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. Introduction and preliminaries 

here have been a few attempts to introduce the structure of 
onvexity outside linear spaces. Kirk [1,2] , Penot [3] and Taka- 
ashi [4] , for example, presented notions of convexity for sets in
etric spaces. Even in the more general setting of topological 
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paces there is the work of Liepi ņ š [5] and Taskovi ̌c [6] . Taka-
ashi [4] introduced the following general concept of convexity 

n metric spaces: 

efinition 1 [4] . Let ( X , d ) be a metric space and I = [0 , 1] . A
ontinuous function W : X × X × I → X is said to be a con-
ex structure on X if for each x , y ∈ X and all t ∈ I , 

 ( u, W (x, y ; t) ) ≤ (1 − t) d (u, x ) + t d (u, y ) (1) 

or all u ∈ X . A metric space ( X , d ) with a convex structure W
s called a convex metric space and is denoted by ( X , W , d ). A
ubset C of X is called convex if W ( x , y ; t ) ∈ C whenever x , y ∈
 and t ∈ I . 

What makes Takahashi’s notion of convexity solid is the 
nvariance under taking intersections and convexity of closed 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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balls ( [4] , Propositions 1 and 2). The convex structure W in
Definition 1 has the following property which is stated in [4]
without proof. For the sake of completeness, we give a proof of
it here. 

Lemma 1. For any x , y in a convex metric space ( X , W , d ) and
any t ∈ I we have 

d (x, W (x, y ; t)) = t d (x, y ) , 

d (y, W (x, y ; t)) = (1 − t) d (x, y ) . 

Proof. For simplicity, let a , b and c stand for d ( x, W (x, y ; t) ) ,
d ( y, W (x, y ; t) ) and d ( x , y ) respectively. Using (1) we get a ≤ t c 
and b ≤ (1 − t) c . But c ≤ a + b by the triangle inequality.
So c ≤ a + b ≤ (1 − t) c + t c = c. This means a + b = c . If
a < t c then we would have a + b < c which is a contradic-
tion. Therefore, we must have a = t c and consequently b =
(1 − t) c. �

The necessity for the condition (1) on W to be a convex struc-
ture on a metric space ( X , d ) is natural. To see this, assume that
( X , ‖ . ‖ X ) is a normed linear space. Then the mapping W : X ×
X × I → X given by 

 (x, y ; t) = (1 − t) x + t y, x, y ∈ X , t ∈ I, (2)

defines a convex structure on X . Indeed, if ρ is the metric in-
duced by the norm ‖ . ‖ X then 

ρ( u, W (x, y ; t) ) = ‖ u − ( (1 − t) x + ty ) ‖ X 
≤ (1 − t) ‖ u − x ‖ X + t ‖ u − y ‖ X 
= (1 − t) ρ(u, x ) + t ρ(u, y ) , ∀ u ∈ X , t ∈ I . 

The picture gets clearer in the linear space R 

2 with the Eu-
clidean metric and the convex structure given by (2) . In
this case, given two points x, y ∈ R 

2 and a t ∈ I , z =
 (x, y ; t) is a point that lies on the line segment joining

x and y . Moreover, Lemma 1 implies that if xy = L then
xz = t L and zy = (1 − t) L and we arrive at an interesting
exercise of elementary trigonometry to show that uz ≤ (1 −
) ux + t uy for any point u in the plane. (Hint: apply the

Pythagorean theorem to the triangles � uyv, � uvz and � uvx
in the figure below then use the fact that xy ≤ xu + uy ).

xz

zy
=

t

1 − t

yx

u

vz = W (x, y; t)

Takahashi’s concept of convexity was used extensively in
fixed point theory in metric spaces (cf. [7] and the references
therein). One of its most important applications is probably it-
erative approximation of fixed points in metric spaces. There is
quite huge literature on fixed point iterations (cf. [8,9] ). Roughly
speaking, the formation of most, if not all, known fixed point
iterative procedures is based on that of the Mann iteration [10]
and the Ishikawa iteration [11] as its very first generalization. All
of these sequences require linearity and convexity of the ambi-
ent topological space. Although Takahashi’s notion of convex
metric spaces appeared in 1970, it was not until 1988 that Ding
[12] exploited it to construct a fixed point iterative sequence and
proved a convergence theorem in a convex metric space. To our
best knowledge, this is the first time a fixed point iteration, other
than the well-known Picard iteration, was introduced to metric
spaces. Later, a lot of strong convergence results in convex met-
ric spaces followed (see [8] ). 

In the light of Definition 1 , it is tempting to identify convex
functions on convex metric spaces. Based on the idea of convex
structures on metric spaces, we define and illustrate by examples
what we call W -convex functions. In linear metric spaces with
W defined by (2) , W -convex functions coincide with traditional
convex functions. We show throughout the paper that many of
the main properties of convex functions on linear spaces are sat-
isfied by W -convex functions. As expected some of these proper-
ties do not carry over automatically from linear spaces to con-
vex metric spaces. In order to achieve such properties we had
to require additional assumptions on the convex structure W .
For instance, while midpoint convex continuous functions on
normed linear spaces are convex, midpoint W -convexity on its
own seems insufficient to obtain an analogous result in con-
vex metric spaces. Another example appears when we study
the equivalence between local boundedness from above and lo-
cal Lipschitz continuity of W -convex functions. To achieve this
equivalence we required the convex metric space to satisfy a cer-
tain property that is naturally satisfied in any linear space. Other
properties necessitated providing a suitable framework to prove.
For example, to investigate the relation between W -convexity of
functions and the convexity of their epigraphs, we had to design
a convex structure on product metric spaces to be able to define
convex product metric spaces and characterize their convex sub-
sets. Finally, we apply some of our results on W -convexity to the
metric projection problem and fixed point theory. For this pur-
pose, we give a definition for strictly convex metric spaces that
generalizes strict convexity in Banach spaces and relate it to a
certain class of strictly W -convex functions. 

2. W -convex functions on convex metric spaces 
and their main properties 

Definition 2. A realvalued function f on a convex metric
space ( X , W , d ) is W -convex if for all x , y ∈ X and t ∈
I , f ( W ( x, y ; t ) ) ≤ (1 − t) f (x ) + t f (y ) . We call f strictly W -
convex if f ( W ( x, y ; t ) ) < (1 − t) f (x ) + t f (y ) for all distinct
points x , y ∈ X and every t ∈ I o = ]0 , 1[ . 

Example 1. Consider the Euclidean space R 

3 with the Eu-
clidean norm ‖ . ‖ . Let B be the subset of R 

3 that consists of
all closed balls B ( ξ , r ) with center ξ ∈ R 

3 and radius r > 0. For
any two balls B(ξ1 , r 1 ) , B(ξ2 , r 2 ) ∈ B, define the distance func-
tion d B (B(ξ1 , r 1 ) , B(ξ2 , r 2 )) = ‖ ξ1 − ξ2 ‖ + | r 1 − r 2 | . It is easy to
check that (B, d B ) is a metric space. Let W B : B × B × I → B 

be the continuous mapping given by 

 B ( B(ξ1 , r 1 ) , B(ξ2 , r 2 ) ; θ ) = B((1 − θ ) ξ1 + θξ2 , 

(1 − θ ) r 1 + θ r 2 ) , ξi ∈ R 

3 , r i > 0 , θ ∈ I . 

Since for all θ ∈ I and any three balls B(ξi , r i ) ∈ B, i = 1 , 2 , 3 , 

d B ( W B ( B(ξ1 , r 1 ) , B(ξ2 , r 2 ) ; θ ) , B(ξ3 , r 3 ) ) 

= d B ( B ( (1 − θ ) ξ1 + θ ξ2 , (1 − θ ) r 1 + θ r 2 ) , B(ξ3 , r 3 ) ) 

= ‖ (1 − θ ) ξ1 + θ ξ2 − ξ3 ‖ + | (1 − θ ) r 1 + θ r 2 − r 3 | 
≤ (1 − θ ) ( ‖ ξ1 − ξ3 ‖ + | r 1 − r 3 | ) + θ ( ‖ ξ2 − ξ3 ‖ + | r 2 − r 3 | )
= (1 − θ ) d B ( B(ξ1 , r 1 ) , B(ξ3 , r 3 ) ) + θ d B ( B( ξ2 , r 2 ) , B(ξ3 , r 3 ) ) . 
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hen ( B, W B , d B ) is a convex metric space. The function f : 
 → R defined by f ( B(ξ , r ) ) := ‖ ξ ‖ + | r | is W B -convex. 

xample 2. Let I be the family of closed intervals [ a , b ] such
hat 0 ≤ a ≤ b ≤ 1 and define the mapping W I : I × I ×
 by W I (I i , I j ; t) := 

[
( 1 − t ) a i + ta j , ( 1 − t ) b i + tb j 

]
for I i = 

 a i , b i ] , I j = [ a j , b j ] ∈ I, t ∈ I . If d I is the Hausdorff distance
hen ( I, W I , d I ) is a convex metric space. This example of a 
onvex metric space is given by Takahashi [4] . 

It is easy to verify that the Lebesgue measure defines a W I -
onvex function on ( I, W I , d I ) . 

roposition 2 ( Composition with increasing convex func- 
ions ) . Assume that f is a W X −convex function on the convex
etric space ( X , W X , d X ). Let g : f (X ) → R be increasing and

onvex in the usual sense. Then g ◦ f is W X −convex on X . The
omposition g ◦ f is strictly W X −convex if g is strictly convex or
f f is strictly W X -convex and g is strictly increasing. 

roof. Given x , y ∈ X and t ∈ I , in the light of Definition 2 , it
ollows from the monotonicity of g that 

 ( f ( W X ( x, y ; t ) ) ) ≤ g ( (1 − t) f (x ) + t f (y ) ) 

≤ (1 − t) g ( f (x ) ) + t g ( f (y ) ) . 

�

xample 3. Let ( X , W X , d X ) be a convex metric space and let
 : R → R be increasing and (strictly) convex. Then the function

f : X → R defined by f ( x ) := g ( d X ( x , x 0 )) for some fixed x 0 ∈
 is (strictly) W X -convex. Examples of the function g include 
(x ) = x,g(x ) = χ[0 , ∞ [ (x ) x 

2 ,g(x ) = χ[0 , ∞ [ (x ) | x | in the case of
onvexity and g(x ) = e x ,g(x ) = χ[0 , ∞ [ (x ) | x | α with α > 1 in the
ase of strict convexity. 

roposition 3. Let ( X , W , d ) be a convex metric space. Then 

1. The restriction g of a W-convex function f on X to a convex
subset C of X is also W-convex. 

2. If f is a W-convex function on X and α ≥ 0 then αf is also a
W-convex function on X . 

3. The finite sum of W-convex functions on X is W-convex. 
4. Conical combinations of W-convex functions is again W- 

convex. 
5. The maximum of a finite number of W-convex functions is W- 

convex. 
6. The pointwise limit of a sequence of W-convex functions is W- 

convex. 
7. Suppose that ( Y n ) is a sequence of convex subsets of X and

that f n is a W-convex function on Y n , n ≥ 1. Let S = ∩ n Y n and
M = { x ∈ X : sup n f n (x ) < ∞} . Then M ∩ S is convex and
the upper limit of the family ( f n ) n ≥ 1 , the function f = sup n f n ,
is W-convex on it. 

8. If f : X → R is a nontrivial strictly W-convex function then f
has at most one global minimizer on X. 

roof. 

1. By the convexity of C , the restriction of f to C makes sense
and the W -convexity of g on C follows from the W -convexity
of f on X . 

2. True since α f (W (x, y ; t)) ≤ α( (1 − t) f (x ) + t f (y ) ) = 

(1 − t) α f (x ) + tα f (y ) . 
3. Obvious from Definition 2 and the linearity of the summa- 

tion operator. 
4. Follows from 2 together with 3. 
5. It suffices to show that f = max { f 1 , f 2 } is W -convex on X
given the W -convexity of both f 1 and f 2 . For all x , y ∈ X and
t ∈ I we have 

f i ( W (x, y ; t)) ≤ (1 − t) f i (x ) + t f i (y ) 

≤ (1 − t) f (x ) + t f (y ) 

which yields f ( W (x, y ; t)) ≤ (1 − t) f (x ) + t f (y ) . 
6. A consequence of the monotonicity of the limit. 
7. Let x , y ∈ M ∩ S . Then x , y ∈ Y n for all n ≥ 1,

sup n f n (x ) < ∞ and sup n f n (y ) < ∞ . Fix t ∈ I and
n ≥ 1. By the convexity of Y n we know that it
contains W (x, y ; t) . Hence W (x, y ; t) ∈ S. To prove
the convexity of M ∩ S it remains to show that
W (x, y ; t) ∈ M. This follows from the W -convexity of f n 
as f n ( W (x, y ; t) ) ≤ (1 − t) sup n f n (x ) + t sup n f n (y ) < ∞ .

Finally, invoking the completeness axiom for the re- 
als, the latter inequality implies sup n f n ( W (x, y ; t) ) ≤
(1 − t) sup n f n (x ) + t sup n f n (y ) < ∞ , which shows that
sup n f n is W -convex on M ∩ S . 

8. Assume there are two distinct points x , y ∈ X such
that f (x ) = f (y ) = inf x ∈ X f (x ) . By convexity of X we
have W (x, y ; 1 

2 ) ∈ X . Since f is strictly W -convex then
f 
(
W (x, y ; 1 

2 ) 
)

< 

1 
2 f (x ) + 

1 
2 f (y ) = inf x ∈ X f (x ) which is a

contradiction. �

. W -convexity and continuity 

e begin with proving Lipschitz continuity of W -convex func- 
ions on generalized segments in convex metric spaces. 

roposition 4. Let ( X , W , d ) be a convex metric space. Let x
nd y be two distinct points in X. Then a W-convex function f
n the set L (x, y ) = { W (x, y ; λ) : 0 ≤ λ ≤ 1 } is Lipschitz con-
inuous on it with a Lipschitz constant that depends only on x and
. Moreover, if | f (x ) − f (y ) | ≤ α d (x, y ) for some α > 0 then
 f (z ) − f (w ) | ≤ α d (z, w ) for all z, w ∈ L (x, y ) . 

Before proceeding with the proof of Proposition 4 , we would
ike to make some remarks on the set L (x, y ) . 

emark 1. If X is a linear space and W is defined by (2) then
 ( x , y ; λ) is a unique vector in X for each λ ∈ I and the

et L (x, y ) is known ( [13] ) as the line segment joining the two
ectors x and y . Clearly, the Euclidean geometry justifies this
otion. In metric spaces the situation is different as, for λ ∈
 

o , W ( x , y ; λ) is not necessarily a unique point. In fact the
ontinuity of W in λ required by Definition 1 is to be under-
tood in the sense of continuity of multivalued functions. And if
∈ X , the distance d ( ξ , W ( x , y ; λ)) should be thought of as

 point-set distance, but this is just a technicality. Neverthe- 
ess Lemma 1 assures that every point in the set W ( x , y ; λ)
elongs to S ( x, (1 − λ) d (x, y ) ) ∩ S ( y, λ d (x, y ) ) where S ( x 0 , r )

s the usual sphere with center x 0 and radius r > 0. More-
ver, in the linear setting we have the symmetry W (x, y ; λ) =
 (y, x ; 1 − λ) which leads to the symmetry L (x, y ) = L (y, x ) .
hile, from Definition 1 and Lemma 1 deduced from it, 

e have 

 

(
W (x, y ; λ) , W (y, x ; 1 − λ) 

) ≤ (1 − λ) d 
(
x, W (y, x ; λ) 

)
+ λ d 

(
y, W (y, x ; λ) 

)
= 

(
(1 − λ) 2 + λ2 

)
d (x, y ) . 
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So, all that can be inferred in the convex metric space ( X , W ,
d ) is d 

(
W (x, y ; λ) , W (y, x ; 1 − λ) 

)
< 2 d (x, y ) , λ ∈ I o . Con-

sequently L (x, y ) is not to be assumed symmetric in gen-
eral. Finally, observe that L (x, y ) is closed. Indeed, it follows
from Lemma 1 that any u ∈ L (y, x ) can be written as u =

 (x, y, d (x, u ) / d (x, y ) ) . So if ( z n ) is a sequence of elements
of L (x, y ) then z n = W (x, y, d (x, z n ) / d (x, y ) ) , n ≥ 1. If in ad-
dition z n → z as n → ∞ then, by the continuity of d and
W , we formally get z = lim n →∞ 

W (x, y, d (x, z n ) / d (x, y ) ) =
 (x, y, d (x, z ) / d (x, y ) ) . Since d ( x , z n ) ≤ d ( x , y ) then, pass-

ing to the limit, we also have d ( x , z ) ≤ d ( x , y ). This shows that
z ∈ L (x, y ) . 

Now we prove Proposition 4 . 

Proof. Fix x , y ∈ X so that d ( x , y ) > 0. Let z, w ∈ L (y, x ) be
such that z 
 = w . Then, by W -convexity of f , we have 

f ( z ) = f 
(

W 

(
x, y, 

d (x, z ) 
d (x, y ) 

))

≤
(

1 − d (x, z ) 
d (x, y ) 

)
f (x ) + 

d (x, z ) 
d (x, y ) 

f (y ) . (3)

Similarly 

f ( w ) = f 
(

W 

(
x, y, 

d (x, w ) 

d (x, y ) 

))

≤
(

1 − d (x, w ) 

d (x, y ) 

)
f (x ) + 

d (x, w ) 

d (x, y ) 
f (y ) . (4)

Considering (3) and (4) , we have only two possibilities. Either 

f ( z ) − f ( w ) ≤ ( d (x, y ) ) −1 
( d (x, w ) − d (x, z ) ) ( f (x ) − f (y ) ) 

≤ ( d (x, y ) ) −1 | f (x ) − f (y ) | d (z, w ) . (5)

Or 

f ( z ) − f ( w ) ≤ ( d (x, y ) ) −1 
( d (x, z ) − d (x, w ) ) ( f (x ) − f (y ) ) 

≤ ( d (x, y ) ) −1 | f (x ) − f (y ) | d (z, w ) . (6)

Interchanging z and w in both sides of (5) or (6) we immediately
get 

| f ( z ) − f ( w ) | ≤ ( d (x, y ) ) −1 | f (x ) − f (y ) | d (z, w ) (7)
which proves that f is Lipschitz continuous on L (y, x ) with
the Lipschitz constant ( d (x, y ) ) −1 | f (x ) − f (y ) | . The inequal-
ity (7) demonstrates the second assertion of the proposition as
well. �

Corollary 5. Let ( X , W , d ) be a convex metric space. If a W-
convex function f on the set L (x, y ) = { W (x, y ; λ) : 0 ≤ λ ≤ 1 } 
is such that f (x ) = f (y ) then f is constant on L (x, y ) . 

Continuous functions on convex metric spaces are W -convex
provided that they are midpoint W -convex in a certain sense. We
prove this in the following proposition. 

Proposition 6. Let ( X , W , d ) be a convex metric space. Ev-
ery continuous function f : X → R such that f (W (x, y ; μ+ ν

2 )) ≤
1 
2 f (W (x, y ;μ)) + 

1 
2 f (W (x, y ; ν)) , x , y ∈ X , μ, ν ∈ I , is

W-convex. 
y

x
W (x, y;μ)

W (x, y; μ+ν
2

)
W (x, y; ν)

×
×

×

‖
‖

0 ≤ ν ≤ μ ≤ 1

Proof. Let n be a nonnegative integer and let 	n = 

{
m/ 2 n , m =

0 , 1 , . . . , 2 n 
}
. By induction on n , we show that 

f ( W (x, y ; λ) ) ≤ (1 − λ) f (x ) + λ f (y ) , 

for every x, y ∈ X , λ ∈ 	n . (8)

Since, by Lemma 1 , x = W ( x, y ; 0 ) and y = W ( x, y ; 1 ) then (8)
is valid when n = 0 as 	0 = { 0 , 1 } . Assume that (8) is satisfied
for any λ ∈ 	k for some natural number k . Now let x , y ∈ X and
suppose that λ ∈ 	k +1 . Obviously, there exist s , t ∈ 	k such that
λ = (s + t) / 2 . The induction hypothesis implies that 

f ( W (x, y ; u ) ) ≤ (1 − u ) f (x ) + u f (y ) , u ∈ { s, t} . (9)

By our assumption on f we have 

f ( W (x, y ; λ) ) ≤ 1 
2 

f ( W (x, y ; s ) ) + 

1 
2 

f ( W (x, y ; t) ) . (10)

Using (9) in (10) we obtain 

f ( W (x, y ; λ) ) ≤ 1 
2 

∑ 

u ∈{ s,t} 

(
(1 − u ) f (x ) + u f (y ) 

)

= 

(
1 − s + t 

2 

)
f (x ) + 

s + t 
2 

f (y ) 

= ( 1 − λ) f (x ) + λ f (y ) . 

This proves (8) . Let r ∈ I be arbitrary. Since the set 	 = ∪ n ≥0 	n

is dense in I then there exists a sequence ( r n ) ⊂ 	 that converges
to r . Thus 

f ( W (x, y ; r ) ) = f 
(
W (x, y ; lim 

n →∞ 

r n ) 
)

= lim 

n →∞ 

f ( W (x, y ; r n ) ) 

(11)

by the continuity of both the convex structure W and the func-
tion f . Since r n ∈ 	 then there exists an integer m ≥ 0 such that r n
∈ 	m 

. By (8) , f ( W (x, y ; r n ) ) ≤ (1 − r n ) f (x ) + r n f (y ) . From
the latter inequality, the monotonicity of the limit and (11) we
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f (W (x, y ; r )) ≤ (1 − lim 

n →∞ 

r n ) f (x ) + lim 

n →∞ 

r n f (y ) 

= (1 − r ) f (x ) + r f (y ) . 

�

The next lemma paves the way to Proposition 8 where we 
how that boundedness of W -convex functions on certain con- 
ex metric spaces is a necessary and sufficient condition for their 
ontinuity. In fact, our discussion in the rest of this section is
onfined to convex metric spaces ( X , W , d ) that enjoy the prop-
rty that for every two distinct points x , y ∈ X and every λ ∈ ]0,
[ there exists ξ ∈ X such that x = W (y, ξ ; λ) or there exists η
 X such that y = W (x, η; λ) . This property is naturally satis-
ed if X is a linear space with W defined as in (2) . In that case,
= λ−1 ( x − y ) + y and η = λ−1 ( y − x ) + x . 

emma 7. Let B ( x 0 , r ) be an open ball centered at x 0 with radius
 > 0 that is contained in X . If f : X → R is W -convex such that
 f ( x )| ≤ M on B ( x 0 , r ) then f is 2 M 

ρ
−Lipschitz on B(x 0 , r − ρ) ,

 < ρ < r . 

roof. Let x and y be two distinct points in B ( x 0 , r ). Then,
y our assumption on ( X , W , d ), there exists ξ ∈ X such
hat x = W (y, ξ ; d (x,y ) 

ρ+ d (x,y ) ) or there exists η ∈ X such that y =
 (x, η; ρ

ρ+ d (x,y ) ) . We shall deal with the first case and the sec-
nd one can be treated analogously. First, since f is W -convex 
hen 

f (x ) ≤ ρ

ρ + d (x, y ) 
f (y ) + 

d (x, y ) 
ρ + d (x, y ) 

f (ξ ) . 

his implies 

f (x ) − f (y ) ≤ f (ξ ) − f (x ) 

ρ
d ( x, y ) . (12) 

ssume for the moment that ξ ∈ B ( x 0 , r ). Using the bounded-
ess of f on B ( x 0 , r ) the inequality (12) takes the form 

f (x ) − f (y ) ≤ 2 M 

ρ
d (x, y ) . (13) 

nterchanging the roles of x and y then exploiting the symmetry 
f the metric, we deduce from (13) that 

 f (x ) − f (y ) | ≤ 2 M 

ρ
d (x, y ) . 

o complete the proof, it remains to show that ξ ∈ B ( x 0 , r ).
rom Lemma 1 , we have 

(ξ , x ) = d 
(

ξ, W 

(
y, ξ ; d (x, y ) 

ρ + d (x, y ) 

))

= 

ρd (ξ , y ) 
ρ + d (x, y ) 

≤ ρd (ξ , x ) 

ρ + d (x, y ) 
+ 

ρd (x, y ) 
ρ + d (x, y ) 

. 

olving this inequality for d ( ξ , x ) we find d ( ξ , x ) ≤ ρ. Finally 

(ξ , x 0 ) ≤ d (ξ , x ) + d (x, x 0 ) < ρ + r − ρ = r. �

roposition 8. A W-convex function f on X is locally bounded if
nd only if it is locally Lipschitz. 

roof. Of course a locally Lipschitz function is continuous and 

herefore locally bounded. Let f be locally bounded and let x 0 ∈
 . Then there exists r > 0 such that f is bounded on B ( x 0 , r ) and,
y Lemma 7 , f is Lipschitz on B ( x 0 , r /2). Since x 0 was arbitrary
hen f is locally Lipschitz. �

emark 2. The local boundedness assumption on the W - 
onvex function f in Lemma 7 , and consequently in 

roposition 8 , can be weakened to local boundedness from 

bove. To prove this, assume that there exists c > 0 such that
 ( ξ ) ≤ c for every ξ ∈ B ( x 0 , r ) and let x ∈ B ( x 0 , r ). Then there
xists y ∈ X such that x 0 = W (x, y, 1 

2 ) . Since, by Lemma 1 ,
(y, x 0 ) = d (x, x 0 ) < r then y ∈ B ( x 0 , r ). Furthermore, by W -
onvexity of f , 2 f (x 0 ) ≤ f (x ) + f (y ) . So 

 f (x 0 ) − c ≤ 2 f (x 0 ) − f (y ) 

≤ f (x ) ≤ c �⇒ | f (x ) | ≤ c + 2 | f (x 0 ) | . 
emark 3. Recall that a function f : X → R is lower semicon-

inuous at x 0 if for every t < f ( x 0 ) there is an open neighbor-
ood N x 0 of x 0 such that f ( x ) > t for every x ∈ N x 0 , and if
 t > f (x 0 ) ∃ N x 0 : f (x ) < t, ∀ x ∈ N x 0 then f is upper semi-
ontinuous at x 0 . It follows from Proposition 8 is that upper
emicontinuous W -convex functions on open sets are continu- 
us. The same applies to lower semicontinuous functions if and 

nly if X is complete. Furthermore, a family of continuous W -
onvex pointwise bounded functions on an open convex sub- 
et of a complete metric space is locally equi-bounded and lo-
ally equi-Lipschitz. The most important consequence of these 
acts is that pointwise convergence of sequences of continuous 
 -convex functions on open convex subsets of complete met- 

ic spaces is uniform on compact sets and preserves continuity. 
ince the proofs of these results (cf. [13–15] ) is indifferent to the
opology of the space and does not depend on linearity, we find
t redundant to give them here. 

. Epigraphs and sublevel sets of W -convex functions 

he epigraph of a realvalued function f on a set C is the
et Epi ( f ) = { (x, s ) ∈ C × R : f (x ) ≤ s } and the sublevel set
f f of height h is is the set S h ( f ) = { x ∈ C : f (x ) ≤ h } . In
roposition 11 below we show how W -convexity of functions 

s related to the convexity of their epigraphs and sublevel sets.
irst, let ( X , W X , d X ) and ( Y , W Y , d Y ) be two convex metric

paces. The mapping d p : ( X × Y ) 2 → [0, ∞ [, 

 p ( (x 1 , y 1 ) , (x 2 , y 2 ) ) 

= 

{ (
( d X (x 1 , x 2 ) ) 

p + ( d Y (y 1 , y 2 ) ) p 
) 1 

p , 1 ≤ p < ∞ ; 
max { d X (x 1 , x 2 ) , d Y (y 1 , y 2 ) } , p = ∞ , 

s a metric on the Cartesian product X × Y and ( X × Y , d p ) is
alled a product metric space. Now, let ( X , W X , d X ) and ( Y , W Y ,
 Y ) be two convex metric spaces. We note the following: 

emma 9. The mapping W X × Y : ( X × Y ) 2 × I → X × Y given
y W X ×Y ( ( x 1 , y 1 ) , ( x 2 , y 2 ) ; t ) = ( W X (x 1 , x 2 ; t) , W Y (y 1 , y 2 ; t) )
s continuous and defines a convex structure on the product metric
pace ( X × Y , d 1 ). 

roof. The continuity of W X × Y follows from the continuity of 
he convex structures W X and W Y . Let t ∈ I and ( x i , y i ) ∈ X ×
 , i = 1 , 2 , 3 . By the definition of W X × Y , it remains to prove

hat 

 1 ( ( x 3 , y 3 ) , ( W X ( x 1 , x 2 ; t ) , W Y ( y 1 , y 2 ; t ) ) ) 

≤ (1 − t) d 1 ( ( x 1 , y 1 ) , ( x 3 , y 3 ) ) + t d 1 ( ( x 2 , y 2 ) , ( x 3 , y 3 ) ) . (14) 
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However, we shall pretend that we need to prove the inequal-
ity (14) for the metric d p with 1 ≤ p < ∞ . This enables us to
demonstrate the difficulty in the proof for the case p > 1 and ex-
plain why the assertion of Lemma 9 is limited to the case p = 1 .
The metric d ∞ 

is excluded for the same reason. Of course we
could simply construct counterexamples for those cases but that
would take us outside the scope of this paper. Now, for 1 ≤ p <
∞ , we exploit the following facts: 

(i) W X and W Y are convex structures on X and Y respec-
tively. 

(ii) The map x �→ x 

p is monotonically increasing on [0, ∞ [. 
(iii) (μ + ν) p ≤ 2 p−1 

(
μp + ν p 

)
, for all μ, ν ≥ 0. 

We then see that 

d p p ( ( x 3 , y 3 ) , ( W X ( x 1 , x 2 ; t ) , W Y ( y 1 , y 2 ; t ) ) ) 

= 

(
d X ( x 3 , W X ( x 1 , x 2 ; t ) ) 

)p + 

(
d Y ( y 3 , W Y ( y 1 , y 2 ; t ) ) 

)p 

≤ (
(1 − t) d X (x 1 , x 3 ) + td X (x 2 , x 3 ) 

)p 

+ 

(
(1 − t) d Y (y 1 , y 3 ) + td Y (y 2 , y 3 ) 

)p 

≤ 2 p−1 (1 − t) p 
[(

d X (x 1 , x 3 ) 
)p + 

(
d Y (y 1 , y 3 ) 

)p ]
+ 2 p−1 t p 

[(
d X (x 2 , x 3 ) 

)p + 

(
d Y (y 2 , y 3 ) 

)p ]
= 2 p−1 

[
(1 − t) p d p p 

(
( x 1 , y 1 ) , ( x 3 , y 3 ) 

)
+ t p d p p 

(
( x 2 , y 2 ) , ( x 3 , y 3 ) 

)]
which gives the desired inequality (14) when p = 1 . �

Using Lemma 9 , we can describe convex subsets of convex
product metric spaces. 

Definition 3. A subset Z of the convex product metric space ( X
× Y , W X × Y , d 1 ) is convex if W X × Y (( x 1 , y 1 ), ( x 2 , y 2 ); t ) ∈ Z for
all points ( x 1 , y 1 ), ( x 2 , y 2 ) ∈ Z and all t ∈ I . 

In the light of Definition 3 one can easily verify Lemma 10
below. 

Lemma 10. The intersection of any collection of convex subsets
of the convex product metric space ( X × Y , W X × Y , d 1 ) is convex.

Proposition 11. Let f be a realvalued function on a convex metric
space ( X , W X , d X ). Then 

1. The function f is W X -convex if and only if Epi ( f ) is
a convex subset of the convex product metric space
( X × R, W X ×R , d X + d R ) , where W R and d R are the usual con-
vex structure and metric on R respectively. 

2. If f is W X −convex then the sublevel set S h ( f ) is a convex subset
of X for every h ∈ R . 

Proof. 

1. Suppose that f is W X −convex on X and let ( x , s ), ( y , t ) ∈
Epi ( f ). Then 

f (W X (x, y ; λ)) ≤ (1 − λ) f (x ) + λ f (y ) ≤ (1 − λ) s + λt 

for all λ ∈ I . Therefore ( W X (x, y ; λ) , (1 − λ) s + λt ) ∈
Epi ( f ) . That is 

W X ×R ( ( x, s ) , ( y, t ) ; λ) 

= ( W X (x, y ; λ) , W R (s, t; λ) ) ∈ Epi ( f ) , λ ∈ I . 

Hence Epi ( f ) is a convex subset of X × R . Conversely, sup-
pose Epi ( f ) is convex. Fix x , y ∈ X and t ∈ I . Since ( x , f ( x )),
( y , f ( y )) ∈ Epi ( f ), then 

( W X ( x, y ; t ) , W R ( f (x ) , f (y ) ; t ) ) 

= W X ×R ( ( x, f (x ) ) , ( y, f (y ) ) ; t ) ∈ Epi ( f ) . 

Thus f ( W X ( x, y ; t ) ) ≤ W R ( f (x ) , f (y ) ; t ) = (1 − t) f (x )

+ t f (y ) , which is to say that f is W X −convex. 
2. Let t ∈ I and let x , y ∈ S h ( f ) so that f ( x ) ≤ h and f ( y )

≤ h . Since f is W X −convex then f ( W X ( x, y ; t ) ) ≤ (1 −
t) f (x ) + t f (y ) ≤ h. Therefore W X ( x , y ; t ) ∈ S h ( f ) and S h ( f )
is convex. �

The following theorem is an application of Lemma 10 and
Proposition 11 . 

Theorem 12. The pointwise supremum of an arbitrary collection
of W-convex functions is W-convex. 

Proof. Let ( X , W , d ) be a convex metric space. Let J
be some index set and assume that { f i } i ∈ J is a collec-
tion of W -convex functions on X . Then, by Proposition 11 ,
Epi ( f i ) is a convex subset of the convex product metric
space ( X × R, W X ×R , d X + d R ) for every i ∈ J . If f : X →
R is such that f (x ) = sup i∈ J f i (x ) , x ∈ X , then Epi ( f ) =
∩ i∈ J Epi ( f i ) . By Lemma 10 , Epi ( f ) is a convex subset of
( X × R, W X ×R , d X + d R ) and, using Proposition 11 , it follows
that f is W -convex on X . �

5. Applications to the projection problem and fixed point theory 

Let Y be a nonempty subset of a convex metric space ( X , W , d ).
The distance map (cf. [16] ) d Y : X → [0, ∞ [ is defined by d Y (x ) =
inf y ∈ Y d (x, y ) . The distance map d Y is W -convex. Indeed, if x 1 ,
x 2 ∈ X , y ∈ Y and t ∈ I then, by the definition of d Y , we have 

d Y (W ( x 1 , x 2 ; t ) ) ≤ d ( W ( x 1 , x 2 ; t ) , y ) 

≤ (1 − t) d (x 1 , y ) + t d (x 2 , y ) 

for every y ∈ Y . Hence, by positive homogeneity and subaddi-
tivity of the infimum, 

d Y (W ( x 1 , x 2 ; t ) ) ≤ inf 
y ∈ Y 

(
(1 − t) d (x 1 , y ) + t d (x 2 , y ) 

)
≤ (1 − t) inf 

y ∈ Y 
d (x 1 , y ) + t inf 

y ∈ Y 
d (x 2 , y ) 

= (1 − t) d Y (x 1 ) + t d Y (x 2 ) . 

If Y is convex, then the metric projection operator (also called
the nearest point mapping) (cf. [17] ) P Y : X → 2 Y is given by
P Y (x ) := 

{
y ∈ Y : d (x, y ) = d Y (x ) 

}
. If P Y ( x ) 
 = ∅ for every x ∈

X then Y is called proximal. P Y ( x ) is convex ( [18] , Lemma 3.2)
and if Y is closed then it is proximal. The proof of the proxi-
mality of Y in this case is standard and given, in the setting of
normed spaces, in many books (cf. [13,16] ). We briefly sketch
it here. There exists a minimizing sequence ( y n ) ⊂ Y such that
d ( x , y n ) → d Y ( x ), x ∈ X , as n → ∞ . So the sequence ( y n ) is
bounded and, up to replacing it by a subsequence, it converges
to y , say. Consequently, d ( x , y n ) → d ( x , y ) as n → ∞ . Hence
d (x, y ) = d Y (x ) . Since Y is closed then y ∈ P Y ( x ). 

The set of metric projections P Y ( x ), if nonempty, is not nec-
essarily a singleton. If P Y ( x ) is a singleton for each x ∈ X then
the convex set Y is called a Chebyshev set. It is well-known (cf.
[15] ) that every closed convex subset of a strictly convex and re-
flexive Banach space is a Chebyshev set. 
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We would like to describe sufficient conditions for a point 
 ∈ X to have a unique projection in Y . We begin with in-
roducing a definition for strict convexity in convex metric 
paces. 

efinition 4. A convex metric space ( X , W , d ) is strictly convex
f for each x 0 ∈ X and any two distinct points x , y ∈ S ( x 0 , ρ)
ith ρ > 0, we have W ( x , y ; t ) ∈ B ( x 0 , ρ), ∀ t ∈ I o . 

emark 4. If X is a linear space endowed with a norm that in-
uces the metric d and W is given by (2) then Definition 4 , af-
er normalizing and translating to the origin, coincides with the 
nown definition of strictly convex normed spaces [15] . 

efinition 5 ((Strict) W -convexity w.r.t spheres) . Let ( X , W , d )
e a convex metric space. Fix x 0 ∈ X , ρ > 0 and σ ∈ ]0, ρ[.
e call a realvalued function f on B ( x 0 , ρ) W -convex w.r.t the 

phere S ( x 0 , σ ) if 

f ( W (x, y ; t) ) ≤ (1 − t) f (x ) + t f (y ) , 

 x, y ∈ S ( x 0 , σ ) , t ∈ I, 

nd we call it strictly W -convex w.r.t the sphere S ( x 0 , σ ) if 

f ( W (x, y ; t) ) < (1 − t) f (x ) + t f (y ) , 

 x, y ∈ S ( x 0 , σ ) with x 
 = y, ∀ t ∈ I o . 

The following proposition is a direct consequence of 
efinitions 4 and 5 . 

roposition 13. Let ( X , W , d ) be a convex metric space. If for
ach x 0 ∈ X and ρ > 0, the function f : X → [0, ∞ [ defined by
 ( x ) := d ( x , x 0 ) is strictly W-convex w.r.t the sphere S ( x 0 , ρ) then
he space X is strictly convex. 

The following theorem asserts that closed convex subsets of 
trictly convex metric spaces are Chebyshev sets. 

heorem 14. Assume that Y is a closed convex subset of a strictly
onvex metric space ( X , W , d ) . Then every x ∈ X has a unique
rojection on Y. 

roof. Since Y is closed then P Y ( x ) 
 = ∅ , ∀ x ∈ X by the discus-
ion above. If x ∈ Y then P Y = { x } . Let x ∈ X − Y have two dis-
inct projections y 1 , y 2 ∈ Y . Then d (x, y 1 ) = d (x, y 2 ) = d Y (x ) .
et t ∈ I 0 . Since Y is convex then W ( y 1 , y 2 ; t ) ∈ Y , and since X

s strictly convex then 

 ( W (y 1 , y 2 ; t) , x ) < (1 − t) d (y 1 , x ) + t d (y 2 , x ) = d Y (x ) , 

hich is a contradiction. �

heorem 15. Let Y be a compact convex subset of a strictly con-
ex complete metric space. If f : Y → Y is continuous then it has
 fixed point in Y. 

roof. Since Y is compact then it is closed and, by Theorem 14
bove a Chebyshev set. The rest of the proof follows from The-
rem 3.4 and Corollary 3.5 in [18] . �

heorem 16. Let ( X , W , d ) be a convex metric space and let T :
 → X is a nonexpansive mapping. Assume that the function f :
 → [0, ∞ [ defined by f ( x ) := d ( x , Tx ) is strictly W-convex with
 local minimum at ξ ∈ X. Then ξ is a fixed point of T. 

roof. By Proposition 3 , the point ξ is the unique global min-
mizer of f . Suppose that T ξ 
 = ξ . Since X is convex then W ( ξ ,
 ξ ; t ) ∈ X ∀ t ∈ I , and since f is strictly W -convex on X then, for
ll t ∈ I o , we have 

f ( W ( ξ, T ξ ; t ) ) < (1 − t) f (ξ ) + t f (T ξ ) 

= (1 − t) d (ξ , T ξ ) + t d (T ξ, T 

2 ξ ) 

≤ (1 − t) d (ξ , T ξ ) + t d (ξ , T ξ ) 

= d (ξ , T ξ ) = f (ξ ) , (15) 

here we used nonexpansiveness of f in estimating d ( T ξ ,
 

2 ξ ) ≤ d ( ξ , T ξ ). The strict inequality (15) contradicts
he fact that f (ξ ) = min x ∈ X f (x ) . Therefore we must have
 ξ = ξ . �

emark 5. The function f is continuous by the continuity of T .
ence, if X is compact then there does exist a point ξ ∈ X such

hat f (ξ ) = min x ∈ X f (x ) , and we do not need to make such an
ssumption on f . 
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