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Abstract

We present a method for the construction of solutionsof certain systems of partial differential
equations with polynomial and power series coefficients. For this purpose we introduce the concept of
perfect differential operators. Within this framework we formulate division theorems for polynomials
and power series. They in turn yield existence theorems for solutions of systems of linear partial
differential equations and algorithms to explicitly construct solutions.
© 2005 Elsevier Ltd. All rights reserved.
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We investigate the construction of solutions of differential equations with polynomial
and power series coefficients based on the concept ofperfectdifferential operators. This
concept is similar to the notion of Gröbner or standard bases for polynomial and power
series ideals or left ideals of differential operators. Our definition refers to theaction of the
operators on polynomials and power series – instead of the left module generated by the
operators inthe Weyl algebra.

If D = ∑
αβ cαβ xα∂β is such an operator, its initial form with respect to a weight vector

λ ∈ Rn+ is defined as the operator in(D) = ∑
α−β=τ cαβxα∂β with τ the maximum (in the

polynomial case) or the minimum (in the power series case) of the productsλ(α − β) over
all α, β with cαβ �= 0. Several operatorsD1, . . . , Dp are calledperfectwith respect toλ
if the evaluations in(Di )xγ of their initial forms on monomialsxγ span the vector space
of all initial monomials of the evaluations

∑
i Di ai of the Di on polynomials, or power

seriesa1, . . . , ap.
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The definition thus differs from the notion of Gröbner and standard bases for differential
operators considered by Castro, Granger, Saito, Sturmfels, Takayama and other authors.
Though we know of no algorithm for checking whether given differential operators
are perfect, this property is very useful for constructing the associated solutions of
the homogeneous or inhomogeneous differential equations. In the case of convergent
power series, we indicate additional assumptions which are sufficient to ensure also the
convergence of the solutions.

Our first result, the Division Theorem, establishes the division of a polynomial or
power seriese by differential operatorsD1, . . . , Dp, saye = ∑

Di ai + b with quotients
ai and remainderb. If the Di are perfect, the remainderb, which is subject to certain
support conditions, is unique. This allows us to check, at least theoretically, whether
an inhomogeneous differential equation has a polynomial or power series solution: the
remainder of the division of the inhomogeneous term by theDi must be zero.

The second result, the Monomialization Theorem, shows that perfect differential
operators behave in specific situations similarly to their initial form, i.e., as a monomial
operator. In particular, we show how the solution spaces of the associated homogeneous
differential equation can be computed from the solution space of the initial form (which is
particularly simple since it is spanned by monomials).

It seems that both results have been known and used in some form – at least implicitly
or in special cases – by people working in the algebraic theory of differential equations;
see for instance the work ofJanet(1920), Abramov(1995) andPetkovšek(1992), or the
book ofSaito et al.(2000). In a certain sense our approach conceptualizes the construction
of solutions through an ansatz with unknown coefficients.

Definitions

We consider linear differential operatorsD = ∑
αβ cαβxα∂β with polynomial, or formal

or convergent power series coefficientscβ(x) = ∑
α cαβxα in n variablesx1, . . . , xn over

a fieldK (assumed complete valued in the convergent setting). Here,∂ denotes the vector
of partial derivatives∂i = ∂xi . We denote byPn the ringsK[x], K{x} and K[[x]] of
polynomials, convergent and formal power series, respectively, inn variablesoverK, with
associated algebraPn[∂] of linear differential operators.

Thesupportsupp(D) of a differential operatorD is the set of exponents(α, β) ∈ N2n

with cαβ �= 0. We set

supp∂ (D) = {β ∈ Nn, there is anα ∈ Nn with (α, β) ∈ supp(D)}.
The differencesτ = α−β ∈ Zn are called theshiftsof D, forming the setSD = shift(D) ⊆
Zn. There exists aδ ∈ Zn such that shift(D) ⊂ δ + Nn. The filtration ofPn[∂] via shifts is
known as theF-filtration.

A monomial differential operatoris of the formD = ∑
α−β=τ cαβxα∂β for some shift

τ ∈ Zn. EachD decomposes into a (possibly infinite) sumD = ∑
τ∈SD

∑
α−β=τ cαβxα∂β

of monomial operators. A differential operatorD is a pure monomialif it has just one
summand D = cαβxα∂β for some pair(α, β) ∈ N2n and a coefficientcαβ ∈ K. A
subvector spaceM of Pn is amonomial subspaceif it contains with each polynomial/series
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∑
α cαxα all its summandscαxα, or, equivalently, if there exists a subsetΣ ⊆ Nn such

that M consists of all polynomials/series with support inΣ . We shall sometimes write
M = PΣ

n . The canonical monomial direct complementof a monomial subspaceM of
Pn is the subvector spaceN of Pn of polynomials/series with support in the complement
Σ ′ = Nn \ Σ of Σ , namely N = PΣ ′

n .
Differential operatorsD ∈ Pn[∂] will be identified with the induced linear operator

D : Pn → Pn given bya → Da. For convenience, we shall mostly refer to the convergent
or formal power series case. The polynomial case may require small modifications of the
definitions and reasoning which will be omitted if obvious.

Fork, m ∈ N we denote bykm the falling factorialkm = k!/(k−m)! = k(k−1) . . . (k−
m+1), and similarly γ β = �i γ

β
i

i for n-tuplesβ, γ ∈ Nn. By definition,k0 = 1 for k > 1,
0m = 0 for m > 1 and 00 = 1. Observe that(xα∂β)xγ = γ βxτ+γ with τ = α − β. We
associate withn-tuplesτ ∈ Zn and polynomial functionsκτ : Zn → K with κτ (γ ) = 0 if
γ + τ �∈ Nn a linear operatorκτ ξ

τ : Pn → Pn, by

(κτ ξ
τ )xγ = κτ (γ )xγ+τ .

Wecallκτ ξ
τ themonomial operatoronPn with coefficient functionκτ and shiftτ . Clearly,

monomial differential operators are monomial operators. As the falling factorials form a
basis of the polynomial ring, the converse is also true, so the two notions coincide. Kernels
and images of monomial operators are monomial subspaces ofPn.

Let now D1, . . . , Dp ∈ Pn[∂] be differential operators with induced map

D : P p
n → Pn, a = (a1, . . . , ap) → ∑

i Di ai .

Our main interest will be the solutionsa ∈ P p
n of the differential equation

∑
i Di ai = e

for some polynomial or seriese ∈ Pn. As a preliminary stage of their construction, we
shall “divide” e by theDi – saye = ∑

i Di ai + b with a well defined remainderb ∈ Pn

and quotientsai ∈ Pn. In thecase where the remainder of the division can be made unique,∑
i Di ai = e will have a solution inP p

n if and only if the remainderb of e is zero. In this
way, division is a more general procedure than the actual construction of a solution.

In our context, the uniqueness of the remainder will not always be ensured – but it does
hold if the Di are perfect.

We fix throughout a weight vectorλ ∈ Rn with positive andQ-linearly independent
componentsλ1, . . . , λn. It induces a total order<λ on Zn via α <λ β if λα < λβ.
Consequently, each differential operatorD decomposes into a sum of monomial operators
according to decreasing or increasing shiftsτ . Let τ ∈ Zn be the maximal (in the
case of polynomials) or minimal (in case of power series) shift ofD with respect toλ,
τ = max/min{α − β, (α, β) ∈ supp(D)}. We write

D = D◦ − D

whereD◦ = inλ(D) = ∑
α−β=τ cαβ xα∂β denotes theinitial form of D with respect to

λ, and D = − ∑
α−β<λτ cαβxα∂β (for polynomials) orD = − ∑

α−β>λτ cαβ xα∂β (for
power series) is thequeueof D (cf. e.g.Assi et al.(1996), Saito et al.(2000), Oaku et al.
(2001), and the relation of the initial form to the indicial polynomial). Notice the
difference between the initial formD◦ and the symbolσ(D) = ∑

|β|=maxcαβxα∂β of D.
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By definition, D◦ is a monomial operator with shiftτ , D◦ = κτ ξ
τ and coefficient function

κτ (γ ) = ∑
α−β=τ cαβγ β . Setting ∆ = {γ ∈ Nn, κτ (γ ) �= 0}, the image ofD◦ in Pn

consists of polynomials or series with support in∆ + τ .
In the case where no derivatives occur,D = h ∈ Pn a polynomial or power series, the

initial form is a monomial inx, theinitial monomialof h with respect to<λ.
We call differential operatorsD1, . . . , Dp perfect with respect toλ ∈ Rn+ if the

initial monomials of the images ofD : P p
n → Pn, a → ∑

i Di ai are images of
D◦ : P p

n → Pn, a → ∑
i D◦

i ai = ∑
i in(Di )ai . More explicitly, if for each a ∈ P p

n
there exist aγ ∈ Nn and a j ∈ {1, . . . , p} such that in(

∑
Di ai ) = D◦

j x
γ = in(Dj )xγ .

In a similar but slightly different vein,one could also consider the actionD̃ : Pn[∂]p →
Pn[∂], E → ∑

i Di · Ei of D1, . . . , Dp on Pn[∂]p and require that the right ideal of
Pn[∂] generated byD1, . . . , Dp is generated by the initial formsD◦

1, . . . , D◦
p. We shall

not pursue this variation of the concept of perfect operators in the present paper.
Our notion of perfect operators is different from the definition of Gröbner and standard

bases used inCastro-Jiménez(1984, 1987) andSaito et al.(2000). However, in the case
where no derivatives occur,Di = hi ∈ Pn, we recover the classical notions of Gröbner
bases for polynomials and standard bases for power series. For vectors of differential
operatorsDi ∈ Pn[∂]q, the definition extends in a natural way by ordering the components
of vectors inPq

n so as to dispose of the notion of theirinitial monomial vectoras a vector
with one monomial entry, the other entries being zero.

Even in the case wherep = 1, a single operatorD need not be perfect; just take
D = y∂x − ∂y with D◦ = y∂x. Here we haveI ◦ = Im D◦ = P2 · y and in(Im D) = P2.
This occurrence was to be expected since anyPn-linear maph : P p

n → Pn, a →∑
i hi ai can be interpreted as a differential operatorDh : Pn+p → Pn+p identifying

a = (a1, . . . , ap) ∈ P p
n with

∑
i ai ti and settingDh = ∑

i hi ∂ti , for new variables
t1, . . . , tp. If h1, . . . , hp do not form a standard basis in the usual sense of polynomials
or power series,Dh will not be perfect.

In contrast to the polynomial or power series caseDi = hi ∈ Pn, it may be veryintricate
to check whether given differential operatorsDi ∈ Pn[∂] are perfect. In a first step, one
will restrict the operator to the kernel of its initial form and check whether the images
thereof produce new initial monomials; cf. the examples below. But this is not sufficient
– there are other ways in which initial monomials can occur. No general method like the
Buchberger criterion for polynomials and power series seems to be known for checking
whether differential operators are perfect.

The subtlety of the concept is revealed already in simple examples: the operator
D = x2∂2

x − x∂x − x3 is perfect, whereasD = x2∂2
x − x∂x − x2 andD = x2∂2

x − x∂x − x
are not (both for slightly different reasons); cf. the examples later on.

In the case of convergent power series, we say that the initial formD◦ =∑
α−β=τ cαβxα∂β dominates Dif there is a constantC > 0 such that for allβ ′ ∈ supp∂ (D)

and allγ with κτ (γ ) �= 0, we have

γ β ′ ≤ C · | ∑α−β=τ cαβγ β |.
The inequality implies that for eachj = 1, . . . , n and eachβ ′ ∈ supp∂ (D) there is
at least oneβ ∈ supp∂ (D◦) whose j -th component is larger than or equal to thej -th
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component ofβ ′, sayβ ′
j ≤ β j . This is not sufficient for dominance, as shown by the

example in twovariablesD = x∂x − y∂y + x2∂x with D◦ = x∂x − y∂y, κτ (γ ) = γ1 − γ2,
supp∂ (D) = {(1, 0)} and unbounded quotientγ1/(γ1 − γ2) on theline γ1 = γ2 + 1 in N2.

Dominance is a condition which ensures that the initial form of an operator controls
sufficiently the division properties of theoperator, i.e., that the queueD is a negligible
perturbation ofD◦. This holds trivially if no derivatives appear at all. In the one-variable
casen = 1, the choice of the weight vector is redundant and the initial formD◦ is unique.
It dominatesD if there appears inD◦ a derivative ∂β of highest order, i.e., if the order
of the operator equals the order of its initial form. This implies that in the one-variable
case dominance is equivalent to 0 being a regular singular point; cf.Komatsu(1971) and
Malgrange(1974). For several variables,the situation is much more involved. A sufficient
though not necessary condition for dominance is thatD◦ is a pure monomialcαβxα∂β

with a ∂-exponentβ which is componentwise the maximum of all∂-exponentsβ ′ of D,
sayβ ′

j ≤ β j for all β ′ ∈ supp∂ (D) and all j = 1, . . . , n.
In the polynomial case, we equipPn = K[x] with the topology of coefficientwise

convergence. In the case of formal power series,Pn = K[[x]] comes with them-adic
topology given by the basis of zero-neighborhoods(x1, . . . , xn)

k. Note here that also
the idealsPk generated by the monomialsxγ with λγ ≥ k form such a basis. In the
convergent case,Pn = K{x} has the inductive limit topology given by the filtration
Pn = ∪s>0Pn(s), wherePn(s) denotes the Banach space of seriesa = ∑

γ aγ xγ with

norm|a|s = ∑
γ |aγ |sλγ < ∞.

A K-linear mapw : Pn → Pn is contractivewith respect toλ ∈ Rn+ if there exists
an ε > 0 such that for allγ ∈ Nn and all monomialsxδ of the expansion ofw(xγ ) one
hasλδ ≤ λγ − ε in the polynomial case andλδ ≥ λγ + ε in the power series case. If
w is contractive anda ∈ Pn, thegeometric series

∑∞
k=0 wk(a) is finite in the polynomial

case and converges in the formal power series case with respect to them-adic topology
on K[[x]]. For convergent power series, one requires in addition that there are constants
s0 > 0 and 0< C < 1 such that the restrictionsws : Pn(s) → Pn(s) are well defined for
0 < s < s0 and have operator norm|ws| ≤ C. In all cases the geometric series gives rise
to a well defined linear map

∑∞
k=0 wk : Pn → Pn.

Division of polynomials and series by differential operators

Let now D1, . . . , Dp ∈ Pn[∂]. We describe in this section how polynomials or power
serieseof Pn will be divided byD1, . . . , Dp, saye = ∑

Di ai +b with ai andb in Pn spec-
ified by support conditions. This division can be extended to vectorsD1, . . . , Dp in Pn[∂]q.

ExpandDi = ∑
αβ cαβ i xα∂β and set againDi = D◦

i − Di with initial form D◦
i =∑

α−β=τi
cαβ i xα∂β = κτi ξ

τi with respect toλ as before. We denote byVi = V(κτi ) the
zero-set ofκτi in Nn and set∆i = Nn \ Vi . Then K ◦

i = Ker D◦
i and I ◦

i = Im D◦
i are

monomial subspaces ofPn with supportVi and∆i + τi respectively. LetΞ = ∪i ∆i + τi

and choose apartition Ξ = ∪̇ Γi + τi with Γi ⊂ ∆i . Let L◦ ⊂ P p
n be the monomial

subvector space of vectorsa = (a1, . . . , ap) with ai having support inΓi − τi . It is then
clear thatL◦ is a direct complement ofK ◦ = Ker D◦ in P p

n , sayK ◦ ⊕ L◦ = P p
n , where

D◦ : P p
n → Pn, a = (a1, . . . , ap) → ∑

i D◦
i ai .
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Similarly, I ◦ = Im D◦ consists of series with support inΞ and has direct monomial
complementJ◦ consisting of series with support in the complementΞ ′ = Nn \ Ξ . Of
course, all these objects depend on the choice ofλ.

Division Theorem. Let D1, . . . , Dp be differential operators inPn[∂] and letλ ∈ Rn+ be
a weight vector withQ-linearly independent components. Let D◦

i bethe initial form of Di

with respect toλ and let D and D◦ be the induced mapsP p
n → Pn. Set I◦ = Im D◦,

K ◦ = Ker D◦ and choose the direct monomial complements L◦ of K◦ in P p
n and J◦ of I ◦

in Pn asbefore. In the convergent case, assume in addition that each Di is dominated by
its initial form D◦

i with respect toλ. Then the map

u : L◦ × J◦ → Pn : (a, b) → ∑
Di ai + b

is a topological isomorphism. In particular,Im D + J◦ = Pn andKer D ∩ L◦ = 0. If the
D1, . . . , Dp are perfect, one even has the direct sum decompositionsIm D ⊕ J◦ = Pn,
andKer D ⊕ L◦ = P p

n .

Remarks. (a) Stated differently, for eache ∈ Pn there are unique seriesai andb with
support inΓi − τi andΞ ′ suchthate = ∑

Di ai +b. This implies that KerD ∩ L◦ = 0 and
Im D + J◦ = Pn. Moreover, the proofof the theorem provides an algorithm for computing
ai andb. The algorithm follows from the construction of the inverse of the operatoru.
It is given by the geometric series(

∑∞
k=0(wv−1)k)v wherev(a, b) = ∑

i D◦
i ai + b and

w = v − u. The partial sums(
∑r

k=0(wv−1)k)v of the expansion ofu−1 allow one to
compute the quotientsai and the remainderb up to arbitrarily high degree. We emphasize
that without support conditions on the quotientsai the remainderb is no longer unique.
(b) In the convergent case,u and u−1 respect the filtrations of P p

n and Pn given by
Pn = ⋃

s>0Pn(s).
(c) It would be interesting (and probably not too hard) to extend the Division Theorem
to the case whereD1, . . . , Dp act onPn[∂]p from the left via E = (E1, . . . , Ep) →∑

i Di · Ei with D · E the multiplication inPn[∂]. The image ofD is then a right ideal
of Pn[∂]. More generally, theDi could be vectors inPn[∂]q generating a right submodule
of Pn[∂]q. Compare this type of division with the Division Theorem ofCastro-Jiménez
(1984, 1987) for left ideals inPn[∂] or left submodules ofPn[∂]q.
(d) As a variation, one may take in the theorem difference operators instead of differential
operators, with a similar proof.
(e) In the case where theDi are just polynomials or power serieshi ∈ Pn, i.e., if no
derivatives appear, dominance is a void condition. We recover the classical Buchberger
and Grauert–Hironaka–Galligo division theorems for ideals inPn. Our method of proof
works for all three cases simultaneously.

Note here that then the image ofL◦ underu is a subvector space ofPn which, ingeneral,
will be strictly contained in the ideal(h1, . . . , hp) generated by thehi . In thecase where the
hi are perfect with respect toλ, thetwo spaces coincide (because they have the same initial
monomials) and the theorem yields(h1, . . . , hp) ⊕ J◦ = Pn, whereJ◦ is the canonical
direct monomial complement ofI ◦ = (in(h1), . . . , in(hi )).

Similarly, if the differential operatorsD1, . . . , Dp are perfect with respect toλ we have
that ImD⊕J◦ = Pn and KerD⊕L◦ = P p

n . In particular, the remainders of the division by
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Di are unique without imposing any support conditions on the quotients. This leads to the
following criterion for the existence of particular solutions of inhomogeneous differential
equations.

Existence Theorem for inhomogeneous differential equations. Let D1, . . . , Dp be
differential operators in Pn[∂] and let λ ∈ Rn+ be a weight vector withQ-linearly
independent components. Assume that D1, . . . , Dp are perfect with respect toλ. In the
convergent case, assume in addition that each Di is dominated by its initial form D◦i with
respect toλ. Then, for any e∈ Pn, thedifferential equation

∑
i Di ai = e has a solution

a = (a1, . . . , ap) ∈ P p
n if and only if the division of e by D1, . . . , Dp has remainder equal

to zero.

Despite the fact that there seems to be no known algorithm for checking whether
differential operators are perfect and that for power series the actual division requires
infinitely many substitution steps, the algorithm can be useful, e.g., for proving that a
differential equation hasnopolynomial or formal power series solution: if after some steps
of the algorithm there appears a remainder, nosolution will exist. Conversely, if after many
steps no remainder has shown up, it may become probable that a solution exists, or that such
a solution can be guessed from the expansion of the approximated solution computed so
far. Of course, the method is very close to a power series ansatz with unknown coefficients.

Variants ofthe Existence Theorem and different algorithms for computing solutions
of differential equations in various circumstances abound. To mention just a few, we
recommend Janet’s work from 1920 (Janet, 1920), Abramov’s (Abramov, 1995) and
Petkovšek’s (Petkovšek, 1992) algorithms for difference and differential equations in
one variable, the book ofSaito et al.(2000) on Gröbner deformations, and algorithms
developed byOaku et al.(2001), or byDella Dora et al.(1982).

Proof of the Division Theorem. We follow the technique of the proof of Theorem 5.1 in
Hauser and Müller(1994), interpretingu as a perturbation of an operator which is trivially
an isomorphism. This method is frequent when using arguments from functional analysis
for the study of differential equations; cf.Malgrange(1974, p. 148), orCastro-Jiménez
(1984, 1987) andHauser and Narváez-Macarro(2001). The dominance condition is used
to bound the size of the coefficients of the series when applying the inverses of monomial
differential operators. In contrast to the division theorems inCastro-Jiménez(1984, 1987)
and Hauser and Narváez-Macarro(2001), the filtration of Pn[∂] is given in the present
theorem by the shifts of the operators.

Decomposeu : L◦ × J◦ → Pn into u = v−w with v(a, b) = ∑
D◦

i ai +b according to
Di = D◦

i − Di . By definition of L◦ andJ◦, v is a topological isomorphism. It is therefore
sufficient to show thatuv−1 = Id − wv−1 : Pn → Pn is also a topological isomorphism.
Its inverse is formally given by the infinite sum of operators

∑∞
k=0(wv−1)k. Onehas to

prove that this sum does indeed define a continuous linear operator fromPn to Pn.
In the polynomial and formal power series cases it suffices to show thatwv−1 is

contractive with respect toλ, i.e., that there is anε > 0 such that for all γ ∈ Nn the series
wv−1(xγ ) involves only monomialsxδ with λδ ≤ λγ − ε andλδ ≥ λγ + ε, respectively.
In the convergent power series case we have to show in addition that there exist constants
s0 > 0 and 0< C < 1 such that the restrictions (wv−1)s : Pn(s) → Pn(s) are well



986 S. Gann, H. Hauser / Journal of Symbolic Computation 40 (2005) 979–997

defined and of norm≤ C for all 0 < s < s0 as linear operators between Banach spaces.
This signifies that fors sufficiently small and alle ∈ Pn(s) one has

|wv−1e|s ≤ C · |e|s.
We shall concentrate on the case of convergent power series, which is the hardest
one. Moreover it involves the required inequality from the dominance assumption. The
polynomial and formal power series cases are easier and can be obtained from the proof
below by the obvious modifications.

Write e = ∑
i ei +b according to the direct sum decomposition ofPn induced byv and

given by the supportsΓi + τi andΞ ′. Then theei andb have pairwise disjoint support, so

|e|s = ∑
i |ei |s + |b|s.

Expandei asei = ∑
γ∈Γi

eγ i xγ+τi . Then

v−1e =
((∑

α−β=τi
cαβ i xα∂β

)−1
ei

)
i
, b)

=
((∑

γ∈Γi
eγ i (

∑
α−β=τi

cαβ i γ
β)−1xγ

)
i
, b

)
.

Therefore, settingκi (γ ) = ∑
α−β=τi

cαβ i γ
β , we have

wv−1e = w
((∑

γ∈Γi
eγ i κi (γ )−1xγ

)
i
, b

)

= ∑
i

∑
α′−β ′>τi

cα′β ′ i xα′
∂β ′ (∑

γ∈Γi
eγ i κi (γ )−1xγ

)

= ∑
i
∑

α′−β ′>τi

∑
γ∈Γi

cα′β ′i eγ i κi (γ )−1γ β ′
xγ+α′−β ′

.

Here,α′ − β ′ > τi stands forλ(α′ − β ′) > λτi . As there are only finitely many β ′,
there exists anε > 0 such that λ(α′ − β ′) > λτi + ε for all i = 1, . . . , p and all
(α′, β ′) ∈ suppDi . This shows in the polynomial and formal power series cases thatwv−1

is contractive. In the convergent case, we need norm estimates for the series involved.
By dominance we know that there is a constantC > 0 such thatγ β ′ ≤ C · κi (γ ) for all

i = 1, . . . , p and allβ ′ ∈ supp∂ (Di ), γ ∈ Γi . This implies the inequalities

|wv−1e|s
|e|s ≤ C ·

∑
i

∑
α′−β ′>τi

∑
γ∈Γi

|cα′β ′ i | · |eγ i | · sλ(γ+α′−β ′)∑
i

∑
γ∈Γi

|eγ i | · sλ(γ+τi ) + |b|s

≤ C ·
∑

i
∑

α′−β ′>τi
|cα′β ′ i | · sλ(α′−β ′−τi )

∑
γ∈Γi

|eγ i | · sλ(γ+τi )∑
i
∑

γ∈Γi
|eγ i | · sλ(γ+τi )

≤ C ·
∑

i

∑
α′−β ′>τi

|cα′β ′ i | · sλ(α′−β ′−τi )
∑

γ∈Γi
|eγ i | · sλ(γ+τi )∑

γ∈Γi
|eγ i | · sλ(γ+τi )

≤ C ·
∑

i

∑
α′−β ′>τi

|cα′β ′i | · sλ(α′−β ′−τi ).

The convergence of the coefficients
∑

α cαβ i xα of ∂β in Di implies that this last sum
converges fors sufficiently small, say 0< s < s0. We have already seen that there is
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anε > 0 such thatλ(α′ − β ′ − τi ) > ε for all i and allα′ andβ ′. Therefore, choosings0
sufficiently small, we get

C ·
∑

i

∑
α′−β ′>τi

|cα′β ′ i | · sλ(α′−β ′+τi ) < 1

for all 0 < s < s0. Hence |wv−1e|s ≤ C′ · |e|s for someC′ < 1 and all 0< s < s0. This
proves also in the convergent case thatu is a topological isomorphism.

It remains to show that ImD∩ J◦ = 0 and KerD+ L◦ = P p
n if D1, . . . , Dp are perfect.

For the first, an element of the intersection ImD ∩ J◦ has, by the very definition of perfect
operators, its initial monomial inI ◦ andJ◦, whence ImD ∩ J◦ = 0. For the second, notice
that ImD ⊕ J◦ = Pn and D(L◦) ⊕ J◦ = Pn implies that ImD = D(L◦). This in turn
implies that KerD + L◦ = P p

n . Theproof of the Division Theorem is completed.

Application to inhomogeneous differential equations

We illustrate the division algorithm in simple examples by computing particular power
series solutions of inhomogeneous differential equations. Let us take one differential
operatorD = ∑m

k=0
∑∞

j =0 cjkx j ∂k in one variablex of order m. Denote by ok the

order of the coefficient seriesck(x) = ∑∞
j =0 cjkx j at 0. The choice of a weight vector

λ is superfluous. Letτ be the minimal shift of D, τ = min{ok − k, k ≤ m}, let
D◦ = ∑

j −k=τ cjkx j ∂k be the initial form of D and setD = D◦ − D. Then D0 is
dominant if and only ifom − m = τ , i.e., if and only if 0 is a regular singular point of the
equationD(a) = 0.

The kernelK ◦ of D◦ is spanned by monomialsxl with
∑

j −k=τ cjkl k = 0 and ishence
finite dimensional. The description of its direct monomial complementL◦ and the image
I ◦ of D◦ with direct monomial complementJ◦ is then immediate.

Example 1. Let us take for instance the operatorD = x2∂2−x∂−x3 with D◦ = x2∂2−x∂

andD = x3. Here, 0 is a regular singular point, i.e.,D◦ is dominant, so we may neglect
convergence questions and work with formal power series. The kernelK ◦ of D◦ is spanned
by the monomialsxl with l 2 − l 1 = l (l − 2) = 0, say K ◦ = K ⊕ Kx2. We get
L◦ = I ◦ = Kx ⊕ K[[x]]x3 and J◦ = K ⊕ Kx2. As D sendsK[[x]] to K[[x]]x3 and
thus produces no new initial monomials it follows thatD is a perfect operator.

Let us divide a monomiale = xl by D. For e = 1 or e = x2 in J◦, no real division
occurs,e = D0 + e, ande equals the remainder. Fore = xl with l �= 0, 2 the firststep of
the algorithm produces

xl = D◦ 1
l(l−2)

xl = D 1
l(l−2)

xl + 1
l(l−2)

xl+3.

For l = 1 or l ≥ 3 the algorithm repeats infinitely often and yields

xl = D
(∑

i≥0
1

l(l+3)···(l+3i )(l−2)(l+1)···(l+3i−2)
xl+3i

)
.

We can conclude that the differential equationx2a′′ − xa′ − x3 = e(x) has (convergent or
formal) power series solutionsa(x) at x = 0 if andonly if e(x) has no constant term and



988 S. Gann, H. Hauser / Journal of Symbolic Computation 40 (2005) 979–997

no monomialx2. This,of course, could have also been deduced – due to the simplicity of
the example – by direct inspection of the equation or a power series ansatz fora(x).

Example 1bis. The operatorD = x2∂2 − x∂ − x2 with D◦ = x2∂2 − x∂ andD = x2 is
not perfect, becauseD sends the kernelK ◦ = K + Kx2 to Kx2 + Kx4 with new initial
monomialx2 �∈ I ◦ = Kx + K[[x]]x3. Thedivision of x2 by D with initial form D◦ and
quotient inL◦ = Kx + K[[x]]x3 is trivial with remainderx2, sayx2 = D0 + x2, though
x2 lies in the image ofD via x2 = D1. We see that the remainder of the division is not
unique without imposing support conditions on the quotient.

Example 1ter. The operatorD = x2∂2 − x∂ − x with D◦ = x2∂2 − x∂ and D = x is
not perfect either, but the argument is a little trickier. We have as beforeK ◦ = K ⊕ Kx2,
L◦ = I ◦ = Kx ⊕ K[[x]]x3 andJ◦ = K ⊕ Kx2. Fore = 1 ande = x2 we get the trivial
divisionse = D0+e, thoughx2 = D(1−x)+0 lies in the image ofD. So the remainder of
the division ofx2 by D is not unique andD is not a perfect operator. And indeed,x2 �∈ I ◦
is a new initial monomial of the image ofD. If we dividee = x by D we get after the first
substitution stepx = D(−x) − x2 and have to redividex2 by D as before, producing the
same ambiguity of the remainder. When dividing a monomiale = xl with l ≥ 3 by D the
remainder is unique, with

xl = D
(
(l − 1)!(l − 3)! ∑i≥0

1
(l+i )!(l+i−2)! x

l+i
)
.

Example 2. Let us now consider in the case of formal power series the operatorD =
−y∂x + ∂y with shifts (−1, 1) and (0,−1). Here thechoice of the weight vectorλ =
(λ1, λ2) becomes relevant. If−λ1 + λ2 > −λ2, then D◦ = ∂y and D is perfect. As
D◦ has imageK[[x, y]] and henceJ◦ = 0, the Division Theorem implies that for any
e ∈ K[[x, y]], the differential equation Da = e has a formal power series solution
a ∈ K[[x, y]]. Fore = xkyl weget the polynomial solution

a = ∑k
i=0

ki

(l+1)(l+3)...(l+2i+1)
xk−i yl+2i+1.

Observe here thatD◦ is not dominant, though all formal solutions are already convergent.

Example 2bis. Take again D = −y∂x +∂y, but with weightvectorλ satisfying−λ1+λ2 <

−λ2. The initial form of D equalsD◦ = −y∂x with kernel K ◦ = K[[y]] and image
I ◦ = K[[x, y]]y. We haveL◦ = K[[x, y]]x and J◦ = K[[x]]. In this case,D is not
perfect, because, for instance,Dy = 1 is amonomial in the image ofD which does not
lie in I ◦. Dividing xkyl by D we get for l = 0 the trivial division xk = D0 + xk with
remainderxk, and for oddl ≥ 1 thequotient

a = − ∑(l−1)/2
i=0

(l−1)(l−3)···(l−2i+1)
(k+1)(k+2)···(k+i+1)

xk+i+1yl−2i−1,

with remainder 0, i.e.,a is a solution ofDa = xkyl . For evenl ≥ 1 thedivision has
quotient

a = − ∑l/2−1
i=0

(l−1)(l−3)···(l−2i+1)
(k+1)(k+2)···(k+i+1)

xk+i+1yl−2i−1
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and remainder

b = (l−1)(l−3)···1
(k+1)(k+2)···(k+l/2+1)

xk+l/2.

Monomialization

In the case of perfect differential operators, the Division Theorem describes direct
complements of the kernel and image ofD : P p

n → Pn. This, inturn, allows us to describe
particular solutions of inhomogeneous equationsDa = e. We are now interested in the
operator itself, and in the solution space of the homogeneous equationDa = 0. For this
we shall show that by linear isomorphisms on the source and target,D can be transformed
into its initial form D◦.

Monomialization Theorem. Let D : P p
n → Pn be given by differential operators

D1, . . . , Dp which are perfect with respect to a weight vectorλ ∈ Rn+ with Q-linearly
independent components. Set D= D◦ − D with initial form D◦ with respect toλ. In the
convergent power series case, assume in addition that the D◦

i are dominant for Di . There
then exist topological linear automorphisms u ofP p

n andv ofPn suchthat

vDu−1 = D◦.

In the case where the D1, . . . , Dp are not necessarily perfect operators one hasvD|L◦ =
D◦u|L◦ , where L◦ denotes a direct monomial complement ofKer D◦ in P p

n .

Remarks. (a) Again, requiring that theDi are perfect is quite restrictive and in practice
possibly hard to verify. We describe below examples where this works and fails.
(b) A suitable automorphismu can be explicitly described,u = IdP p

n
− SD, whereS is a

scissionof D◦; see the proof. Thenu−1 = IdP p
n
+∑∞

k=1(SD)k, whichallows us to compute
the solutions ofD from the solutions ofD◦ up to arbitrary degree. The automorphismv is
given asv = IdPn − (IdPn − D◦S)Du−1SD◦S.
(c) In the convergent case, the automorphismsu andv respect the filtration ofP p

n andPn

by the Banach spacesPn(s)p andPn(s).
(d) TheequalityvDu−1 = D◦ can be rephrased by saying thatD◦ is anormal form forD.
This does not mean the normal form in the usual sense with respect to coordinate changes
in the variablesx1, . . . , xn but thenormal form with respect tolinear automorphisms on
the source spaceP p

n and the target spacePn of the operatorD.
(e) As with the Division Theorem, it may be worthwhile to try to extend the assertion of
the theorem to the case of operatorsD : Pn[∂]p → Pn[∂].

The Monomialization Theorem applies directly to the characterization of the solution
space of the induced homogeneous differential equation.

Existence Theorem for homogeneous differential equations. With the assumptions and
notation of the Monomialization Theorem, avector of polynomials or power series a∈ P p

n
forms a solution of the differential equation

∑
i Di ai = 0 if and only if a= u−1(a◦) where

a◦ ∈ K ◦ is a solution of the differential equation
∑

i D◦
i a◦

i = 0.
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Remarks. (a) Solving the differential equation of a single operatorD ∈ Pn[∂] yields the
monomial differential equationD◦a = 0. Its solution space is spanned by monomials
which can be determined by solving the diophantine equationκτ (γ ) = 0 for γ ∈ Nn,
whereκτ (γ ) = ∑

α−β=τ cαβγ β is the coefficient function ofD◦. To do this explicitly for
n ≥ 2 may bearbitrarily difficult.

In general,solving
∑

i D◦
i ai = 0 reduces immediately to the “binomial” caseD◦

1a1 =
D◦

2a2 which can be solved by comparing the shifts and the coefficient functions.
(b) The assertion of the theorem extends naturally to the case of systems of differential
equations given by vectorsD1, . . . , Dp ∈ Pn[∂]q.
(c) In the holonomic case, the solution space KerD is finite dimensional. By the theorem,
its dimension then equals the dimension ofK ◦.

Proof of the Monomialization Theorem. We use the notation of the Division Theorem.
In particular, we setI ◦ = Im D◦, K ◦ = Ker D◦ and letL◦ andJ◦ be the canonical direct
monomial complements ofK ◦ andI ◦ in P p

n andPn respectively. ThenD◦|L◦ : L◦ → I ◦ is
an isomorphism andS = (D◦|L◦)−1πI ◦ : Pn → L◦ is a scissionof D◦, i.e., bydefinition,
D◦SD◦ = D◦, whereπI ◦ : Pn → I ◦ is the projection given byPn = I ◦ ⊕ J◦.

Setu = IdP p
n

− SD : P p
n → P p

n . We prove first thatu is an isomorphism with inverse

u−1 = IdP p
n
+∑∞

k=1(SD)k. Thedefinition of v and the equalityvDu−1 = D◦ will be post-
poned to after this proof. The polynomial and the formal power series cases are contained
in the case of convergent series as in the proof of the Division Theorem and will be omitted.

In the convergent case we show thatu is compatible with the Banach space filtrations
and that there is ans0 > 0 such that for 0 < s < s0 the restriction(SD)s to Pn(s)p has
norm≤ C with a constantC < 1 independent ofs. This implies the convergence of the
geometric series

∑∞
k=0(SD)k

s = u−1
s and shows thatus is an isomorphism.

Let e = ∑
γ eγ xγ be inP p

n with eγ ∈ Kp. Then

De =
∑

i

∑
α′−β ′>τi

cα′β ′ i x
α′

∂β ′ ∑
γ

eγ i x
γ

=
∑

i

∑
α′−β ′>τi

∑
γ

cα′β ′ i eγ i γ
β ′

xγ+α′−β ′
.

Decompose this series according toPn = I ◦ ⊕ J◦. More specifically, write a ∈ I ◦
as a = ∑

i
∑

δ∈Γi
aδ+τi x

δ+τi where, as in the proof of the Division Theorem, the sets
Γi + τi ⊂ ∆i + τi form a partition of Ξ = ⋃

i ∆i + τi with ∆i = {δ ∈ Nn, κi (δ) �= 0}
andκi (δ) = ∑

α−β=τi
cαβ i δ

β . This allows us to write

πI ◦ De =
∑

i

∑
α′−β ′>τi

∑
γ∈Γi +β ′−α′+τi

cα′β ′ i eγ i γ
β ′

xγ+α′−β ′−τi xτi .

Thei -th component ofSDe can be expanded into

(SDe)i = (κi ξ
τi )−1


 ∑

α′−β ′>τi

∑
γ∈Γi +β ′−α′+τi

cα′β ′i eγ i γ
β ′

xγ+α′−β ′


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=
∑

α′−β ′>τi

∑
γ∈Γi +β ′−α′+τi

cα′β ′i eγ i γ
β ′

κi (γ + α′ − β ′ − τi )
−1xγ+α′−β ′−τi

=
∑

α′−β ′>τi

cα′β ′ i x
α′−β ′−τi

∑
γ∈Γi +β ′−α′+τi

eγ i γ
β ′

κi (γ + α′ − β ′ − τi )
−1xγ .

We claim thatγ β ′
κi (γ +α′ −β ′ − τi )

−1 remains bounded for allγ ∈ Γi +β ′ −α′ + τi

and all(α′, β ′) ∈ supp(Di ). To see this, setδ = γ + α′ − β ′ − τi ∈ Γi . Thennotice that
there is – since there are only finitely manyβ ′ and sinceδ − (α′ − β ′ − τi ) belongs to
Nn – a constantC′ > 0 with

(δ − (α′ − β ′ − τi ))
β ′ ≤ C′ · δβ ′

for all δ ∈ Γi and all(α′, β ′) ∈ supp(Di ). By dominance, we get(δ − (α′ − β ′ − τi ))
β ′ ≤

C · κi (δ) for some constantC > 0, whence the required boundedness. We may therefore
continue with

|SDe|s ≤ C ·
∑

i

∑
α′−β ′>τi

|cα′β ′i |sλ(α′−β ′−τi ) ·
∑

γ∈Γi +β ′−α′+τi

|eγ i |sλγ

for some constantC > 0, so

|SDe|s
|e|s ≤ C ·

∑
i

∑
α′−β ′>τi

|cα′β ′i |sλ(α′−β ′−τi ) ·
∑

γ∈Γi +β ′−α′+τi
|eγ i |sλγ∑

γ |eγ i |sλγ

≤ C ·
∑

i

∑
α′−β ′>τi

|cα′β ′ i |sλ(α′−β ′−τi ).

Use now again that there is anε > 0 such thatλ(α′ − β ′ − τi ) > ε for all i = 1, . . . , p
and (α′, β ′) ∈ supp(Di ). It follows that there is ans0 > 0 and a constantC′ < 1
independent ofe such that this last sum is≤ C′ for 0 < s < s0. This proves that(SDe)s

has norm< 1 as required.
We have shown that u is a compatible isomorphism for 0 < s < s0. Set v =

IdPn − (IdPn − D◦S)Du−1SD◦S. It is checked thatv is a compatible linear isomorphism
of Pn with inversev = IdPn + (IdPn − D◦S)Du−1SD◦S. We claim thatvDu−1 = D◦.
For this we need:

Lemma. The map u restricts toan isomorphism from K= Ker D to K◦ = Ker D◦.

Proof. We have

D◦u = D◦(IdP p
n

− SD)

= D◦(IdP p
n

− SD+ SD◦)
= D◦ − D◦SD+ D◦SD◦

= D◦SD

= D◦(D◦|L◦)−1πI ◦ D

= πI ◦ D.
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Let a ∈ P p
n . Thenu(a) ∈ K ◦ if and only if D◦u(a) = πI ◦ D(a) = 0, sayD(a) ∈ J◦.

By the Division Theorem and since theDi are perfect, we have ImD ∩ J◦ = 0 so that
u(a) ∈ K ◦ if andonly if D(a) = 0, saya ∈ K . This proves the assertion.

The lemma implies thatDu−1(K ◦) = 0, which can be written asDu−1πK ◦ =
Du−1(IdP p

n
− SD◦) = 0, and henceDu−1 = Du−1SD◦. BecauseD◦SD = D◦S(D◦ −

D) = D◦SD◦ − D◦SD = D◦ − D◦SD = D◦u, weobtain

vDu−1 = Du−1 − (IdPn − D◦S)Du−1SD◦SDu−1

= Du−1 − (IdPn − D◦S)Du−1SD◦

= Du−1 − (IdPn − D◦S)Du−1

= D◦SDu−1 = D◦.

This proves the Monomialization Theorem.

Application to homogeneous differential equations

Let us now show how the Monomialization Theorem can be used to compute the
solution space ofahomogeneous differential equation. We work for simplicity with formal
power series.

Example 1. Take again the perfect operatorD = x2∂2
x − x∂x − x3 with D◦ = x2∂2

x − x∂x

and D = x3. We haveD◦xl = l (l − 2)xl and K ◦ = J◦ = K ⊕ Kx2, L◦ = I ◦ =
Kx ⊕ K[[x]]x3. To compute the isomorphismu = Id − SD and its inverseu−1, observe
thatSD(xl ) = 1

(l+3)(l+1)
xl+3. This gives for the kernel KerD = u−1(K ◦) theK-basis

u−1(1) = 1 + 1
3x3 + 1

3·24x3 + 1
3·24·36x3 + · · ·

u−1(x2) = x2 + 1
15x5 + 1

15·48x8 + 1
15·48·99x11 + · · ·.

Example 1bis. For theoperatorD = x2∂2
x − x∂x − x which is not perfect, we get the same

kernelK ◦ = K⊕Kx2 of D◦ = x2∂2
x −x∂x butu−1(K ◦) �= Ker D becauseu−1(1) = 1+x

does not belong to KerD. However,u−1(x2) = x2 + 1
3x3 + 1

3·8x4 + 1
3·8·15x5 + · · · is in

this kernel.

Example 2. Consider D = D = ∂y − y∂x with initial form D◦ = ∂y and queue
D = y∂x. It forms a perfect operator. We haveK ◦ = K[[x]], L◦ = K[[x, y]]y,
I ◦ = K[[x, y]], J◦ = 0, soS(xkyl ) = 1

l+1xkyl+1 and SD(xkyl ) = k
l+2xk−1yl+2. We

get KerD = u−1(K [[x]]) with

u−1(xk) = ∑k
i=0

ki

2i ·i ! x
k−i y2i .

Example 2bis. Take insteadD = D = y∂x − ∂y with initial form D◦ = y∂x and queue
D = ∂y. It is not perfect. We haveK ◦ = K[[y]], L◦ = K[[x, y]]x, I ◦ = K[[x, y]]y,
J◦ = K[[x]], soS(xk) = 0 andS(xkyl ) = 1

l+1xkyl+1 for l ≥ 1. Taking e.g.y ∈ K ◦ we

getSD(y) = S(1) = 0 andu−1(y) = y, but y �∈ Ker D.
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Outlook and open problems

In the perspective of the results of the present paper, there remain several things to
be investigated: (1) how to check whether differential operatorsD1, . . . , Dp are already
perfect; (2) if they are not, how to compute all initial monomials of their image – if this is
done, a refined division algorithm has to be formulated; (3) in the convergent power series
case, dominance is a sufficient but not necessary condition to ensure the convergence of
the solutions – find other criteria for convergence.

We comment on points (1) and (2). For simplicity, we restrict consideration to a single
operatorD = ∑

αβ cαβxα∂β ∈ Pn[∂]. Let D◦ = ∑
α−β=τ cαβxα∂β be its initial form

with respect to a chosen weight vectorλ, with kernelK ◦ = Ker D◦ and direct monomial
complementL◦. We wish to check whetherI ◦ = Im D◦ = D◦(L◦) already contains all
initial monomials of the imageI = Im D of D. This is certainly the case if all monomial
summandsDσ = ∑

α−β=σ cαβxα∂β of D produce under application toPn only initial
monomials which lie inI ◦. ThenD will be perfect. This was the case inExamples 1and2.

If some Dσ produces initial monomials in the direct monomial complementJ◦ of I ◦,
the next step is to restrictD to L◦ and to check whether these monomials can really occur
as initial monomials of the image ofL◦ underD. This was thecase inExample 1bis.

There is a third possibility, illustrated byExamples 1ter. Therecan be cancellations
between the monomials produced byD◦ and the summandsDσ for σ �= τ .
The phenomenon is similar to the cancellation of initial monomials in Buchberger’s
S-polynomials. The cancellations can be completely controlled ifD has just two monomial
summands,D = D◦ + Dσ , for oneσ ∈ Zn. This will be the subject of forthcoming work.
For more summands, the situation can be much more complicated. The objective here will
be to describe a finite algorithm which determines all initial monomials of the image ofD
up to a given degree. To be effective, it must contain a criterion which allows one to check
whether all such initial monomials are already found.

As for point (3), the problem is to characterize regular singular points of differential
equations through combinatorial criteria which can easily be checked. The methods of
proof used in the present paper are still too coarse to capture the intricate phenomena
which may appear in more than one variable.

Program for division

We briefly describe a program written for Maple 9.5 which realizes the division by
one differential operator as indicated in the Division Theorem. The complete program is
available from the authors. There are versions for both the polynomial case and the formal
power series case. In order to ensure the feasibility in the latter case, the input has to be
polynomial, and the algorithm stops after a prescribed number of steps.

Input:
D a differential operator with polynomial coefficients

D◦ the initial form of D with respect to a chosen weight vectorλ.

D thequeueD − D◦ of D
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τ the shift of D◦

κτ the coefficient function ofD◦

r the maximal number of allowed division steps

e thepolynomial to be divided byD

l parameter controlling the log-output

Output:
a, b andeesuchthat

e− ee= Da + b,

with a ∈ L◦, b ∈ J◦ and

in e <λ in e or e = 0 (in thepolynomial case)

in e >λ in e or e = 0 (in the power series case)

Description of program:

initialize

ee= e

b = 0

counter= 0

while counter= 0 and ee �= 0 do

if e◦ = in ee �∈ I ◦ = Im D◦ then

b = b + e◦

ee= ee− e◦

else

a◦ = (D◦)−1e◦

ee= ee− e◦

ee= ee− Da◦

a = a + a◦

counter= counter+1

Example of Maple-input and log-output:

# Example D = ∂y − y∂x with D◦ = ∂y

> DD:= P->collect( diff(P,y) - y*diff(P,x), distributed):
> D0:= P->collect( diff(P,y), distributed):
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> D1:= P->DD(P)-D0(P):
> tau:=[0,-1]:
> kappa := exponent -> exponent[2]:
> r:=5:
> e:=xˆ2:
> seriesdiffdiv(P,D0,kappa,tau,D1,r,1);

Main: division step 1 of 5
Main: trying to divide xˆ2 by D0
Main: ImageChecker reports xˆ2 can be divided.
Main: xˆ2 generated by xˆ2*y via D0.
Main: substitution gives new polynomial 2*yˆ2*x to check.
Main: current remainder is 0.

Main: division step 2 of 5
Main: trying to divide 2*yˆ2*x by D0
Main: ImageChecker reports 2*yˆ2*x can be divided.
Main: 2*yˆ2*x generated by 2/3*x*yˆ3 via D0.
Main: substitution gives new polynomial 2/3*yˆ4 to check.
Main: current remainder is 0.

Main: division step 3 of 5
Main: trying to divide 2/3*yˆ4 by D0
Main: ImageChecker reports 2/3*yˆ4 can be divided.
Main: 2/3*yˆ4 generated by 2/15*yˆ5 via D0.
Main: substitution gives new polynomial 0 to check.
Main: current remainder is 0.

Main: Found exact representation e = D a + b where

e = xˆ2,
a = xˆ2*y+2/3*x*yˆ3+2/15*yˆ5,
b = 0.

Main: division finished.

Program for monomialization

We now describe a program for Maple 9.5 which realizes the computation of the kernel
of one differential operator as the pullback under the mapu of the kernel of its initial
form as explained in the Monomialization Theorem. There are again versions for both the
polynomial case and the formal power series case. Below we restrict to the polynomial
case.

Input:
D a differential operator with polynomial coefficients

D◦ the initial form of D with respect to a chosen weight vectorλ.

D thequeueD − D◦ of D
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S the scissionof D◦

τ the shift of D◦

κτ the coefficient function ofD◦

r the maximal number of iterations

m a monomialxγ

l parameter controlling the log-output

Output:
p apolynomial such that

p = u−1(m),

Description of program:

initialize

p = m

pp = SD(p)

counter= 0

while counter≤ r and pp �= 0 do

pp = p + pp

pp = SD(pp)

counter= counter+1

Example of Maple-input and log-output:

# Example D = ∂y − y∂x with D◦ = ∂y

> DD:= P->collect( diff(P,y) - y*diff(P,x), distributed):
> D0:= P->collect( diff(P,y), distributed):
> D1:= P->DD(P)-D0(P):
> tau:=[0,-1]:
> kappa := exponent -> exponent[2]:
> r:=10:
> e:=xˆ4:
> uinverse(P,D0,kappa,tau,D1,r,1);

Main: found approximation
uˆ-1(xˆ4) = xˆ4

after step 1.

Main: found approximation
uˆ-1(xˆ4) = xˆ4 -2*xˆ3*yˆ2

after step 2.
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Main: found approximation
uˆ-1(xˆ4) = xˆ4 -2*xˆ3*yˆ2+ 3/2*xˆ2*yˆ4

after step 3.
Main: found approximation

uˆ-1(xˆ4) = xˆ4 -2*xˆ3*yˆ2+ 3/2*xˆ2*yˆ4- 1/2*x*yˆ6
after step 4.

Main: found approximation
uˆ-1(xˆ4) = xˆ4 -2*xˆ3*yˆ2+ 3/2*xˆ2*yˆ4- 1/2*x*yˆ6+ 1/16*yˆ8

after step 5.

Main: Found exact solution
uˆ-1(xˆ4) = xˆ4 -2*xˆ3*yˆ2+ 3/2*xˆ2*yˆ4- 1/2*x*yˆ6+ 1/16*yˆ8

after 5 steps.
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