.e., controls for stratum, or

balancing variables)
Microenterprise profits (Sri Lanka) 0.095 0.109 0.139 0.103 0.112
Child schooling (Indonesia) 0.103 0.101 0.107 0.113 0.098
Housing expenditure (Indonesia) 0.098 0.100 0.100 0.099 0.096
Labor income (Mexico) 0.099 0.100 0.094 0.119 0.117
Height z-score (Pakistan) 0.097 0.098 0.100 0.103 0.101
Math test score (Pakistan) 0.102 0.100 0.096 0.097 0.096

Notes: The coefficients in panels A and B are for specifications without controls for balancing variables or stratum dummies. Statistics are based on 10,000 simulations of each
method.
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conservative methods often results in power advantages relative to
the t-test.
11 When using the Block method, the researcher must discretize continuous
variables, e.g. above and below the median. However, the median (or other sensible
cut point) may not be known in advance. One advantage of the DA-optimal method
is that it allows for continuous covariates. In our application, we included the
number of households in each compound as a balancing variable. Although we did
not know the distribution of this variable in advance, the DA-optimal method
produced an allocation that was well-balanced both on the mean of the continuous
variable and on the proportion above/below the median.
5. Simulation

Using the four panel datasets and simulation structure of Bruhn
and McKenzie (2009), we compare the DA-optimal method to two
sequential methods, simple randomization and block randomiza-
tion (permutations within block), which are commonly used in
clinical and other trials (McEntegart, 2003). We describe these
methods in greater detail in Section 5.1.2. For each dataset and
each allocation method, we simulate 10,000 randomizations. In
each iteration, the enrollment order is randomized, treatments are
assigned according to the given method, a simulated output
variable is created by adding a true treatment effect (possibly zero)
to those assigned treatment, and we obtain an estimated treat-
ment effect with associated standard errors and p-values.

5.1. Methods

5.1.1. Data
We use the four panel datasets used in Bruhn and McKenzie

(2009), who provide further detail on these data. The first dataset
covers microenterprises in Sri Lanka and contains information on
firms' profits, assets and other firm and owner characteristics. The
second dataset is a subsample from the Mexican employment
survey (ENE) containing data on heads of household between 20
and 65 years of age who were first interviewed in the second
quarter of 2002. The third dataset comes from the 1997 and 2000
waves of the Indonesian Family Life Survey (IFLS) and contains
child schooling outcomes as well as household level data such as
weekly expenditure. The final dataset comes from the Learning
and Educational Achievement Project (LEAPS) in Pakistan and in-
cludes math and height z-scores as well as other covariates for
children aged 8–12 at baseline. From each dataset, we draw sub-
samples of 30, 100 and 300 observations to allow a comparison of
the methods over small, medium and large samples.

5.1.2. Allocation methods
In the simulations, we use three allocation methods: a simple,

unstratified randomization; stratified permuted block randomi-
zation; and the DA-optimal method.

In simple randomization, each subject is randomly assigned to
treatment as she arrives, with each treatment given the desired
probability. In our simulations, there are only two arms (treatment
and control), and each is given probability 0.5.

In stratified permuted block randomization (“block randomi-
zation” for brevity in what follows), the researcher creates a se-
parate randomization list for each stratum (unique combination of
balancing covariates). For example, when balancing on 3 binary
variables, there are 8 (¼23) strata.11 Since the number of subjects
who will fall in each stratum is unknown ex ante, a list should



Table 4
How do the different methods compare in terms of power in detecting a given
treatment effect?

(Sample size of 30)

Simple
random

Block (2
variables)

DA optimal (2
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of
randomization

Microenterprise profits (Sri
Lanka)

0.144 0.105 0.145

Child schooling (Indonesia) 0.124 0.149 0.133
Housing expenditure

(Indonesia)
0.387 0.375 0.378

Labor income (Mexico) 0.187 0.178 0.196
Height z-score (Pakistan) 0.174 0.132 0.075
Math test score (Pakistan) 0.155 0.050 0.081

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization
method

Microenterprise profits (Sri
Lanka)

0.144 0.142 0.154

Child schooling (Indonesia) 0.122 0.134 0.135
Housing expenditure

(Indonesia)
0.396 0.415 0.407

Labor income (Mexico) 0.176 0.171 0.191
Height z-score (Pakistan) 0.248 0.199 0.257
Math test score (Pakistan) 0.217 0.315 0.234

Notes: Statistics are based on 10,000 simulations of each method. Simulated
treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) in-
crease in profits (about 25% of average baseline profits); child schooling – one in
three randomly selected children in the treatment group who would have dropped
out do not; household expenditure – an increase of 0.4 in ln household expenditure
per capita, which corresponds to about one-half of a standard deviation or moving
a household from the twenty-fifth to the fiftieth percentile; labor income – a MEX
$920 increase in income (about 20% of average baseline income); height z-score –

an increase of one quarter of a standard deviation in the z-score, where the z-score
is defined as standard deviations from mean US height for age; math test score – an
increase of one quarter of a standard deviation in the test score.

Table 5
How do the different methods compare in terms of power in detecting a given
treatment effect?

(Sample size of 300)

Simple
random

Block (4
variables)

DA optimal (4
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of
randomization

Microenterprise profits (Sri
Lanka)

0.286 0.283 0.279

Child schooling (Indonesia) 0.609 0.573 0.593
Housing expenditure

(Indonesia)
0.998 1.000 1.000

Labor income (Mexico) 0.488 0.482 0.481
Height z-score (Pakistan) 0.729 0.756 0.759
Math test score (Pakistan) 0.622 0.656 0.653

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization
method

Microenterprise profits (Sri
Lanka)

0.303 0.346 0.305

Child schooling (Indonesia) 0.602 0.599 0.607
Housing expenditure

(Indonesia)
1.000 1.000 1.000

Labor income (Mexico) 0.589 0.541 0.581
Height z-score (Pakistan) 0.862 0.849 0.853
Math test score (Pakistan) 0.807 0.783 0.807

Notes: Statistics are based on 10,000 simulations of each method. Simulated
treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) in-
crease in profits (about 25% of average baseline profits); child schooling – one in
three randomly selected children in the treatment group who would have dropped
out do not; household expenditure – an increase of 0.4 in ln household expenditure
per capita, which corresponds to about one-half of a standard deviation or moving
a household from the twenty-fifth to the fiftieth percentile; labor income – a MEX
$920 increase in income (about 20% of average baseline income); height z-score –

an increase of one quarter of a standard deviation in the z-score, where the z-score
is defined as standard deviations frommean US height for age; math test score – an
increase of one quarter of a standard deviation in the test score.

12 Results for N¼30 and N¼300 are provided in Tables A1 and A2 in the Ap-
pendix. Results do not differ substantively across all three sample sizes.
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maximize overall balance at each point in the sequence while
keeping predictability of each allocation low. The block randomi-
zation method uses lists that are sequences of blocks of random
but balanced permutations of the treatments. The size of the
blocks can be as low as the number of treatments – 2 if there is
one treatment and a control (e.g. (T,C), (C,T), (C,T), (T,C) …) – or
higher to reduce predictability (e.g. 2 treatments, block size 4: (T,C,
C,T), (C,T,C,T), (T,C,T,C), (C,T,T,C), …). The size of the blocks may also
be varied randomly to minimize predictability. In our simulations,
we abstract from concerns about allocation manipulation and set
the block size equal to the number of treatments, which achieves
the greatest balance and therefore provides the most conservative
test of the DA-optimal method.

Our third method is the DA-optimal method, for which we
follow the algorithm laid out in Section 2.5. For the first J units, we
added random noise to the diagonal of the matrix. We did not use
the biased coin variant.

For the block and DA-optimal methods, we use the same bal-
ancing variables as Bruhn and McKenzie (2009). The outcome at
baseline is always included. Other variables are chosen based on
their likelihood of being good predictors of the follow-up outcome.

5.2. Simulation results

5.2.1. Balance at baseline
We first examine balance on the baseline outcome variable.

After each randomization we regress the baseline outcome on the
assigned treatment. Since the treatment is fictitious, the
distribution of these coefficients gives an idea of the potential for
imbalance under each method. Fig. 1 presents the distributions for
the three methods over a number of datasets at all three sample
sizes. Table 1 gives the average coefficient, the 95th percentile of
the distribution, and the proportion of iterations with a p-value
less than 0.1 for each dataset and method, for the sample size
100.12

Panel A of Table 1 shows that all methods, even simple ran-
domization, achieve balance on average at baseline since all have
means close to zero. However, Panel B shows the methods that
balance over the baseline outcome do significantly better than
simple randomization at avoiding extremes and that the
DA-optimal method clearly dominates the Block method in this
respect. The ninety-fifth percentile of the distribution drops from
around 0.4 standard deviations for simple randomization to
around 0.2 for the Block method and to below 0.08 for the
DA-optimal method. This point is illustrated by the kernel density
plots in Fig. 1, where the distribution of coefficients for DA-optimal
appears as a sharp spike around zero compared to the more
rounded bell curves for Block and simple randomization.

We also see that including additional balancing variables in
either method reduces balance on existing balancing variables,
although only slightly.

Table 1 also shows how the methods may affect balance on
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“unobservables.” Of course, it is not possible in practice to assess
balance on true unobservables, but in a simulation we can mimic
unobservables with observed variables we expect to be correlated
with the outcome of interest, but which we intentionally exclude
from the set of stratification variables. Standard stratification
methods should not, on average, lead to more imbalance on un-
observables than unstratified randomization (Aickin, 2000). Here,
we obtain a similar result for the sequential balancing methods. All
result in balance on unobservables on average (zero average
coefficients) and all have roughly the same or lesser likelihood of
extreme imbalance, with 95th percentiles of the coefficient dis-
tributions at or below that of simple randomization (Sri Lanka:
0.434 for simple and 0.414–0.434 for balancing methods; Mexico:
0.457 for simple and 0.429–0.448 for balancing methods).

5.2.2. Balance at follow-up
We now address balance on the outcome of interest at follow-

up. Just as for the baseline case, we have regressed the follow-up
outcome on the fictitious treatment variable in each iteration.
Fig. 2 shows the distribution of coefficients. Tables 2 and 3 present
the same statistics as Table 1 but for the follow-up case, for sample
sizes 30 and 300 and with the addition of Panel D.13 In all cases,
the p-values are based on regressions that take into account the
method of randomization: for Block randomization, stratum
dummies are added to the regression, for DA-optimal, the balan-
cing covariates are included as controls.

Panel A of Tables 2 and 3 shows that balance on the follow-up
outcome is achieved on average by all methods. We expect to see
the likelihood of extreme imbalance reduced only when the bal-
ancing covariates used are good predictors of the outcome. Bruhn
and McKenzie note that covariates in the LEAPS datasets (specifi-
cally, lagged values for both outcomes, math and height z-scores)
have high predictive power, with 43% or more of the variation in
the outcome explained by the balancing covariates. The Sri Lankan
microenterprise data and the IFLS schooling data fall at the other
end of the spectrum with 17% or less explained. The results in
Panel B of Table 2 confirm this hypothesis. For both the LEAPS
outcomes, we see substantial improvements in balance when
using block randomization or DA-optimal methods compared to
simple randomization. However, for outcomes where balancing
covariates have low predictive power, there is no detectable im-
provement. This is not surprising: given that these baseline cov-
ariates have low predictive power for endline outcomes, we would
not expect any balancing method to make much difference.

Additionally, as with Bruhn and McKenzie (2009), we see that
the benefit of using covariates to balance attenuates as the sample
size increases (compare Panel B of Table 2 to Panel B of Table 3).
We also confirm that test statistics are incorrect when not con-
trolling for the method of randomization (see Panel C vs. Panel D
in Tables 2 and 3).

5.2.3. Power to detect a given treatment effect
Lastly, we turn to perhaps the most important question: How do

the methods compare in terms of power for detecting a given treat-
ment effect? To answer this question, we add a constant treatment
effect to the output of all subjects assigned to treatment,14 and then
regress the modified outcome on treatment. Tables 4 and 5 present
the proportion of estimated treatment effects that are significant at the
0.10 level, with and without proper controls for the method of
randomization.15 As with Bruhn and McKenzie (2009), we see an
13 In the main text, we display only the N¼30 and N¼300 cases; the N¼100
case is presented in Table A3 of the Appendix.

14 See the notes to Tables 4 and 5 for the values of these imposed treatment
effects.

15 In the main text, we display only the N ¼30 and N ¼300 cases; the N ¼100
increase in power in nearly all cases when proper controls for the
method of randomization are included.

In Table 4, Panel B we see the DA-optimal method improves
power for all six datasets. The size of the improvements is modest
with the given balancing variables, but improvement is consistent.
The Block method on the other hand decreases power as often as it
increases it. Table 5 shows that the differences in power are small
across methods as N grows large. Tables A4–A7 in the Appendix
present similar results for various combinations of sample size and
number of balancing variables.
6. Experience from the field

We implemented the DA-optimal method in a randomized trial
of safe water and handwashing interventions among 435 com-
pounds in slums of Dhaka, Bangladesh. To our knowledge, this
study was the first to apply the DA-optimal method. Details of the
study and results are provided in Guiteras et al. (2015).

All participants received behavior change communication and a
free trial of a “chlorine dispenser,” a compound-level device for
treating water with chlorine (Evidence Action, 2014). At the end of
the free trial, we measured the compound's willingness to pay for
a one-year subscription for use and maintenance of the chlorine
dispenser. We had 8 study arms in a 2-by-2-by-2 interaction of

� Behavior change message was a standard health message vs.
messages based on disgust and shame.

� Included handwashing messages and soapy water bottle vs. not
included.

� Measured collective willingness to pay for the compound vs.
individual household willingness to pay.

Because we were especially interested in the effect of the disgust
and shame treatment on handwashing in the handwashing arm,
we allocated 2/3 of compounds to handwashing. The other treat-
ments were allocated equally. By trial and error, we found that we
could achieve this allocation by the using weight =m 5 on the
handwashing arms in the weighting procedure described in Sec-
tion 3.1. Our balancing variables were the number of households
in the compound and an indicator for the presence of gas burners
connected to the municipal supply.

To implement the allocation, the enumerator collected baseline
data on compound size and gas status from each eligible com-
pound and transmitted these data to the field office, either by SMS
or a phone call. The field supervisor then entered the covariates
into a Stata program that assigned the compound to a treatment
cell using the DA-optimal method.

Manipulation was not likely in our context, because the enu-
merators could not plausibly have anticipated which assignment
any given compound would receive. First, the enumerators col-
lected several baseline variables, but did not know which would
be used for stratification. Second, they did not have access to the
full list of compounds, covariates and assignments. Third, they
were unfamiliar with the DA-optimal algorithm. If manipulation is
a concern, the biased-coin variant (Section 3.7) may be appealing.

The resulting sample was well-balanced on both the balancing
variables and other plausibly important covariates that were not
explicitly included in the randomization. See Tables A1–A4 of
Guiteras et al. (2015) for detailed results. Compounds were well-
balanced both on the mean of the (continuous) number of
households in the compound and on an indicator for whether the
(footnote continued)
case is presented in Table A4 of the Appendix.
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compound had the median (8) or fewer number of households,
even though we did not know in advance what the median
number would be.

These results were obtained in spite of choosing one balancing
variable poorly. In our piloting, we observed that water treatment
practices varied importantly by whether the compound had a con-
nection to the municipal gas supply. A gas connection also appeared to
be a useful proxy for better overall socio-economic status. However,
gas coverage in our study area turned out to be much higher than in
the pilot area (even though the pilot area was nearby and similar in
many other respects), and in fact was nearly universal ( > )95% . De-
spite this unhelpful balancing variable, the algorithm produced a
sample that was well-balanced on the other balancing variable and on
our main SES variable, household monthly income. We view the ro-
bustness of the method as encouraging.
7. Discussion and conclusion

Given the theoretical optimality of the DA-optimal method, and
the evidence in its favor from our simulations and other simula-
tion studies (Atkinson, 2002; Senn et al., 2010), it is somewhat
puzzling that this free lunch has previously gone unclaimed, both
in economics and more broadly. We consider this situation in two
ways: first, by comparing DA-optimal allocation to the two most
popular covariate-adaptive16 allocation methods, block randomi-
zation and minimization (McEntegart, 2003; Taves, 2010; Pond
et al., 2010); second, by addressing concerns that have inhibited all
covariate-adaptive methods.

Block randomization, described in Section 5.1.2, is intuitively
appealing, simple to implement, and allows for randomization
inference through re-randomization within blocks. However, it can
only be used with discrete (or discretized) covariates and as the
number of blocks (the number of cells of all interacted balancing
covariates) grows relative to the overall sample size, a “remainder
problem” can arise where marginal balance (overall balance of the
number of units per treatment) must be traded off against balance
within block.17 Minimization (Taves, 1974; Pocock and Simon,
1975), in which each unit is assigned to minimize the sum of ab-
solute (or squared) imbalances by balancing variable (see McEn-
tegart, 2003 for an extended discussion and examples), is simple
to implement and can be used when there are many balancing
covariates. As with block randomization, it requires discrete or
discretized balancing variables. Relative to block randomization
and minimization, we suspect that the primary drawback of
DA-optimal allocation is its complexity. McEntegart (2003) notes
that “the method is difficult to explain to nonstatisticians and it is
probably for this reason that it has never been used in practice.”
Furthermore, the algorithm is not trivial to program and im-
plementation requires rapid communication between the field and
a centralized database. However, mobile computing power and
communication technology continue to improve, which will re-
duce these barriers.

All covariate-adaptive methods have faced academic and reg-
ulatory resistance, chiefly on two grounds: predictability and
inference.18 Predictability occurs when the implementer can
16 Covariate-adaptive methods adjust allocation probabilities based on the
history of covariates and assignments. Response-adaptive methods adjust based on
the history of covariates, assignments and outcomes of previously treated units.

17 Bruhn and McKenzie (2011) describe a solution that can be applied when
stratification is conducted ex ante, and provide sample code for their particular
application. See Quistorff (2005) for more generally applicable code.

18 For example, the European Medicines Agency's Committee for Proprietary
Medicinal Products once wrote that “techniques of dynamic allocation such as
minimization … remain highly controversial…. Dynamic allocation is strongly
discouraged” (Committee for Proprietary Medicinal Products, 2004). See Buyse and
anticipate, either with certainty or high probability, the treatment
to which the next unit with a given set of covariates will be allo-
cated. The implementer may be tempted to manipulate the order
in which units are processed in a way that is correlated with po-
tential outcomes. This manipulation is clearly a concern in mini-
mization, because the algorithm's simplicity can make it easily
predictable. Block randomization is also subject to predictability if
the implementer knows the number of treatments and the length
of the random block. As the trial moves towards the end of each
successive block, the implementer knows which treatments re-
main and therefore has at least some information on which
treatment the next unit may receive. Both minimization and block
randomization can be adapted to reduce predictability by adding a
probabilistic element similar to the “biased coin” approach we
describe in Section 3.7, at the cost of some increase in operational
complexity and loss of balance. DA-optimal allocation is also sub-
ject to predictability, although in this case its relative complexity
may be a virtue because it makes prediction difficult. As men-
tioned in Section 6, predictability can be made virtually impossible
without resorting to a biased coin by including “placebo” covari-
ates in the intake form and not telling implementers which cov-
ariates are operative.

The second major criticism of covariate-adaptive methods is
that balancing can complicate inference. In our view, this concern
is overstated because many simulation studies have shown that
simply controlling for balancing covariates is sufficient for con-
servative inference in most cases. In addition, several permutation
or rerandomization-like methods provide appropriate inference
(see references in Section 4). Proponents of covariate-adaptive
methods appear to be winning this battle, in that these methods
are becoming increasingly common in at least some forms of
clinical trials (Pond et al., 2010).

To conclude, the DA-optimal method is a useful tool for im-
proving balance in situations when ex ante stratification is not
feasible. The benefits are most pronounced when sample sizes are
modest relative to the number of balancing covariates and the
number of parameters of interest (including subgroup analysis).
Our field experience demonstrates that implementation is feasible
and yields a well-balanced sample. In our simulations, inference
using the usual regression-based methods performed well, pro-
vided we controlled for stratification variables. However, we ex-
pect that there are gains to both validity and power from using
permutation tests such as those proposed by Bugni et al. (2015).
Our implementation required a qualified field supervisor to run
the treatment assignment. Future trials could improve on our
implementation by coding the algorithm into tablets or smart-
phones. With such an app, enumerators in the field would then be
able to allocate treatments optimally in real time.
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Table A1
How do the different methods compare in terms of baseline balance?

(Sample size of 30)

Simple random Block (2 variables)

Panel A. Average difference in BASELINE between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) �0.003 0.003
Housing expenditure (Indonesia) 0.001 0.001
Labor income (Mexico) 0.005 0.003
Height z-score (Pakistan) �0.003 0.003
Math test score (Pakistan) �0.003 0.000
Baseline unobservables (Sri Lanka) 0.001 0.000
Baseline unobservables (Mexico) 0.001 0.000

Panel B. Ninety-fifth percentile of difference in BASELINE between treatment and control
Microenterprise profits (Sri Lanka) 0.701 0.412
Housing expenditure (Indonesia) 0.714 0.351
Labor income (Mexico) 0.697 0.413
Height z-score (Pakistan) 0.719 0.440
Math test score (Pakistan) 0.700 0.408
Baseline unobservables (Sri Lanka) 0.803 0.824
Baseline unobservables (Mexico) 0.834 0.771

Panel C. Proportion of p-values <0.1 for testing difference in BASELINE means
Microenterprise profits (Sri Lanka) 0.106 0.000
Housing expenditure (Indonesia) 0.105 0.000
Labor income (Mexico) 0.101 0.000
Height z-score (Pakistan) 0.100 0.006
Math test score (Pakistan) 0.094 0.001
Baseline unobservables (Sri Lanka) 0.090 0.094
Baseline unobservables (Mexico) 0.088 0.078

Notes: Statistics are based on 10,000 simulations of each method.

Table A2
How do the different methods compare in terms of baseline balance?

(Sample size of 300)

Simple random Block (2 variables)

Panel A. Average difference in BASELINE between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.000 0.001
Housing expenditure (Indonesia) �0.001 0.001
Labor income (Mexico) 0.000 0.000
Height z-score (Pakistan) 0.001 0.000
Math test score (Pakistan) 0.001 �0.001
Baseline unobservables (Sri Lanka) 0.000 0.000
Baseline unobservables (Mexico) 0.000 0.000

Panel B. Ninety-fifth percentile of difference in BASELINE between treatment and control
Microenterprise profits (Sri Lanka) 0.227 0.122
Housing expenditure (Indonesia) 0.230 0.093
Labor income (Mexico) 0.222 0.163
Height z-score (Pakistan) 0.227 0.084
Math test score (Pakistan) 0.226 0.093
Baseline unobservables (Sri Lanka) 0.241 0.235
Baseline unobservables (Mexico) 0.259 0.259

Panel C. Proportion of p-values <0.1 for testing difference in BASELINE means
Microenterprise profits (Sri Lanka) 0.102 0.001
Housing expenditure (Indonesia) 0.104 0.000
Labor income (Mexico) 0.096 0.021
Height z-score (Pakistan) 0.104 0.000
Math test score (Pakistan) 0.101 0.000
Baseline unobservables (Sri Lanka) 0.101 0.097
Baseline unobservables (Mexico) 0.092 0.088

Notes: Statistics are based on 10,000 simulations of each method.
declare no conflicts of interest.
Appendix

See Tables A1–A7.
Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

0.002 0.000 0.000
�0.001 �0.001 0.001
0.003 �0.001 0.000
0.000 0.000 0.001
�0.001 0.000 0.001
0.000 0.000 0.001
0.000 �0.001 0.000

means (in SD)
0.536 0.205 0.242
0.495 0.176 0.210
0.576 0.196 0.259
0.448 0.173 0.204
0.578 0.138 0.203
0.805 0.803 0.803
0.790 0.775 0.771

0.021 0.000 0.000
0.013 0.000 0.000
0.036 0.000 0.000
0.006 0.000 0.000
0.038 0.000 0.000
0.095 0.089 0.089
0.080 0.082 0.077

Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

0.001 0.000 0.000
�0.001 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.001 0.000 0.001
0.000 0.001 0.000

means (in SD)
0.130 0.055 0.023
0.099 0.038 0.020
0.166 0.074 0.029
0.104 0.038 0.018
0.107 0.039 0.019
0.234 0.434 0.235
0.257 0.448 0.259

0.002 0.000 0.000
0.000 0.000 0.000
0.024 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000
0.093 0.096 0.095
0.083 0.102 0.087



Table A3
How do the different methods compare in terms of balance on future outcomes?

(Sample size of 100)

Simple random Block (2 variables) Block (4 variables) DA optimal (2 variables) DA optimal (4 variables)

Panel A. Average difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) �0.003 0.003 0.000 0.004 �0.001
Child schooling (Indonesia) 0.000 �0.002 0.000 �0.002 �0.001
Housing expenditure (Indonesia) �0.003 0.001 0.001 0.002 0.003
Labor income (Mexico) 0.000 0.002 �0.001 0.001 0.000
Height z-score (Pakistan) 0.001 �0.001 0.002 0.000 0.002
Math test score (Pakistan) 0.000 �0.002 0.002 0.001 0.000

Panel B. Ninety-fifth percentile of difference in FOLLOW-UP between treatment and control means (in SD)
Microenterprise profits (Sri Lanka) 0.346 0.320 0.340 0.323 0.322
Child schooling (Indonesia) 0.427 0.399 0.369 0.369 0.341
Housing expenditure (Indonesia) 0.389 0.337 0.343 0.353 0.335
Labor income (Mexico) 0.369 0.335 0.345 0.304 0.311
Height z-score (Pakistan) 0.390 0.289 0.313 0.273 0.276
Math test score (Pakistan) 0.393 0.287 0.308 0.284 0.293

Panel C. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference as if pure randomization was used (e.g., no adjustment for strata or balancing
variables)

Microenterprise profits (Sri Lanka) 0.069 0.040 0.063 0.042 0.042
Child schooling (Indonesia) 0.132 0.106 0.077 0.119 0.090
Housing expenditure (Indonesia) 0.101 0.056 0.061 0.066 0.053
Labor income (Mexico) 0.090 0.057 0.066 0.029 0.034
Height z-score (Pakistan) 0.096 0.027 0.040 0.019 0.022
Math test score (Pakistan) 0.103 0.024 0.035 0.022 0.027

Panel D. Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference which takes account of randomization method (i.e., controls for stratum, or
balancing variables)

Microenterprise profits (Sri Lanka) 0.077 0.089 0.117 0.070 0.065
Child schooling (Indonesia) 0.100 0.095 0.094 0.120 0.098
Housing expenditure (Indonesia) 0.104 0.100 0.096 0.100 0.096
Labor income (Mexico) 0.091 0.086 0.099 0.095 0.097
Height z-score (Pakistan) 0.100 0.096 0.096 0.099 0.098
Math test score (Pakistan) 0.103 0.102 0.091 0.096 0.105

Notes: The coefficients in panels A and B are for specifications without controls for balancing variables or stratum dummies. Statistics are based on 10,000 simulations of each
method.

Table A4
How do the different methods compare in terms of power in detecting a given treatment effect?

(Sample size of 100)

Simple
random

Block (2
variables)

DA optimal (2
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri

Lanka)
0.145 0.123 0.132

Child schooling (Indonesia) 0.260 0.298 0.262
Housing expenditure

(Indonesia)
0.805 0.847 0.844

Labor income (Mexico) 0.207 0.183 0.144
Height z-score (Pakistan) 0.340 0.283 0.272
Math test score (Pakistan) 0.307 0.236 0.241

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization method
Microenterprise profits (Sri

Lanka)
0.149 0.174 0.169

Child schooling (Indonesia) 0.278 0.274 0.266
Housing expenditure

(Indonesia)
0.870 0.905 0.887

Labor income (Mexico) 0.248 0.216 0.259
Height z-score (Pakistan) 0.540 0.485 0.547
Math test score (Pakistan) 0.462 0.458 0.461

Notes: Statistics are based on 10,000 simulations of each method. Simulated treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) increase in profits
(about 25% of average baseline profits); child schooling – one in three randomly selected children in the treatment group who would have dropped out do not; household
expenditure – an increase of 0.4 in ln household expenditure per capita, which corresponds to about one-half of a standard deviation or moving a household from the
twenty-fifth to the fiftieth percentile; labor income – a MEX$920 increase in income (about 20 percent of average baseline income); height z-score – an increase of one
quarter of a standard deviation in the z-score, where the z-score is defined as standard deviations from mean US height for age; math test score – an increase of one quarter
of a standard deviation in the test score.
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Table A5
How do the different methods compare in terms of power in detecting a given treatment effect?

(Sample size of 300)

Simple
random

Block (2
variables)

DA Optimal (2
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri

Lanka)
0.286 0.276 0.271

Child schooling (Indonesia) 0.609 0.576 0.591
Housing expenditure

(Indonesia)
0.998 1.000 1.000

Labor income (Mexico) 0.488 0.485 0.482
Height z-score (Pakistan) 0.729 0.771 0.765
Math test score (Pakistan) 0.622 0.654 0.658

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization method
Microenterprise profits (Sri

Lanka)
0.302 0.305 0.296

Child schooling (Indonesia) 0.580 0.589 0.593
Housing expenditure

(Indonesia)
1.000 1.000 1.000

Labor income (Mexico) 0.594 0.556 0.586
Height z-score (Pakistan) 0.866 0.854 0.857
Math test score (Pakistan) 0.811 0.794 0.813

Notes: Statistics are based on 10,000 simulations of each method. Simulated treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) increase in profits
(about 25% of average baseline profits); child schooling – one in three randomly selected children in the treatment group who would have dropped out do not; household
expenditure – an increase of 0.4 in ln household expenditure per capita, which corresponds to about one-half of a standard deviation or moving a household from the
twenty-fifth to the fiftieth percentile; labor income – a MEX$920 increase in income (about 20% of average baseline income); height z-score – an increase of one quarter of a
standard deviation in the z-score, where the z-score is defined as standard deviations from mean US height for age; math test score – an increase of one quarter of a standard
deviation in the test score.

Table A6
How do the different methods compare in terms of power in detecting a given treatment effect?

(Sample size of 30)

Simple
random

Block (4
variables)

DA optimal (4
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri

Lanka)
0.144 0.146 0.148

Child schooling (Indonesia) 0.124 0.112 0.110
Housing expenditure

(Indonesia)
0.387 0.376 0.375

Labor income (Mexico) 0.187 0.184 0.200
Height z-score (Pakistan) 0.174 0.143 0.084
Math test score (Pakistan) 0.155 0.134 0.081

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization method
Microenterprise profits (Sri

Lanka)
0.135 0.102 0.156

Child schooling (Indonesia) 0.109 0.068 0.117
Housing expenditure

(Indonesia)
0.402 0.367 0.433

Labor income (Mexico) 0.161 0.139 0.188
Height z-score (Pakistan) 0.233 0.165 0.255
Math test score (Pakistan) 0.206 0.192 0.218

Notes: Statistics are based on 10,000 simulations of each method. Simulated treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) increase in profits
(about 25% of average baseline profits); child schooling – one in three randomly selected children in the treatment group who would have dropped out do not; household
expenditure – an increase of 0.4 in ln household expenditure per capita, which corresponds to about one-half of a standard deviation or moving a household from the
twenty-fifth to the fiftieth percentile; labor income – a MEX$920 increase in income (about 20% of average baseline income); height z-score – an increase of one quarter of a
standard deviation in the z-score, where the z-score is defined as standard deviations from mean US height for age; math test score – an increase of one quarter of a standard
deviation in the test score.
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Table A7
How do the different methods compare in terms of power in detecting a given treatment effect?

(Sample size of 100)

Simple
random

Block (4
variables)

DA optimal (4
variables)

Panel A. Proportion of p-values <0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri

Lanka)
0.145 0.142 0.128

Child schooling (Indonesia) 0.260 0.277 0.266
Housing expenditure

(Indonesia)
0.805 0.852 0.857

Labor income (Mexico) 0.207 0.186 0.142
Height z-score (Pakistan) 0.340 0.299 0.277
Math test score (Pakistan) 0.307 0.255 0.241

Panel B. Proportion of p-values <0.10 when adjustment is made for randomization method
Microenterprise profits (Sri

Lanka)
0.147 0.254 0.162

Child schooling (Indonesia) 0.287 0.251 0.324
Housing expenditure

(Indonesia)
0.890 0.882 0.910

Labor income (Mexico) 0.242 0.200 0.248
Height z-score (Pakistan) 0.530 0.463 0.541
Math test score (Pakistan) 0.453 0.399 0.456

Notes: Statistics are based on 10,000 simulations of each method. Simulated treatment effects are as follows: Microenterprise profits – an Rs. 1000 (LKR) increase in profits
(about 25% of average baseline profits); child schooling – one in three randomly selected children in the treatment group who would have dropped out do not; household
expenditure – an increase of 0.4 in ln household expenditure per capita, which corresponds to about one-half of a standard deviation or moving a household from the
twenty-fifth to the fiftieth percentile; labor income – a MEX$920 increase in income (about 20% of average baseline income); height z-score – an increase of one quarter of a
standard deviation in the z-score, where the z-score is defined as standard deviations from mean US height for age; math test score – an increase of one quarter of a standard
deviation in the test score.
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