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We show that Takahashi’s idea of convex structures on metric spaces is a natural gener-
alization of convexity in normed linear spaces and Euclidean spaces in particular. Then we introduce
a concept of convex structure based convexity to functions on these spaces and refer to it as W-
convexity. W-convex functions generalize convex functions on linear spaces. We provide illustrative

examples of (strict) W-convex functions and dedicate the major part of this paper to proving a variety
of properties that make them fit in very well with the classical theory of convex analysis. As expected,
the lack of linearity forced us to make some compromises in terms of conditions on either the metric
or the convex structure. Finally, we apply some of our results to the metric projection problem and

fixed point theory.

2010 Mathematics Subject Classification:

26A51; 52A01; 46N10; 47N10

Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and preliminaries

There have been a few attempts to introduce the structure of
convexity outside linear spaces. Kirk [1,2], Penot [3] and Taka-
hashi [4], for example, presented notions of convexity for sets in
metric spaces. Even in the more general setting of topological
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spaces there is the work of Liepins [5] and Taskovic¢ [6]. Taka-
hashi [4] introduced the following general concept of convexity
in metric spaces:

Definition 1 [4]. Let (X, d) be a metric space and 7 = [0, 1]. A
continuous function W: X x X x I — X is said to be a con-
vex structure on X if for each x, y € Xand all 7 € I,

du, Wx,y; 1)) < (1 =t)d(u, x) +td(u,y) (1

for all ¥ € X. A metric space (X, d) with a convex structure W
is called a convex metric space and is denoted by (X, W, d). A
subset C of Xis called convex if W(x, y; t) € C whenever x, y €
Cand tel

What makes Takahashi’s notion of convexity solid is the
invariance under taking intersections and convexity of closed

S1110-256X(15)00080-2 Copyright 2015, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.joems.2015.10.003


https://core.ac.uk/display/82683209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.joems.2015.10.003
http://www.etms-eg.org
http://www.elsevier.com/locate/joems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joems.2015.10.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ahmed.abdelhakim@aun.edu.eg
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.joems.2015.10.003

A convexity of functions on convex metric spaces of Takahashi and applications 349

balls ([4], Propositions 1 and 2). The convex structure W in
Definition 1 has the following property which is stated in [4]
without proof. For the sake of completeness, we give a proof of
it here.

Lemma 1. For any x, y in a convex metric space (X, W, d) and
any t € I we have

d(x, W(x,y; 1)) = td(x,y),
dy, Wx,y;1)) = (1 =1)d(x, y).

Proof. For simplicity, let «, b and ¢ stand for d(x, W(x, y; t)),
d(y, W(x, y; t)) and d(x, y) respectively. Using (1) we get a <tc
and h< (1 —1t)c. But ¢ < a+ b by the triangle inequality.
So c<a+b<(1—-t)c+tc=c Thismeans a+b=c.If
a < tc then we would have a + b < ¢ which is a contradic-
tion. Therefore, we must have a =¢ and consequently b =
(I1—=t)ce O

The necessity for the condition (1) on W to be a convex struc-
ture on a metric space (X, d) is natural. To see this, assume that
(X, |I.llx) is a normed linear space. Then the mapping W: X x
X x I— X given by
W, y;ty=(1—-t)x+ty, x,yelX, tel, )

defines a convex structure on X. Indeed, if p is the metric in-
duced by the norm ||.||x then

pu, W(x,y; 1)) = llu—((1 —0)x+1y) llx
A= lu—xlly+tlu—ylx
=(0-t)pu,x)+tpuy), YuelX,tel.

The picture gets clearer in the linear space R?> with the Eu-
clidean metric and the convex structure given by (2). In
this case, given two points x,ye€R?> and a t € I, z=
W (x,y;t) is a point that lies on the line segment joining
x and y. Moreover, Lemma 1 implies that if Xy = L then
xz=tL and zy = (1 —¢) L and we arrive at an interesting
exercise of elementary trigonometry to show that uz < (1 —
t)ux +tuy for any point u in the plane. (Hint: apply the
Pythagorean theorem to the triangles Auyv, Auvz and Auvx
in the figure below then use the fact that Xy < Xu+ uy).
u
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Takahashi’s concept of convexity was used extensively in
fixed point theory in metric spaces (cf. [7] and the references
therein). One of its most important applications is probably it-
erative approximation of fixed points in metric spaces. There is
quite huge literature on fixed point iterations (cf. [8,9]). Roughly
speaking, the formation of most, if not all, known fixed point
iterative procedures is based on that of the Mann iteration [10]
and the Ishikawa iteration [11] as its very first generalization. All
of these sequences require linearity and convexity of the ambi-
ent topological space. Although Takahashi’s notion of convex
metric spaces appeared in 1970, it was not until 1988 that Ding
[12] exploited it to construct a fixed point iterative sequence and

proved a convergence theorem in a convex metric space. To our
best knowledge, this is the first time a fixed point iteration, other
than the well-known Picard iteration, was introduced to metric
spaces. Later, a lot of strong convergence results in convex met-
ric spaces followed (see [8]).

In the light of Definition 1, it is tempting to identify convex
functions on convex metric spaces. Based on the idea of convex
structures on metric spaces, we define and illustrate by examples
what we call W-convex functions. In linear metric spaces with
W defined by (2), W-convex functions coincide with traditional
convex functions. We show throughout the paper that many of
the main properties of convex functions on linear spaces are sat-
isfied by W-convex functions. As expected some of these proper-
ties do not carry over automatically from linear spaces to con-
vex metric spaces. In order to achieve such properties we had
to require additional assumptions on the convex structure W.
For instance, while midpoint convex continuous functions on
normed linear spaces are convex, midpoint W-convexity on its
own seems insufficient to obtain an analogous result in con-
vex metric spaces. Another example appears when we study
the equivalence between local boundedness from above and lo-
cal Lipschitz continuity of W-convex functions. To achieve this
equivalence we required the convex metric space to satisfy a cer-
tain property that is naturally satisfied in any linear space. Other
properties necessitated providing a suitable framework to prove.
For example, to investigate the relation between W-convexity of
functions and the convexity of their epigraphs, we had to design
a convex structure on product metric spaces to be able to define
convex product metric spaces and characterize their convex sub-
sets. Finally, we apply some of our results on W-convexity to the
metric projection problem and fixed point theory. For this pur-
pose, we give a definition for strictly convex metric spaces that
generalizes strict convexity in Banach spaces and relate it to a
certain class of strictly W-convex functions.

2. W-convex functions on convex metric spaces
and their main properties

Definition 2. A realvalued function f on a convex metric
space (X, W,d) is W-convex if for all x, y € X and ¢ €
Lf(Wx,p;t) < (1—=0)f(x)+1tf(y). We call f strictly W-
convex if f(W(x,y;1)) < (1 —1t)f(x)+tf(y) for all distinct
points x, y € X and every ¢ € I° =10, 1[.

Example 1. Consider the Euclidean space R® with the Eu-

clidean norm |.||. Let B be the subset of R? that consists of

all closed balls B(%, r) with center £ € R? and radius r > 0. For

any two balls B(&, r1), B(&, r2) € B, define the distance func-

tion dp(B(&1,11), B(§2,12)) =| &1 — & || +|r1 — r2]. Itis easy to

check that (B, dg) is a metric space. Let Wg: Bx BxI — B

be the continuous mapping given by

Wi (B(&1,11), B(62,12);0) = B((1 —0)& + 0&,,
(1—=0)r+0r), &ecR rn>00cl.

Since for all 6 € I and any three balls B(&;,r;) € B,i=1,2,3,

ds (W5 (B(&1,11), B(§2,12); 0), B(&3,713))
=dg (B(1 =0)& +08&,(1 —0)r1 +0r2), B(&3, 13))
=l d=-0)&6+0& =&+ =0)r+0r—r
A=) U& =&+l —r))+0 & =& +lra—rs])
= (1 =0)ds(B(1, 1), B(&,13)) + 0 ds(B(&2, 12), B(&3, 13)).
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Then (B, Wp, dg) is a convex metric space. The function f :
B — R defined by f(B(&,r)) :=| & || +|r| is Wx-convex.

Example 2. Let Z be the family of closed intervals [a, b] such
that 0 < @ < b < 1 and define the mapping W7 :Z x T x
I by Wz, 1;;t) == [(1 = a; + ta;, (1 — 1)b; + tb;] for I, =
la;,bi], I; =[a;, bl € I, t € I. If d; is the HausdorfT distance
then (Z, Wz, dr) is a convex metric space. This example of a
convex metric space is given by Takahashi [4].

It is easy to verify that the Lebesgue measure defines a Wz-
convex function on (Z, Wz, dr).

Proposition 2 (Composition with increasing convex func-
tions). Assume that f'is a Wy—convex function on the convex
metric space (X, Wy, dy). Let g: f(X) — R be increasing and
convex in the usual sense. Then g o f'is Wy —convex on X. The
composition g o fis strictly Wy —convex if g is strictly convex or
if f'is strictly Wy-convex and g is strictly increasing.

Proof. Given x, y € X and ¢ € I, in the light of Definition 2, it
follows from the monotonicity of g that

g/ Wy (x,p;0))) = g((1=0)f(x)+1/()

(=) g(f(x) +1g(f ).

A

IA

O

Example 3. Let (X, Wy, dy) be a convex metric space and let
g: R — R beincreasing and (strictly) convex. Then the function
f: X — R defined by f(x) := g(dx(x, xo)) for some fixed xq €
X is (strictly) Wy-convex. Examples of the function g include
g(x¥) = X.8(x) = 10,000 (%) X.8(x) = Xpo.ocf(¥) |x] in the case of
convexity and g(x) = e*,g(x) = xp,0[(X) |x|* with @ > 1 in the
case of strict convexity.

Proposition 3. Let (X, W, d) be a convex metric space. Then

1. The restriction g of a W-convex function f on X to a convex
subset C of X is also W-convex.

2. If fis a W-convex function on X and a > 0 then af is also a

W-convex function on X.

. The finite sum of W-convex functions on X is W-convex.

4. Conical combinations of W-convex functions is again W-
convex.

5. The maximum of a finite number of W-convex functions is W-
convex.

6. The pointwise limit of a sequence of W-convex functions is W-
convex.

7. Suppose that (Y,) is a sequence of convex subsets of X and
that f,, is a W-convex functionon Y,,n > 1. Let S = N, Y, and
M ={x € X :sup, f,(x) <oo}. Then MNS is convex and
the upper limit of the family (f,), = 1, the function f = sup, f,,
is W-convex on it.

8. If f 1 X — Ris anontrivial strictly W-convex function then f
has at most one global minimizer on X.

(98]

Proof.

1. By the convexity of C, the restriction of f'to C makes sense
and the W-convexity of g on C follows from the W-convexity
of fon X.

2. True since af(W(x,y;t)) <a((l—0)f(x)+tf(y)) =
(1 =D f(x) +tef ().

3. Obvious from Definition 2 and the linearity of the summa-
tion operator.

4. Follows from 2 together with 3.

5. It suffices to show that f = max{fi, f2} is W-convex on X
given the W-convexity of both f; and f;. For all x, y € X and
t € I we have

JilWx,p;i0) < (1 =10) fi(x)+1fi(»)
<= f®)+tf()

which yields f(W(x,y; 1)) < (1 =1) f(x) +1 /().

6. A consequence of the monotonicity of the limit.

7. Let x, y € MNS. Then x, y € Y, for all n > 1,
sup, fu(x) <oo and sup, f,(y) <oco. Fix ¢t € I and
n > 1. By the convexity of Y, we know that it
contains W(x,y;t). Hence W(x,y;t)€ S. To prove
the convexity of MNS it remains to show that
W(x, y;t) € M. This follows from the W-convexity of f,
as fu(W(x,y;1) < (1 —1) sup, f,(x) + 1 sup, f,(y) < oo.
Finally, invoking the completeness axiom for the re-
als, the latter inequality implies sup, f,(W(x, y;1)) <
(1 —1¢) sup, fu(x) + ¢ sup, f,(¥) < oo, which shows that
sup,, f, is W-convex on M N S.

8. Assume there are two distinct points x, y € X such
that f(x) = f(y) = inf,cy f(x). By convexity of X we
have W (x, y; %) € X. Since f is strictly W-convex then
S(W(xy;3) < 5/() + 3 f(») = infrey f(x) which is a
contradiction. [

3. W-convexity and continuity

We begin with proving Lipschitz continuity of W-convex func-
tions on generalized segments in convex metric spaces.

Proposition 4. Let (X, W, d) be a convex metric space. Let x
and y be two distinct points in X. Then a W-convex function f
on the set L(x,y) ={W(x,y;1):0 <A <1} is Lipschitz con-
tinuous on it with a Lipschitz constant that depends only on x and
y. Moreover, if |f(x) — f(»)| < ad(x,y) for some a > 0 then
lf(2) = fW)| < ad(z,w) forall z,w e L(x,y).

Before proceeding with the proof of Proposition 4, we would
like to make some remarks on the set £(x, ).

Remark 1. If X is a linear space and W is defined by (2) then
W(x, y; A) is a unique vector in X for each A € [ and the
set L(x, y) is known ([13]) as the line segment joining the two
vectors x and y. Clearly, the Euclidean geometry justifies this
notion. In metric spaces the situation is different as, for A €
I°, W(x, y; 1) is not necessarily a unique point. In fact the
continuity of W in A required by Definition 1 is to be under-
stood in the sense of continuity of multivalued functions. And if
& € X, the distance d(&, W(x, y; 1)) should be thought of as
a point-set distance, but this is just a technicality. Neverthe-
less Lemma 1 assures that every point in the set W(x, y; 1)
belongs to S(x, (1 — 1) d(x,y)) NS, 2d(x,y)) where S(xo, r)
is the usual sphere with center x, and radius r > 0. More-
over, in the linear setting we have the symmetry W (x, y; 1) =
W (y, x; 1 — &) which leads to the symmetry L(x, y) = L(y, x).
While, from Definition 1 and Lemma 1 deduced from it,
we have

AW,y ), Wx 1=2) < (=1 d(x, Wy, x; A))
+ad(y, Wy, x; 1))
= (1 =1+ 1) d(x, ).
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So, all that can be inferred in the convex metric space (X, W,
d)is d(W(x,y; 1), W x;1=21)) <2d(x,y), » € I’. Con-
sequently L£(x,y) is not to be assumed symmetric in gen-
eral. Finally, observe that £(x, y) is closed. Indeed, it follows
from Lemma 1 that any u € £(y, x) can be written as u =
W(x,y, d(x,u)/d(x,y)). So if (z,) is a sequence of elements
of L(x,y) then z, = W(x,y,d(x,z,)/d(x,y)),n > 1. If in ad-
dition z, — z as n — oo then, by the continuity of d and
W, we formally get z=1lim,_. ., W(x,y d(x,z,)/d(x,y)) =
W(x,y,d(x,z)/d(x,y)). Since d(x, z,) < d(x, y) then, pass-
ing to the limit, we also have d(x, z) < d(x, y). This shows that
z € L(x,)).

i

L(w,y) = Unes Wi, 53 A).
Now we prove Proposition 4.

Proof. Fix x, y € X so that d(x, y) > 0. Let z, w € L(y, x) be
such that z # w. Then, by W-convexity of f, we have

) . d(x,
o= {222

d(x,z) d(x,z)
1— . 3
: ( d(x,y>)f(x)+ e’ ©
Similarly
d(x,
fw) = f(W(x, b %))
d(x, w)) d(x,w)
1- . 4
< (1- S ) w0+ G o) @

Considering (3) and (4), we have only two possibilities. Either

F@) = fw) < @x, )7 (dx,w) —d(x,2) (f(x) = ()
<@ y) 7 f(x) = fO)ld(z, w). ©)

Or

f@) = fw) <@, y) " (dx,2) —dx,w) (f(x) — £()
<@ N = fO)ld(zw). (6)

Interchanging z and w in both sides of (5) or (6) we immediately
get

Lf(2) = fW)] = d ) 1f ) = f)ld(zw) (7)

which proves that f is Lipschitz continuous on L(y, x) with
the Lipschitz constant (d(x, y))" |f(x) — f(»)|. The inequal-
ity (7) demonstrates the second assertion of the proposition as
well. O

Corollary 5. Let (X, W, d) be a convex metric space. If a W-
convex function f on the set L(x,y) ={W(x,y;1):0<x1 <1}
is such that f(x) = f () then f'is constant on L(x, ).

Continuous functions on convex metric spaces are W-convex
provided that they are midpoint W-convex in a certain sense. We
prove this in the following proposition.

Proposition 6. Let (X, W, d) be a convex metric space. Ev-
ery continuous function f : X — Rsuch that f(W (x, y; %)) <

2
LI yim) + 3 fW(x,piv), x, y € X, p, v el is
W-convex.

0<v<pu<l

Proof. Let n be a nonnegative integer and let A, = {m/2", m=
0,1,..., 2”}. By induction on n, we show that

S,y 0) < (1 =2) f(x)+ 1),
forevery x,y € X, A € A,. 8)

Since, by Lemma 1, x = W (x, y; 0) and y = W (x, y; 1) then (8)
is valid when n = 0 as Ay = {0, 1}. Assume that (8) is satisfied
for any A € A for some natural number k. Now let x, y € X and
suppose that A € Ay, ;. Obviously, there exist s, 1 € A, such that
A = (s + t)/2. The induction hypothesis implies that

S yiw) <A —w) fO)+uf(y), uelsi} (€)]
By our assumption on f'we have

1 1
SW(x,y:2)) = if(W(x, yis)) + Ef(W(x, i 0). (10)

Using (9) in (10) we obtain

A

1
S ya) = 5 30 (A=w) [0 +uf()

ue{s,t}
s+t . s+t
= (1-2° 2
( > )f(XH- 3 fo
=0 =0 fx)+rfO).
This proves (8). Let r € I be arbitrary. Since the set A = U,-0A,

is dense in 7 then there exists a sequence (r,) C A that converges
to r. Thus

SO Geysm) = £(W e ys lim r)) = Tim £OF (e, y57)
(a1

by the continuity of both the convex structure W and the func-
tion . Since r, € A then there exists an integer m > 0 such that r,,
€ A By 8), f(W(x,y;1r)) < (1 —=ry) f(x)+r, f(y). From
the latter inequality, the monotonicity of the limit and (11) we
obtain
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SOV, pin) < (1= lim r,) f(x) + lim 7, f(y)
=0-=-nfx)+rf.
O

The next lemma paves the way to Proposition 8 where we
show that boundedness of W-convex functions on certain con-
vex metric spaces is a necessary and sufficient condition for their
continuity. In fact, our discussion in the rest of this section is
confined to convex metric spaces (X, W, d) that enjoy the prop-
erty that for every two distinct points x, y € X and every A €]0,
1[ there exists & € X such that x = W (y, &; 1) or there exists n
€ X such that y = W (x, n; ). This property is naturally satis-
fied if X is a linear space with W defined as in (2). In that case,
E=2Tx—y)+yandn =171y —x) +x.

Lemma 7. Let B(xo, r) be an open ball centered at x, with radius
r> 0 thatis contained in X. If /' : X — R is W-convex such that
[f(x)| < M on B(xo, r) then fis 27M—Lipschitz on B(xp, r— p),
O<p<r.

Proof. Let x and y be two distinct points in B(xp, r). Then,
by our assumption on (X, W, d), there exists £ € X such
that x = W (y, &; pi&*’(‘i)},)) or there exists n € X such that y =
W (x,n; m). We shall deal with the first case and the sec-
ond one can be treated analogously. First, since fis W-convex

then

d
L SO+ {

x,))
P Fdx.y) S ).

f(x) < 0

This implies

S —fx)
0

SX)=f() < d(x,y). (12)

Assume for the moment that & € B(xo, r). Using the bounded-
ness of f'on B(xy, r) the inequality (12) takes the form

2M
S =fO) < Td(x’ »). (13)

Interchanging the roles of x and y then exploiting the symmetry
of the metric, we deduce from (13) that

oM
/() = fOl < Td(x, »).

To complete the proof, it remains to show that & € B(xo, r).
From Lemma 1, we have

3 ACPON
d, x) = d(é*’ W<y"§’ p+d(x,y)>>

__pdE.y) pd(&, x)
p+d(x,y) ~ p+d(x,y)

pd(x,y)
p+d(x,y)

Solving this inequality for d(&, x) we find d(&, x) < p. Finally

d¢,x) =dE x)+dx,x0) <p+r—p=r. O
Proposition 8. 4 W-convex function f on X is locally bounded if
and only if it is locally Lipschitz.

Proof. Of course a locally Lipschitz function is continuous and
therefore locally bounded. Let f'be locally bounded and let x, €

X. Then there exists > 0 such that fis bounded on B(xy, r) and,
by Lemma 7, fis Lipschitz on B(xy, /2). Since x, was arbitrary
then f'is locally Lipschitz. O

Remark 2. The local boundedness assumption on the W-
convex function f in Lemma 7, and consequently in
Proposition 8, can be weakened to local boundedness from
above. To prove this, assume that there exists ¢ > 0 such that

f(&) < c for every & € B(xy, r) and let x € B(xo, r). Then there

exists y € X such that xo = W (x, y, %). Since, by Lemma 1,
d(y, x0) = d(x, x9) < rthen y € B(xo, r). Furthermore, by W-
convexity of £, 21 (x¢) < f(x) + f(¥). So

2f(x0) —c < 2f(x0) = f(»)
< f() =c = [f(0)] < c+2|f(x)l.

Remark 3. Recall that a function f : X — R is lower semicon-
tinuous at x if for every ¢ < f(xp) there is an open neighbor-
hood N, of xo such that f{x) > ¢ for every x € N,,, and if
Vi> f(x) 3Ny, : f(x) <t, VxeN,, then fis upper semi-
continuous at xy. It follows from Proposition 8 is that upper
semicontinuous W-convex functions on open sets are continu-
ous. The same applies to lower semicontinuous functions if and
only if X is complete. Furthermore, a family of continuous -
convex pointwise bounded functions on an open convex sub-
set of a complete metric space is locally equi-bounded and lo-
cally equi-Lipschitz. The most important consequence of these
facts is that pointwise convergence of sequences of continuous
W-convex functions on open convex subsets of complete met-
ric spaces is uniform on compact sets and preserves continuity.
Since the proofs of these results (cf. [13-15] ) is indifferent to the
topology of the space and does not depend on linearity, we find
it redundant to give them here.

4. Epigraphs and sublevel sets of W-convex functions

The epigraph of a realvalued function f on a set C is the
set Epi(f) = {(x,5) e C xR : f(x) <s} and the sublevel set
of f of height 4 is is the set S;(f) ={xe C: f(x) <h}. In
Proposition 11 below we show how W-convexity of functions
is related to the convexity of their epigraphs and sublevel sets.
First, let (X, Wy, dy) and (Y, Wy, dy) be two convex metric
spaces. The mapping d,: (X x Y)* — [0, oo],

dp((x1, 1), (x2,¥2))

1
_ (dy(x1,x2))" + dy (1, »2))') 7, 1< p<o0;
max {dy (x1, X2), dy (1, y2)}, p =09,

is a metric on the Cartesian product X x Y and (X x Y, d,) is
called a product metric space. Now, let (X, Wy, dy) and (Y, Wy,
dy) be two convex metric spaces. We note the following:

Lemma 9. The mapping Wy y: (X x Y x I - X x Y given
by Wy ((x1,31), (x2, 32)5 1) = (Wy (x1, x251), Wy (01, ¥25 1))
is continuous and defines a convex structure on the product metric
space (X x Y, dy).

Proof. The continuity of Wy, y follows from the continuity of
the convex structures Wy and Wy. Let ¢t € I and (x;, y;) € X X
Y, i =1, 2, 3. By the definition of Wy, y, it remains to prove
that

di ((x3,3), Wy (x1, X25 1), Wy (1, ¥23 1))
< (I =0y di((x1, y1), (x3,33) +tdi((x2,)2), (x3,3)).  (14)
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However, we shall pretend that we need to prove the inequal-
ity (14) for the metric d, with 1 < p < oco. This enables us to
demonstrate the difficulty in the proof for the case p > 1 and ex-
plain why the assertion of Lemma 9 is limited to the case p = 1.
The metric dy, is excluded for the same reason. Of course we
could simply construct counterexamples for those cases but that
would take us outside the scope of this paper. Now, for 1 < p <
oo, we exploit the following facts:

(i) Wy and Wy are convex structures on X and Y respec-
tively.
(i) The map x+—x” is monotonically increasing on [0, oof.
(i) (u+v)? <207 (u? +v7), forall u, v > 0.

We then see that

d] (03, y3), W (1, x5 0), Wy (31,323 1))
= (dy (3, Wy (x1, x2: 1)) + (dy 03, Wy (01, 923 1)))”
< (1= )y (x1, x3) + 1y (32, x3))
+ (1= D)y (1, y3) + tdy (72, 3))"
< 271 (1= 0 [(dy G, )’ + (dy G, 1))’
£20(dy Gen x)) + (2]
=271 - OFdl((x1,31), (x3,13))
+ 17 df (2, y2). (x3.99))]
which gives the desired inequality (14) when p =1. O

Using Lemma 9, we can describe convex subsets of convex
product metric spaces.

Definition 3. A subset Z of the convex product metric space (X
X Y, Wy y, dy) is convex if Wy . y((x1, y1), (X2, y2); 1) € Z for
all points (xy, y1), (x2, y2) € Zand allr € I.

In the light of Definition 3 one can easily verify Lemma 10
below.

Lemma 10. The intersection of any collection of convex subsets
of the convex product metric space (X x Y, Wy v, dy) is convex.

Proposition 11. Let f be a realvalued function on a convex metric

space (X, Wy, dy). Then

1. The function [ is Wy-convex if and only if Epi(f) is
a convex subset of the convex product metric space
(X x R, Wyyr, dy + dr), where Wy and dy are the usual con-
vex structure and metric on R respectively.

2. If fis Wy —convex then the sublevel set Sy(f) is a convex subset
of X for every h € R.

Proof.

1. Suppose that f'is Wy—convex on X and let (x, s), (3, ?) €
Epi(f). Then
SWx(x, ;) = A= fX)+2f() = =2)s+ 4t
for all A € I. Therefore (Wy(x,y;1), (1 —A)s+Art) €
Epi(f). That is

WXXR((xv S)» (ys t); )‘)
= (Wx (x,y; 1), Wa(s, 1; 1)) € Epi(f),

Hence Epi(f) is a convex subset of X' x R. Conversely, sup-
pose Epi(f) is convex. Fix x, y € X and ¢ € I. Since (x, f(x)),

rel.

7, f(y)) € Epi(f), then

Wy Cx, p; ), Wa(f(x), f(); 1)
= Wyr((x, f(), 0, f(): 1) € Epi(f).

Thus f(Wx (x,y;1)) < We(f(x), f();1) = (1 =1) f(x)
+1t f(y), which is to say that f'is Wy —convex.

2. Let t € I and let x, y € S,(f) so that f(x) < h and f(y)
< h. Since f is Wy—convex then f(Wyx(x,y;t)) < (1—
t) f(x)+1t f(y) < h. Therefore Wx(x, y; t) € Si(f) and Sj,(f)
is convex. [J

The following theorem is an application of Lemma 10 and
Proposition 11.

Theorem 12. The pointwise supremum of an arbitrary collection
of W-convex functions is W-convex.

Proof. Let (X, W, d) be a convex metric space. Let J
be some index set and assume that {f;};c, is a collec-
tion of W-convex functions on X. Then, by Proposition 11,
Epi(f;) is a convex subset of the convex product metric
space (X X R, Wyygr,dxy +dg) for every i € J. If f: X —
R 1is such that f(x) =sup,, fi(x), x € X, then Epi(f)=
NicsEpi(f;). By Lemma 10, Epi(f) is a convex subset of
(X X R, Wyyr, dy + dr) and, using Proposition 11, it follows
that f'is W-convex on X. [

5. Applications to the projection problem and fixed point theory

Let Y be a nonempty subset of a convex metric space (X, W, d).
The distance map (cf. [16]) dy: X — [0, oo[ is defined by dy (x) =
infyey d(x, y). The distance map dy is W-convex. Indeed, if x;,
x; € X, y € Yand ¢ € I then, by the definition of dy, we have

dy (W (x1,x2:1)) < d(W(xy, Xx251),¥)
<A =0dx,y) +td(x,y)

for every y € Y. Hence, by positive homogeneity and subaddi-
tivity of the infimum,

dy (W (x1, x2: 1)) < }iélg((l —0)d(x1,p) +1d(x2,p))
< —1)infd(x,y) +1 inf d(xs,y)
yeY yeY

= (1 —t)dy(x)) + tdy(x2).

If Y is convex, then the metric projection operator (also called
the nearest point mapping) (cf. [17]) Py: X — 2Y is given by
Py(x):={y €Y :d(x,y) =dy(x)}.If Py(x) # ¥ forevery x €
X then Y is called proximal. Py(x) is convex ([18], Lemma 3.2)
and if Y is closed then it is proximal. The proof of the proxi-
mality of Y in this case is standard and given, in the setting of
normed spaces, in many books (cf. [13,16]). We briefly sketch
it here. There exists a minimizing sequence (y,) C Y such that
d(x, y,) — dy(x),x € X, as n — oo. So the sequence (y,) is
bounded and, up to replacing it by a subsequence, it converges
to y, say. Consequently, d(x, y,) — d(x, y) as n — oco. Hence
d(x,y) = dy(x). Since Yis closed then y € Py(x).

The set of metric projections Py(x), if nonempty, is not nec-
essarily a singleton. If Py(x) is a singleton for each x € X then
the convex set Y is called a Chebyshev set. It is well-known (cf.
[15]) that every closed convex subset of a strictly convex and re-
flexive Banach space is a Chebyshev set.
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We would like to describe sufficient conditions for a point
x € X to have a unique projection in Y. We begin with in-
troducing a definition for strict convexity in convex metric
spaces.

Definition 4. A convex metric space (X, W, d) is strictly convex
if for each xo € X and any two distinct points x, y € S(xo, p)
with p > 0, we have W(x, y; t) € B(xo, p), Vt € I.

Remark 4. If X is a linear space endowed with a norm that in-
duces the metric d and W is given by (2) then Definition 4, af-
ter normalizing and translating to the origin, coincides with the
known definition of strictly convex normed spaces [15].

Definition 5 ((Strict) W-convexity w.r.t spheres). Let (X, W, d)
be a convex metric space. Fix xo € X, p > 0 and o €]0, p[.
We call a realvalued function f on B(xy, p) W-convex w.r.t the
sphere S(xg, o) if

Sy <A -=0)fx)+tf),
VXx,yeSpo)tel,

and we call it strictly W-convex w.r.t the sphere S(xy, o) if

SWys0) <=0 f(x)+1f),
Vx,yeS(xg,o)withx#£y Vel

The following proposition is a direct consequence of
Definitions 4 and 5.

Proposition 13. Let (X, W, d) be a convex metric space. If for
each xo € X and p > 0, the function - X — [0, oo[ defined by
f(x) :=d(x, xo) is strictly W-convex w.r.t the sphere S(x, p) then
the space X is strictly convex.

The following theorem asserts that closed convex subsets of
strictly convex metric spaces are Chebyshev sets.

Theorem 14. Assume that Y is a closed convex subset of a strictly
convex metric space (X, W, d). Then every x € X has a unique
projection on Y.

Proof. Since Yis closed then Py(x) # @,V x € X by the discus-
sion above. If x € Ythen Py = {x}. Let x € X — Y have two dis-
tinct projections y, v, € Y. Then d(x, y1) = d(x, y,) = dy (x).
Let ¢ € I°. Since Y is convex then W(y;, y»; f) € Y, and since X
is strictly convex then

d(WO’ls)’z; t)v x) < (1 - t) d(yls x) + td(yZ’ X) = dY(x)’

which is a contradiction. [J

Theorem 15. Let Y be a compact convex subset of a strictly con-
vex complete metric space. If - Y — Y is continuous then it has
a fixed point in Y.

Proof. Since Yis compact then it is closed and, by Theorem 14
above a Chebyshev set. The rest of the proof follows from The-
orem 3.4 and Corollary 3.5in [18]. O

Theorem 16. Let (X, W, d) be a convex metric space and let T:
X — X is a nonexpansive mapping. Assume that the function f:

X — [0, oo[ defined by f(x) := d(x, Tx) is strictly W-convex with
a local minimum at & € X. Then & is a fixed point of T.

Proof. By Proposition 3, the point & is the unique global min-
imizer of f. Suppose that T¢& # &. Since X is convex then W(§,

T&;t) € XVt € I, and since fis strictly W-convex on X then, for
all ¢t € I°, we have

JWETE ) <A —1) f(&)+1f(T§)

= (1-0dE T8 +1d(T§, T°%)
A-=0dE TE)+1dE, TE)

=dE.T§) = (), (15)
where we used nonexpansiveness of f in estimating d(7&,
T°t) < d(&, Tg). The strict inequality (15) contradicts

the fact that f(§) = min,cy f(x). Therefore we must have
Te =¢. O

IA

Remark 5. The function f'is continuous by the continuity of 7.
Hence, if X is compact then there does exist a point & € X such
that f(¢§) = min,cy f(x), and we do not need to make such an
assumption on f.
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