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Abstract

We preent a method for the construction of solutionfscertain systems ofaptial differential
equations with polynomial and power series coefficients. For this purpose we introduce the concept of
perfect differential operators. Within this framework we formulate division theorems for polynomials
and power series. They in turn yield existence theorems for solutions of systems of linear partial
differertial equations and algorithms to explicitly construct solutions.
© 2005 Elsevier Ltd. All rights reserved.
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We investigate the construction of solutions of differential equations with polynomial
and power series coefficients based on the concepedéctdifferential operators. This
concept is similar to the notion of Grobner or standard bases for polynomial and power
series ideals or left ideals of differential operators. Our definition refers tadian of the
operators on polynomials and power series — instead of the left module generated by the
operators irthe Weyl algebra.

If D =3",4 Cypx*d” is such an operator, its initial form with respect to a weight vector
% € RY is defined as the operator(iD) =}, 5_, CapX®d? with 7 the maximum (in the
polynomial case) or the minimum (in the power series case) of the prokifects ) over
all o, B with c,g # 0. Several operator®, ..., D, are calledperfectwith respect to.
if the evaluations itD;)x" of their initial forms on monomialg” span the ector space
of all initial monomials of the evaluations ; Dia of the D; on polynomials, or power
seriesay, ..., ap.
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The definition thus differs from the notion off&ner and standard bases for differential
operators considered by Castro, Granger, Saito, Sturmfels, Takayama and other authors.
Though we know of no algorithm for checking whether given differential operators
are perfect, this property is very useful for constructing the associated solutions of
the homogeneous or inhomogeneous differential equations. In the case of convergent
power series, we indicate additional assumptions which are sufficient to ensure also the
convergence of the solutions.

Our first result, the Division Theorem, establishes the division of a polynomial or
power serie® by differential operator®s, ..., Dp, saye = »_ Dja + b with quotients
a and remaindeb. If the D; are perfect, the remaindé; which is subject to certain
support conditions, is unique. This allows us to check, at least theoretically, whether
an inhomogeneous differential equation has a polynomial or power series solution: the
remainder of the division of the inhomogeneous term byDRhenust be zero.

The second result, the Monomialization Theorem, shows that perfect differential
operators behave in specific situations simyldo their initial form, i.e., as a monomial
operator. In particular, we show how thelgtion spaces of the associated homogeneous
differential equation can be computed from the solution space of the initial form (which is
particularly simple since it is spanned by monomials).

It seems that both results have been known and used in some form — at least implicitly
or in special cases — by people working in the algebraic theory of differential equations;
see for instance the work danet(1920, Abramov (1995 andPetkov3ek1992, or the
book ofSaito et al(2000. In a certain sense our approach conceptualizes the construction
of solutions through an ansatz with unknown coefficients.

Definitions

We aonsider linear diffeential operator® = Zaﬂ CopX*d# with polynomial, or formal
or convergent power series coefficientgx) = ), CupX* in n variablesx, ..., x, over
a fieldK (assumed complete valued in the convergent setting). Hatenotes the vector
of partial derivativesd; = dy,. We derote by Py the ringsK[x], K{x} and K[[x]] of
polynomials, convergent and formal power series, respectivefyyariablesoverK, with
associated algebf@,[d] of linear differerial operators.

The supportsupp(D) of a differertial operatorD is the st of exponentsa, 8) € N2
with cug # 0. We set

supp, (D) = {8 € N", thereis anx € N" with («, ) € supp(D)}.

The differences = a—8 € Z" are called thehiftsof D, forming the se6p = shift(D) C
Z". There ejsts ad € Z" such that shift D) c § + N". The fitration of P,[9] via shifts is
known as the--filtration.

A monomial differential operatois of the formD =, 5_, CapX*d? for some shift
T € Z". EachD decomposes into a (possibly infinite) sim= > reso Z(ngr caﬁxo‘af’
of monomial operators. A differential operatBr is a pure monomialf it has just one
sunmandD = coqu"‘al3 for some pair(e, ) € N2" and a coefficienty,s € K. A
subwector spacé of P, is amonomial subspaciit contains with each polynomial/series
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>, Cux* all its summands, x®, or, equivalently, if thee exigs a sibsetX < N" such
that M consists of all polynomials/series with supportih We shall smmetimes write
M = PnE. The canonical monomial direct complemeoit a monomial subspack! of
Pn is the subvector spadé of P, of polynomials/series with support in the complement
Y =N"\ ¥ of ¥, nanely N = P>

Differential operatord € Pn[d] will be identified with the induced linear operator
D : Pn — Pn given bya — Da. For conenience, we shall mostly refer to the convergent
or formal power series case. The polynomial case may require small modifications of the
definitions and reasoning which will be omitted if obvious.

Fork, m € N we denote byk® the falling factoriak® = k!/(k—m)! = k(k—1) ... (k—
m+1), and sinilarly y£ = l‘liyiéi for n-tuplesp, y € N". By defnition, k% = 1 fork > 1,
0™ = 0 form > 1 and @ = 1. Observe thatx*3#)x” = yﬁx”?’ with z = o — 8. We
associate witm-tuplest € Z" and polynomial functions; : Z" — K with «;(y) = 0 if
y +t ¢ N" alinear operatok &7 : Pn — Pn, by

(krET)XY = ker (Y )XV HT.

Wecall«;£7 themonomial operatoon P, with coefficient functior, and shiftr. Clearly,
monomial differential operators are monoiigerators. As the falling factorials form a
basis of the polynomial ring, the converse is also true, so the two notions coincide. Kernels
and images of monomial operators are monomial subspad@s of

LetnowDsy, ..., Dy € Pn[0] be differential operators with induced map

D:PY— Pn,a=(a,...,ap) — Y ; Dia.

Our main interest Wl be the olutionsa € PP of the dfferential equatior)_; Dia = e

for some polynomial or series € Py. As a prdéiminary stage of their construction, we
shall “divide” e by the D; — saye = ) ; Dia + b with a well defined remainddy € P,

and quotients; € Pp. In thecase where the remainder of the division can be made unique,
> i Diaj = ewill have a solution irP? if and only if the remaindeb of e is zero. In this
way, dvision is a more general procedure than the actual construction of a solution.

In our context, the uniqueness of the remainder will not always be ensured — but it does
hold if the D; are perfect.

We fix throughout a weight vectat € R" with positive andQ-linearly independent
componentsiy, ..., An. It induces a total ordek; on Z" viaa <, B if xa < AB.
Consequently, each differential operaiddecomposes into a sum of monomial operators
according to decreasing or increasing shiftsLet t € Z" be the naximal (in the
case of polynomials) or minimal (in case of power series) shifbofvith respect tox,

T = max/minfa — B, («, B) € supp(D)}. We write

D=D°-D
whereD® = iny (D) =}, 4_, CapX*d? denotes thenitial form of D with respect to
A andD = =), 4 . Cupx*d” (for polynomials) orD = — 3", . Cupx®d” (for
power seris) is thequeueof D (cf. e.g.Assi et al.(1996, Saito et al(2000, Oaku et al.
(2001, and the relation of the initial formot the indicial polynomial). Notice the
difference between the initial for° and the symbob (D) = Zlm:maxca,gx“aﬂ of D.
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By definition, D° is a monomial operator with shift, D° = «,; &7 and coefficient function
Kk (y) = Za_ﬂzr caﬂyﬁ. Setting A = {y € N", k. (y) # 0}, the image ofD° in P,
consists of polynomials or series with supportdnt- 7.

In the case where no derivatives occDr= h € P, apolynomial or power series, the
initial form is a monomial inx, theinitial monomialof h with respect to<; .

We call differential operatordDy, ..., Dp perfectwith respect tor e Ri if the
initial monomials of the images ob : PP > Pha — > i Dia; are images of
D°: PP - Pna— > i Drai = Y ;in(Dj)ai. More eplicitly, if for each a € PP
there existar e N"andaj € {1, ..., p} such thatin(}_ Dia) = D]?x?’ =in(Dj)x”.

In a simlar but slightly different veinpne could also consider the action: P[0]P —
Pnld]l, E — > Di - Ej of Dy,..., Dp on Py[d8]P and require that the right ideal of
Pnld] generated byDs, ..., Dp is generated by the initial formBy, ..., Dy. We shall
not pursue this variation of the concept of perfect operators in the present paper.

Our notion of perfect operators is diffettefrom the definition of Grobner and standard
bases ged inCastreJiménez(1984 1987 and Saito et al.(200Q. However, in the case
where no derivatives occuD; = h; € P,, we recover the classical notions of Grébner
bases for polynomials and standard bases for power series. For vectors of differential
operatord; € Py[3]Y, the definition extends in a natural way by ordering the components
of vectors inPy so as to dipose of the notion of theinitial monomial vectomas a vector
with one monomial entry, the other entries being zero.

Even in the case wherp = 1, a single operatoD need not be perfect; just take
D = ydx — dy with D° = ydx. Here we havd® = ImD° = P, - y and inlm D) = P».

This occurrence was to be expected since @ylinear maph : P — P, a —

> i hiai can be interpreted as a differential operay : Pnip — Pnip identifying

a= (a,...,ap) € PP with > iaiti and settingDn = ) hidy, for new variables
t1,...,tp. If hy, ..., hp do not form a standard basis in the usual sense of polynomials
or power seriesDy, will not be perfect.

In contrast to the polynomial or power series cBse= h; € Py, it may be veryntricate
to check whether given differential operatdds € P,[0] are perfect. In a first step, one
will restrict the operator to the kernel of its initial form and check whether the images
thereof produce new initial monomials; cf. theaenples below. But this is not sufficient
— there are other ways in which initial mondats can occur. No general method like the
Buchberger criterion for polynomials and power series seems to be known for checking
whether differential operators are perfect.

The subtlety of the concept is revealed already in simple examples: the operator
D = x232 — xdx — x3 is perfect, wherea® = x232 — xdx — x? andD = x232 — xdx — X
are not (both for slightly different reasons); cf. the examples later on.

In the case of convergent power series, we say that the initial férm =
Za_ﬂ:T ca,gx"‘aﬂ dominates Df there is a constar@ > 0 such hat for allg’ € supp, (D)
and ally with «;(y) # 0, we have

vl <CoIX, e syt

The inequality implies that for each = 1,...,n and eachs’ € supp,(D) there is
at least one8 € supp,(D°) whose j-th component is larger than or equal to th¢h
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component off’, sayﬁj < Bj. This is not sufficient for dominance, as shown by the
example in twovariablesD = xdx — ydy + X293y with D® = Xxdy — Yoy, k< (¥) = y1— y2,
supp, (D) = {(1, 0)} and unbounded quotiepi/(y1 — y2) on theline y; = y» + 1 in N2,

Dominance is a condition which ensures that the initial form of an operator controls
sufficiently the division propert&of theoperator, i.e., that the queu® is a negligible
perturbation ofD°. This holds trividly if no derivatives appear at all. In the one-variable
casen = 1, the choice of the weight vector is redundant and the initial fBxhis unique.

It dominatesD if there appears iD° a deriative 3# of highest order, i.e., if the order

of the operator equals the order of its initial form. This implies that in the one-variable
case dominance is equivalent to 0 being a regular singular poirKpofatsu(1971) and
Malgrange(1974. For several variablethe situation is much merinvolved. A sufficient
though not necessary condition for dominance is thatis a pure monomiabq,gx"‘a/3

with a 3-exponenis which is cmomponentwise the maximum of d@llexponentss’ of D,
sayﬂj/- < pjforall g’ e suppy(D) and allj =1,...,n.

In the polynomial case, we equiB, = K[x] with the topology of coefficientwise
convergence. In the case of formal power serfgs,= K[[X]] comes with them-adic
topology given by the basis of zero-neighborho@gs ..., x,)¥. Note tere that also
the idealsPx generated by the monomiak®’ with Ay > k form such a basis. In the
convergent caseP, = K{x} has the inductive limit topology given by the filtration
Pn = Us=0Pn(S), whereP,(s) denotes the Banach space of sedes Zy a, x¥ with
normjals = 3, |a,|s" < oo,

A K-linear mapw : P, — Py is contractivewith respect tar € Ri if there exists
ane > 0 such hat for ally € N" and all monomialx® of the expansion ofv(x?) one
hasid < Ay — ¢ in the polynomial case and§ > Ay + ¢ in the power series case. If
w is contractive and € P,, thegeometric seried " , wX(a) is finite in the polynomial
case and converges in the formal power series case with respectrnealie topology
on K[[x]]. For convergent power series, one requires in addition that there are constants
s > 0 and O< C < 1 such thathe restictionsws : Pn(S) — Pn(s) are well defined for
0 < s < 59 and have operator norfws| < C. In all cases the geometric series gives rise
to a well defined linear maﬁjﬁio wK : Py — P

Division of polynomialsand series by differential operators

Let nowDy, ..., Dp € Pn[d]. We describe in this section how polynomials or power
seriese of Py will be divided byDs, ..., Dp, saye = ) Dja; +b with a; andb in P, spec-
ified by support conditions. This division can be extended to ve@grs. . , Dp in Pp[9]19.

ExpandD; = Zaﬂ ca,gixo‘aﬂ and set agaij = D — D; with initial form Dy =
Z(Hg:ﬂ Ca/gixaf)ﬁ = k&7 with respect to. as before. We denote By = V (k) the
zero-set ofc; in N and setd; = N"\ V;. ThenK? = KerD;? and1l® = ImD? are
monomial subspaces @, with supportV; and4; + 7; respectively. Lets = U; 4 + 7
and choose partition & = U T} + 7 with I C Aj. LetL° C PP be the monomial
sub\ector space of vectoes = (ay, . .., ap) with & having support in/j — 7. It is then
clear thatlL° is a direct complement df ° = Ker D° in P}, sayK° @& L° = P, where

D°:PF — Pn, a=(a,....a) > Y Dai.
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Similarly, 1° = Im D° consists of series with support i and has direct monomial
complement]® consisting of series with support in the compleméht= N" \ =. Of
course, all these objects depend on the choice of

Division Theorem. Let Dy, ..., Dp be differential operators irP,[3] and leti Ri be
a weight vector withQ-linearly independent components. Lgt Bethe initial form of D
with respect tox and let D and D be the induced mapBY — P,. Set P = Im D°,
K° = Ker D° and choose the direct monomial complemerft®t.K° in P¥ and J of I1°
in Py asbefore. In the convergent case, assume in addition that egcis Bominated by
its initial form D} with respect ta.. Then he map

u:L°xJ°— Pn:(@b)y— > Dia+b

is a topological isomorphism. In particulatm D + J° = P, andKerD n L° = 0. If the
Dy, ..., Dy are perfect, one even has the direct sum decomposilionis ¢ J° = Py,
andKerD @ L° = PP.

Remarks. (a) Stated differently, for each € P, there @ae unique series; andb with
supportinli — r; and=”’ suchthate = Y Dja; + b. This implies that KeD N L° = 0 and
Im D + J° = Pn. Moreover, the proobf the theorem provides an algorithm for computing
a; andb. The agorithm follows from the construction of the inverse of the operator
It is given by the geometric serieiﬁio(wv‘l)k)v wherev(a, b) = >; D’a + b and
w = v — u. Thepartial sums(}_}_o(wv~1)*)v of the expansion oti~* allow one to
compute the quotientg and the remainddy up to arbitrarily high degree. We emphasize
that without support conditions on the quotieatthe remaindeb is no longer unique.
(b) In the convergent case, and u~! respect the firations of P¥ and P, given by
Pn = US>0 Pn(s).
(c) 1t would be interesting (and probably not too hard) to extend the Division Theorem
to the case wher®y, ..., Dp act onPy[3]P from the left viaE = (Ey,..., Ep) —
> i Di - Ei with D - E the multiplication inPx[d]. The image ofD is then a right ideal
of Pn[d]. More generally, theD; could be vectors ifP,[9]9 generating a right submodule
of Pn[d]9. Conpare this type of division with the Division Theorem 6fstreJiménez
(1984 1987 for left ideals inP,[3] or left submodules oP,[9]9.
(d) As a variation, one may take in the theorem difference operators instead of differential
operators, \ith a similar proof.
(e) In the case where thB; are just polynomials or power seribs € Py, i.e, if no
derivatives appear, dominance is a void condition. We recover the classical Buchberger
and Grauert—Hironaka—Galligo division theorems for ideal®in Our mehod of proof
works for all hree cases simultaneously.

Note here that then the imagelof underu is a subvector space &%, which, ingeneral,
will be strictly contained in the idedhy, . . ., hp) generated by thig . In thecase where the
h; are perfect with respect fq thetwo spaces coincide (because they have the same initial
monomials) and the theorem yieldsy, ..., hp) & J° = Py, whereJ® is the canonical
direct monomial complement of = (in(hy), ..., in(h;)).

Similarly, if the differential operator®y, ..., D, are perfect with respect towe have
thatImD® J° = P, and KerD@L® = PP.In paticular, the remainders of the division by
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D; are unique without imposing any support cdiwhs on the quotients. This leads to the
following criterion for the existence of particular solutions of inhomogeneous differential
equations.

Existence Theorem for inhomogeneous differential equations. Let Dy, ..., Dp be
differential operatas in Py[9] and let2 € R7 be a weight vector wittQ-linearly
independent components. Assume that.D, Dy are perfect with respect ta. In the
convergent case, assume in addition that eaglslominated by its initial form Pwith
respect tor. Then, for any ec Py, thedifferentid equation); Dia; = e has a solution
a=(ay,...,ap) € PP if and only if the division of e by D). . ., Dp has remainder equal
to zero.

Despite the fact that there seems to lekmown algorithm for checking whether
differential operators are perfect and that power series the actual division requires
infinitely many substitution steps, the algorithm can be useful, e.g., for proving that a
differentid equation hasio polynomial or formal power series solution: if after some steps
of the algorithm there appears a remaindersolotion will exist. Conversely, if after many
steps noemainder has shown up, it may become probable that a solution exists, or that such
a soltion can be guessed from the expansion of the approximated solution computed so
far. Of course, the method is very close to a power series ansatz with unknown coefficients.

Variants ofthe Existence Theorem and diffeteadgorithms for computing solutions
of differential equations in various circumstances abound. To mention just a few, we
recommend Janet's work from 1920afiet 1920, Abramov’'s @bramoy 1995 and
Petkovsek’s PetkovSek 1992 algorithms for difference and differential equations in
one variable, the book dbaito et al.(2000 on Grébner deformations, and algorithms
developed byDaku et al(2001), or by Della Dora et al(1982).

Proof of the Division Theorem. We follow the tednique of the proof of Theorem 5.1 in
Hauser and Miille¢19949), interpretingu as a perturbation of an operator which is trivially

an isomorphism. This method is frequent when using arguments from functional analysis
for the study of differential equations; dflalgrange(1974 p. 148), orCastreJiménez
(1984 1987 andHauser and Narvaez-Macarf200]). The dominance condition is used

to bound the size of the coefficients of the series when applying the inverses of monomial
differential operators. In contsato the division theorems iGastreJiménez1984 1987

and Hauser and Narvaez-Macar(@001J), the fitration of P,[d] is given in he present
theorem by the shifts of the operators.

Decompose : L°x J° — Ppintou = v—w withv(a, b) = ) D& +baccording to
Di = Dy — D;j. By definition of L> and J°, v is a topological isomorphism. It is therefore
sufficient to show thativ™! = Id — wv™! : P, — P, is also a topological isomorphism.

Its inverse is formally givenythe infinte sum of operatoriﬁio(wv‘l)k. Onehas to
prove that this sum does indeed define a continuous linear operatoPfyeoP,.

In the polynomial and formal power series cases it suffices to showuthat is
contractive with respect to, i.e., that there is aa > 0 such thafor all y € N" the series
wv~1(x?) involves only monomialg® with 18 < Ay — e andAs > Ay + ¢, resgectively.

In the convergent power series case we have to show in addition that there exist constants
s > 0and 0< C < 1 such thathe restictions (wv1)s : Pn(s) — Pn(s) are well
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defined and of nornx C for all 0 < s < g as linear operators between Banach spaces.
This signifies that fos sufficiently small and ale € P, (s) one has

lwv~lels < C - |els.

We shall cogentrate on the case of convergent power series, which is the hardest
one Moreover it involves the required inequality from the dominance assumption. The
polynomial and formal power series cases are easier and can be obtained from the proof
below by the obvious modifications.

Writee = ) ; & +baccording to the direct sum decompositiorRafinduced by and
given by the supports; + 7 and=”’. Then theg andb have pairwise disjoint support, so

lels=Y; lals+ [bls.
Expandg asg = Zyeﬂ e,ix”T1. Then

v le= ((Zqﬁzri Capi X‘)‘8‘9)_1 ei) . b)

- ((Zyeﬂ &i( Xy p=r C"‘ﬁiyé)ilxy% ’b)‘

Therefore, settingi (y) = Y Capi v, we have

o—pB=Tj

wrle=w ((Zyeﬂ €yiKi (y)’lx”) , b)

i
= Zi Za’—ﬂ’>fi Co'pi Xa/aﬂ/ (Zyeﬂ Eyiki ()/)_1XV>

= ZI Zd’*ﬁ’>1’i Z)/EFi Ca/ﬁ/i e}/lKl (y)*lyé XV+O! *ﬁ .

Here,o’ — B’ > 1; stands fori(a’ — B') > Ati. As there ae only finitely many g/,
there exists am > 0 such hati(a’ — B') > Ati +sforalli = 1,..., p and all
(o, B') € suppD;j. This shows in the polynomial and formal power series casesithat
is contractive. In the convergent case, vead norm estimates for the series involved.

By dominance we know that there is a const@nt 0 such hatyé/ < C -«j(y) forall
i=1,...,pandallg’ € supp,(Di), y € I. This implies the inequalities
|wv_1e|5 <C Zi Za’—ﬂ’>ri Zyeﬂ |Ca//3/i| ’ |e}’|| .S)»(y+ot’—/3’)
lels  — Y2 en 18l - ST 4 bls
—c. Zi Za’—ﬂ’>ri ICopi | - G Zyeﬂ leyil - sry+1)
- b Zyeﬂ leyil . ghy+m)
. Sk(a’,ﬁ/,n) Zyeﬂ |ey| | - gh(y+1i)

ICarpi
<C-. :
Z Z Zyeﬂ &yl . Ay +1)

o' — B >1

<C- > > fewpil ST,
i

o' — B >1

The convergence of the coefficients,, c,six* of 8# in D; implies that his last sum
converges foss sufficiently small, say O< s < 5. We have akady seen that there is
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ane > O such that(e’ — B’ — 1) > e foralli and alle’ andB’. Therefore, choosing,
sufficiently small, we get

C. Z Z Crpri| - S SMe'=p'+7) 1

o' —pB'>1;

forall 0 < s < sp. Herce|wvtels < C’ - |e|s for someC’ < 1 and all 0< s < . This
proves also in the convergent case thé a topological isomorphism.

It remains to show that I® N J° = 0 and KeD + L° = PPif Dy, ..., Dp are perfect.
For the first, an kement of the intersection I N J° has, by the very definition of perfect
operators, its initial monomial ih® and J°, whence ImD N J° = 0. For the second, notice
that ImD @ J° = P, andD(L°) & J° = P, implies that ImD = D(L°®). This in turn
implies that KeD + L° = PY. Theproof of the Division Theorem is completed.

Application to inhomogeneous differ ential equations

Weillustrate the division algorithm in simple examples by computing particular power
saies solutions of inhomogeneous differential equations. Let us take one differential
operatorD = >\, Z‘j’ozocjkaak in one variablex of order m. Denote by ok the

order of the coefficient seriex(x) = Zj’o_o c,kxj at 0. The choice of a weight vector

A is superfluous. Letr be the ninimal shift of D, r = min{ox — k, k < mj}, let
D° = Zj ke chxJak be the initial form of D and setD = D° — D. ThenDY is
dominant if and only ifo;m — m = 7, i.e., if and only if O is a regular singular point of the
equationD(a) =

The kernel ° of D° is spanned by monomials' with >, ,_ cjkl¥ = 0 and ishence
finite dimensional. The description of its direct monomial complentenand the image
I ° of D° with direct monomial complemerd° is then immediate.

Example 1. Let us take for instance the operar= x292—xd —x3 with D° = x282—xd
andD = x3. Here, 0 is a regular singular point, i.®? is dominant, so we may neglect
convergence questions and work with formal power series. The ke€rhel D° is spaaned
by the monomials<' with 12 — 11 = I(l —2) = 0, sayK°® = K & Kx2. We get
L° = 1° = Kx @ K[[x]]x3 and J° = K @ Kx2. As D sendsK[[x]] to K[[x]]x® and
thus produces no new initial monomials it follows ttiais a perfect operator.

Let us divide a monomia = x' by D. Fore = 1 ore = x2 in J°, no real division
occurs,e = DO + e, ande equals the remainder. Fer= x' with | # 0, 2 the firststep of
the algorithm produces

o 1 143
=D X

a1l
(=) 2) = DX + 1=

Forl = 1 orl > 3 the aforithm repeats infinitely often and yields

1 14-3i
=D (Zizo T3~ FN =2 0FD 153 =2 X ')-

We can conclude that the differential equaticfa’ — xa’' — x3 = e(x) has (convergent or
formal) power series solutiorsx) atx = 0 if andonly if e(x) has no constant term and
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no monomialk?. This, of course, could have also been deduced — due to the simplicity of
the example — by direct inspection of the equation or a power series ansatx for

Example 17'S. The operatoD = x232 — x9 — x2 with D° = x232 — xd andD = x2is

not perfect, becausB sends the kerneK° = K + Kx? to Kx2 + Kx* with new initial
monomialx? ¢ 1° = Kx + K[[x]]x3. Thedivision of x? by D with initial form D° and
quotient inL°® = Kx + K[[x]]x2 is trivial with remaindex?, sayx? = DO + x2, though

x? lies in the image oD via x> = D1. We see that the remainder of the division is not
unigue without imposing supporbnoditions on the quotient.

Example 1'. The operatoD = x23°% — xd — x with D° = x23%2 — xd andD = x is
not perfect either, but the argument is a little trickier. We have as befdre= K @ Kx?,
L° = 1° = Kx @ K[[x]]x% andJ° = K @ Kx2. Fore = 1 ande = x° we get he trivial
divisionse = DO+, thoughx? = D(1—x)-+0lies in the image oD. So the remimder of
the division ofx? by D is not unique and is not a perfect operator. And indeed, ¢ 1°

is a new initial monomial of the image &. If we dividee = x by D we get after the first
substitution step = D(—x) — x? and have to redivid&? by D as before, producing the
same ambiguity of the remainder. When dividing a monoreiat x' with | > 3 by D the
remainder is unique, with

X' =D (1 = D0 = 3! Tivo mrmian¥ ™).

Example 2. Let us now consider in the case of formal power series the opekater
—ydx + dy with shifts (-1, 1) and (0, —1). Here thechoice of the weight vectax =
(A1, A2) becomes relevant. K11 + A> > —Xp, thenD° = 3y and D is perfect. As
D° has imageK[[x, y]] and hencel® = 0, the Diision Theorem implies that for any
e € KJ[[x, Y]], the differentid equation Da = e has a formal power series solution
a € K[[x, y]]. Fore = xKy! we get the polynomial solution

_ «k ki k—i l+2i+1
a—Zi=0 TFD0+3)..0T2+D X Yy

Observe here thdd® is not dominant, though all formal solutions are already convergent.

Example 29, Take agin D = —yd -+ dy, but with weightvectora satisfying—i1+iz <

—X2. Theinitial form of D equalsD°® = —ydx with kernelK° = K[[y]] and image
I° = K[[x, ylly. We havelL® = K[[X, y]]x and J° = K[[x]]. In this case,D is not
perfect, because, for instand®y = 1 is amonomial in the image oD which does not
lie in 1°. Dividing xXy' by D we g for | = 0 the trivial division x = DO + x* with

remaindexX, and fa odd| > 1 thequotient

_ (1=1)/2 (=D (A=3)--(1=2I+1) , kti+1 ) —2i —1
a=-2io  (FhEF2 D < y :

with remainder 0, i.e.a is a solution ofDa = xXy'. For evenl > 1 thedivision has
guotient

A — SN/271 1=DA-3)(-2i+D) ktit1y)-2i—1
= i—0 1)K+ 2)—KH+D) y
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and remainder

b o (=D0=3-1 __ kil/2
= WD) ~(kH/24D '

Monomialization

In the case of perfect differential operegpthe Division Theorem describes direct
complements of the kernel and imageldf P} — P,. This, inturn, allows us to describe
particular solutions of inhomogeneous equati®es = e. We are nwv interested n the
operator itself, and in the solution space of the homogeneous equdica 0. For this
we shall showhat by linear isomorphisms on the source and tafigetan be transformed
into its initial form D°.

Monomialization Theorem. Let D : PP — P, be given by differential operators
D1, ..., Dp which are perfect with respect to a weight vectore R with Q-linearly
independent components. Se=DD° — D with initial form D° with respect to.. In the
convergent power series case, assume in addition that fnar@®@dominant for . There
then exist topological linear automorphisms uR¥ andv of P, suchthat

vDu~1l = De.

In the ase where the R ..., Dy are not necessarily perfect operators one by . =
D°u,L-, where L° denotes a direct monomial complemenkef D° in .

Remarks. (a) Again, requiring that th®; are perfect is quite restrictive and in practice
possibly hard to verify. We describe below examples where this works and fails.
(b) A suitable automorphism can be explicitly described, = Idpp — SD, whereSis a

scissiorof D°; see the prof. Thenu™! = Idprg+2§il(85)k, whichallows us to compute
the soutions of D from the solutions oD° up to arbitrary degree. The automorphisiis
given asv = ldp, — (Idp, — D°S)DU~1SD’S.
(c) In the convergent case, the automorphisnasidv respect the firation of P and P,
by the Banach spacé (s)? andPn(s).
(d) TheequalityvDu~1 = D° can be rephrased by saying tiit is anormal form forD.
This does not mean the normal form in the usual sense with respect to coordinate changes
in the variablexy, ..., Xn but thenormal form with respect tinear automorphisms on
the source space!? and the target spad@, of the operatoD.
(e) As with the Division Theorem, it may be worthwhile to try to extend the assertion of
the theorem to the case of operatbrs P,[3]1P — Pn[d].

The Monomialization Theorem applies directly to the characterization of the solution
space of the induced homogeneous differential equation.

Existence Theorem for homogeneous differential equations. Wth the assumptions and
notation of the Monomialization Theoreawector of polynomials or power seriesaPy
forms a solution of the differential equation; Dia; = Oif and only if a= u—1(@°) where
a° e K¢ is a solution of the differential equation; D’a’ = 0.
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Remarks. (a) Solving the differential equation of a single operdioe P,[d] yields the
monomial differential equatiom°a = 0. Its solution space is spanned by monomials
which can be determined by solving the diophantine equatiaiy) = 0 fory € N",
wherek;(y) = Za7ﬁ=r Cup y£ is the coefficient function ob°. To do this explicitly for
n > 2 may bearbitrarily difficult.

In generalsolving} ; DYa; = 0 redwes immediately to the “binomial” cad@fa; =
D3az which can be solved by comparing thefthand the coeffient functions.
(b) The assertion of the theorem extends rddiyito the case of systems of differential
equations given by vectoBy, ..., Dp € Pn[d]9.
(c) In the holonomic case, the solution space Kés finite dimengnal. By the theorem,
its dimensiontien equals the dimension Kf°.

Proof of the Monomialization Theorem. We use he notation of the Division Theorem.
In particular, we set® = Im D°, K° = KerD® and letL° and J° be the canonical direct
monomial complements ¢€° and| ° in P andP;, respectively. Thel°| o : L° — [°is
an isomorphism an& = (DOH_O)—lmo : Pn — L° is a scssionof D?, i.e., bydefinition,
D°SD® = D°, wherer|- : P, — |° is the projection given b, = [° & J°.
Setu = ldpp — SD : PP — PP. We pove first that is an isomorphism with inverse
u™t =ldpp+Y 2, (SD)X. Thedéfinition of v and the equality Du~* = D° will be post-
poned to after this proof. The polynomial and the formal power series cases are contained
in the case of convergent series as in the proof of the Division Theorem and will be omitted.
In the convergent case we show thiais compatible with the Banach space filtrations
and that there is as > 0 such thafor 0 < s < s the restriction(SD)s to Pn(s)P has
norm < C with a constanC < 1 independent 0. This imdies the convegence of the
geometric seried 2 o(SD)K = uz? and shows thats is an isonorphism.

Lete=3" e x” beinPy withe, € KP. Then

Bezz Z ca/,gqx"‘/aﬂ/Ze,,ixV
%

i o —p'>T
=2 D D capigivExtr
i o —B'>t vV
Decompose this series accordinga = 1° & J°. More Pecificdly, write a € |°
asa = ) > ser &+ x3+% where, as in the proof of the Division Theorem, the sets
Ii + 1 C A + 7 forma partition of = = (J; Ai + 5 with Aj = {§ € N", «;(§) # 0}
andk; (8) = Za_ﬂ:ﬁ ca,giéﬁ. This dlows us to write

ToDe= Z Z Z Ca/ﬁfieyiJ/é,Xy"'a/_ﬂ/_fiXTi.

i o/ =p'>1 yeli+p'—a'+

Thei-th component oSDe can be expanded into

(SDej = (g™ | D Yo cupigiyExrte

o —p'>1 yeli+p —a'+7i
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> Y. cwpigivleiy +o = p )Tt Aom
o' —B'>1 yeli+B/ —ao’'+7

Yo cwpix PN vk +o —p )X

o' =B/ >1; yeli+p —a'+7

We claim thatj/é,Ki (y +oa’ — B’ — 1)L remains bounded for ajl € I} + B/ — o’ + 7
and all(«’, ') € supp(Dj). To see tis, set§ = y +«' — B’ — 1 € I;. Thennotice that
there is — sine there a only finitely many 8’ and sinces — (o«/ — B’ — 7;) belongs to
N" — a @nstantC’ > 0 with

G—@—p —u)l <c.sf

forall 8 € I and all(«/, B) € supp(Dj). By dominance, we ge$ — (o’ — g/ — )t <
C - ki () for some constan€ > 0, whence the required boundedness. We may therefore
continue with

SDeis<C-30 D el D0 leals”
i o/ —p'>T yeli+p —a'+1

for some constar® > 0, so

SDe o leils
| |S_C Z Z ICupi S)L(Ol —p'—7) . ZV€F|+/3 o'+ 18y

lels Wiy >, 18ilsY
<C-. Z Z |Copi |sh@'—F'~1)
i o' —p'>7
Use now again that there is an> O such thak(o/ — B/ — 7j) > cforalli=1,...,p

and (o, /) € supp(Dj). It follows that there is arggy > 0 and a onstantC’ < 1
independent of such that this last sum is C’ for 0 < s < s9. This pioves that'SDe)s
has norm< 1 as rejuired.

We have sbhwn thatu is a compatible ismorphism for 0 < s < . Setv =
ldp, — (Idp, — D°S)Du~1SDrS. It is checked thaw is a compatible linear isomorphism
of Py with inversev = ldp, + (Idp, — D°S)Du~1SD’S. We clam thatvDu~! = D°.
For this we reed:

Lemma. The map u restricts tan isomorphism from k= Ker D to K° = Ker D°.

Proof. We have

D°u = D°(ldpp — SD)
D°(Idpp — SD+ SD)
D° — D°SD+ D°SD?
= D°SD
= D°(Dj.) 'mieD
= m.D.
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Leta € PP. Thenu(a) € K° if and only if D°u(a) = m-D(a) = 0, sayD(a) € J°.
By the Division Theorem and since th® are perfect, we have Id N J° = 0 so that
u(a) € Keifandonlyif D(a) = 0, saya € K. This pioves the asertion.

The lemma implies thaDu=1(K°) = 0, which can be written aDu lrk. =
Du*l(ldpnp — SD°) =0, and henc®u~! = Du~1SDr. BecauseD°SD = D°S(D° —
D) = D°SD® — D°SD = D° — D°SD = D°u, weobtain

vDu™t = Du™t - (1dp, — D°9Du~tsDrsSDu?
Du~!— (ldp, — D°S)Du~isSDP
=Du ! - (ldp, — D°S)Du~?!
= D°SDu ! = D°.

This proves the Monomialization Theorem.

Application to homogeneous differential equations

Let us now show how the Monomialization Theorem can be used to compute the
solution space aithomogeneous differential equation. We work for simplicity with formal
power series.

Example 1. Take agin the perfect operatdd = x23Z — xdx — x3 with D° = x?3Z — Xdx
andD = x3. We haveD°x' = I(1 —2)x' andK® = J° = K@ Kx? L° = I° =
Kx @ K[[x]]x3. To conpute the isomorphism = Id — SD and its inversei~*, observe
thatSD(x') = WMXHS- This gives for he kernel KeD = u~1(K°) theK-basis
UL = 1+ 3x3 + 55,%3 + gogggX + -
Ut (x®) = X + X% + 154g%® + 15aggeX "+

Example 17'S. For theoperatoD = xza)% — Xdx — X which is not perfect, we get the same
kernelK ° = K@Kx? of D° = x232 — xdx butu~1(K°) # Ker D becaus@ (1) = 1+4x
does not belong to Keb. Howeveru=1(x?) = x? + 3x3 + x4 + z2=x5 + - - isin

this kernel.

Example2. ConsiderD = D = dy — ydx with initial form D° = 9y and queue
D = ydy. It forms a perfect operator We hav&K° = K[[x]] L°e = K[[x, ylly,
1° = KI[x, yll, 3° = 0, 50S(xKy) = 2xKyI ™l and SDOKy!) = (xk—1yi+2, e
get KerD = u—l(K[[x]]) with

l(xk) = ZI =0 211 2| |v B yZi'

Example 2Y'S. Take irsteadD = D = ydx — dy with initial form D° = ydx and queue
D= ay It is not perfect. We hav&°® = K[[y]] L° = K[[x, ylIx, I° = KI[[X, Y11y,
J° = K[[x]], s0S(x¥) = 0 andS(x*y') = F;xy!*1 for| > 1. Taking e.gy € K° we
getSD(y) = S(1) = 0andu~(y) =y, buty g{ KerD.
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Outlook and open problems

In the perspective of the results of the present paper, there remain several things to
be investigated: (1) how to check whether differential operafors .., Dp are already
perfect; (2) if they are not, how to computiiaitial monomials of their image — if this is
done, arefined division algorithm has to be formulated; (3) in the convergent power series
case, dominance is a sufficient but not necessary condition to ensure the convergence of
the solutons — find other criteria for convergence.

We canment on points (1) and (2). For simplicity, we restrict consideration to a single
operatorD = Y4 CupX®9P € Pn[d]. Let D° = Y, ,_, Cupx*d” beits initial form
with respect to a chosen weight vecigmwith kernelK° = Ker D° and direct monomial
complement_°. We wish to cleck whethed® = Im D° = D°(L°) already contains all
initial monomials of the imagé = Im D of D. This is certainly the case if all monomial
summandsD? = Za_ﬂ:(, capx®d? of D produce under application B, only initial
monomials which lie il °. ThenD will be perfect. This was the caselixamples Iand2.

If some D? produces initial monomials in theréct monomial complemeni® of |°,
the next step is to restri@ to L° and to check whether these monomials can really occur
as initial monomials of the image &f underD. This was tle case inExample P's,

There is a third possibility, illustrated bgxamples . Therecan be cancellations
between the monomials produced Wy° and the summand®? for ¢ # r.

The phenomenon is similar to the cancédla of initial monomials in Buchberger's
S-polynomials. The cancellations can be completely controll&dlias just two monomial
summandsD = D° + D7, foroneo € Z". This will be the subgct of forthcoming work.

For more smmands, the situation can be muchremmocomplicated. The objective here will

be to describe a finite algorithm which detenes all initial monomials of the image &f

up to a given degree. To be effective, it must contain a criterion which allows one to check
whether all such initial monomials are already found.

As for point (3), the problem is to characterize regular singular points of differential
equations through combinatorial criteria which can easily be checked. The methods of
proof used in the present paper are still too coarse to capture the intricate phenomena
which may appear in more than one variable.

Program for division

We briefly describe a program written for Maple 9.5 which realizes the division by
one differential operator as indicated in the Division Theorem. The complete program is
available from the authors. There are versions for both the polynomial case and the formal
power series case. In order to ensure the feasibility in the latter case, the input has to be
polynomial, and the algorithm stops after a prescribed number of steps.

Input:
D a dfferential operator with polynomial coefficients

De° the initial form of D with respect to a chosen weight vector

D thequeueD — D° of D
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T the shit of D°

kr the coefficiemfunction ofD°

r the maximal number of allowed division steps
e thepolynomial to be divided byp

| parameter controlling the log-output

Output:
a, b andeesuchthat
e—ee= Da+ Db,
witha e L°,b € J° and

ine <, ineore = 0 (in the polynomial case)
ine >, ineore = 0 (inthe power series case)

Description of program:
initialize
ee=e
b=0
counter=0
while counter= 0 and ee# 0do

if e>=ineeg |° =Im D° then

b=b+e¢°
ee=ee—¢°
else

a° = (D°)le°
ee=ee—¢°
ee=ee— Da°
a=a+a°

counter= counter+1

Example of Maple-input and log-output:
# Example D = dy — ydx with D° =dy

> DD:= P->collect( diff(P,y) - y*diff(P,x), distributed):
> DO:= P->collect( diff(P,y), distributed):
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> D1:= P->DD(P)-DO(P):

> tau:=[0,-1]:

> kappa := exponent -> exponent[2]:

> r:=b:

> e:=x"2:

> seriesdiffdiv(P,DO,kappa,tau,Dl,r,1);

Main: division step 1 of 5
Main: trying to divide x'2 by DO
Main: ImageChecker reports x 2 can be divided.
Main: x"2 generated by x 2%y via DO.
Main: substitution gives new polynomial 2*y 2*x to check.
Main: current remainder is O.

Main: division step 2 of 5
Main: trying to divide 2%y 2*x by DO
Main: ImageChecker reports 2xy 2*x can be divided.
Main: 2%y 2%x generated by 2/3*x*y’3 via DO.
Main: substitution gives new polynomial 2/3xy"4 to check.
Main: current remainder is O.

Main: division step 3 of 5
Main: trying to divide 2/3*y"4 by DO
Main: ImageChecker reports 2/3*y4 can be divided.
Main: 2/3*y"4 generated by 2/15*%y’5 via DO.
Main: substitution gives new polynomial O to check.
Main: current remainder is O.

Main: Found exact representation e = D a + b where

e = x2,
a = x 2%y+2/3%x*y 3+2/15%y5,
b =0.

Main: division finished.

Program for monomialization

We now desribe a program for Maple 9.5 which realizes the computation of the kernel
of one differential operator as the pullback under the magf the kernel of its initial
form as explained in the Monomialization Theorem. There are again versions for both the
polynomial case and the formal power series case. Below we restrict to the polynomial
case.

Input:
D a dfferential operator with polynomial coefficients

De° the initial form of D with respect to a chosen weight vector
D thequeueD — D° of D
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S the scssionof D°

T the shit of D°

kr the coefficiemfunction ofD°

r the maximal number of iterations
m a monomialx”

| parameter controlling the log-output

Output:
p apolynomial such that

p=u-t(m),

Description of program:

initialize
p=m
pp= SD(p)
counter=0

while counter< r and pp s 0do
pPp=p+ pp
pp= SD(pp)
counter= counter+1
Example of Maple-input and log-output:
# Example D = dy — ydx with D° = dy

> DD:= P->collect( diff(P,y) - y*diff(P,x), distributed):
> DO:= P->collect( diff(P,y), distributed):

> D1:= P->DD(P)-DO(P):

> tau:=[0,-1]:

> kappa := exponent -> exponent[2]:

> r:=10:

> e:=x'4:

> uinverse(P,DO,kappa,tau,D1,r,1);

Main: found approximation
u-1(x"4) = x4

after step 1.

Main: found approximation
u-1(x"4) = x"4 -2*%x"3*y"2

after step 2.
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Main: found approximation
u-1(x"4) = x"4 -2xx"3*xy 2+ 3/2*x 2%y 4
after step 3.
Main: found approximation
W -1(x"4) = x™4 -2*%x"3%y 2+ 3/2%x 2%y 4- 1/2*%x*y 6
after step 4.

Main: found approximation
u-1(x"4) = x"4 -2xx"3*xy 2+ 3/2*x 2%y 4- 1/2*x*y 6+ 1/16%xy"8
after step 5.

Main: Found exact solution
u-1(x"4) = x"4 -2xx"3%y 2+ 3/2*x 2%y 4- 1/2xx*y 6+ 1/16xy"8
after 5 steps.
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