Note

On the spectral characterization of the union of complete multipartite graph and some isolated vertices ${ }^{\star}$

Haicheng Ma ${ }^{\mathrm{a}}$, Haizhen Ren ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, Qinghai Nationalities University, Xining, Qinghai, 810007, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai, 810008, PR China

ARTICLE INFO

Article history:

Received 31 December 2009
Received in revised form 8 July 2010
Accepted 2 September 2010
Available online 24 September 2010

Keywords:

Adjacency spectrum
Cospectral graphs
DS-graph
Cospectral equivalence class

Abstract

A graph is said to be determined by its adjacency spectrum (DS for short) if there is no other non-isomorphic graph with the same spectrum. In this paper, we focus our attention on the spectral characterization of the union of complete multipartite graph and some isolated vertices, and all its cospectral graphs are obtained. By the results, some complete multipartite graphs determined by their adjacency spectrum are also given. This extends several previous results of spectral characterization related to the complete multipartite graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, undirected and simple (loops and multiple edges are not allowed). Let G be a graph with adjacency matrix $A(G)$. We denote $\operatorname{det}(\lambda I-A)$, the characteristic polynomial of G, by $P(G, \lambda)$. The multiset of eigenvalues of $A(G)$ is called the adjacency spectrum of G, or simply the spectrum of G. Since $A(G)$ is a symmetric matrix, the eigenvalues of G are real. Two graphs G and H are called cospectral, symbolically $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. It is clear that the relation \sim is an equivalence relation on graphs. We denoted by $[G]$ the cospectral equivalence class determined by G under \sim. A graph G is said to be determined by its adjacency spectrum (DS for short) if there is no other non-isomorphic graph with the same spectrum, that is $[G]=\{G\}$. For two graphs G and $H, G \cup H$ denotes the disjoint union of G and H, and $m H$ the disjoint union of m copies of H. Undefined notation and terminology will refer to those in [1,2].

As reported in [2], there are many known results about cospectral but non-isomorphic graphs. It is conjectured that almost all graphs are DS. Whenever considering the question to what extent graphs are determined by their adjacency spectrum, however, we noted that it is not easy to prove that a given graph is DS [3-14]. The recent surveys on DS and cospectral graphs can be found in [2,10], and the references therein. Therefore, it would be interesting to characterize the spectrum equivalent classes of graphs and find more examples of DS graphs. For the positive integers $n_{1}, n_{2}, \ldots, n_{k}$, let $K_{n_{1}, n_{2}, \ldots, n_{k}}$ be a complete k-partite graph and K_{1} be an isolated vertex. In this paper, we focus our attention on characterizing the cospectral equivalent class of $K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}$, and all its cospectral graphs are obtained. By the results, some complete multipartite graphs determined by their adjacency spectrum are also given. This extends several previous results of spectral characterization related to the complete multipartite graphs.

[^0]

Fig. 1. Four possible modes of induced subgraphs in G.

2. Some lemmas

The following lemmas will be used in what follows.
Lemma 2.1 ([2]). $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda\right)=\sum_{i=0}^{k}(1-i) S_{i} \lambda^{n-i}$, where $n=n_{1}+n_{2}+\cdots+n_{k}$, and $S_{i}(i=1,2, \ldots, k)$ with order i is the elementary symmetric function of the numbers $n_{1}, n_{2}, \ldots, n_{k}$ and $S_{0}=1$. Namely,

$$
\left\{\begin{array}{l}
S_{1}=\sum_{1 \leq i \leq k} n_{i}, \\
S_{2}=\sum_{1 \leq i_{1}<i_{2} \leq k} n_{i_{1}} n_{i_{2}} \\
\ldots \ldots \\
S_{k}=n_{1} n_{2} \cdots n_{k}
\end{array}\right.
$$

As pointed in [2], $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda\right)$ has exactly one positive root. In fact, let $\lambda_{1}>0$ be a root of $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda\right)$. If $\lambda_{2}>\lambda_{1}$, without loss of generality, suppose that $\lambda_{2}=r \lambda_{1},(r>1)$. Since $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda_{1}\right)=0$, i.e. $\lambda_{1}^{n}=S_{2} \lambda_{1}^{n-2}+2 S_{3} \lambda_{1}^{n-3}+\cdots+$ $(k-1) S_{k} \lambda_{1}^{n-k}$. Then

$$
\begin{aligned}
\lambda_{2}^{n}=r^{n} \lambda_{1}^{n} & =S_{2} r^{n} \lambda_{1}^{n-2}+2 S_{3} r^{n} \lambda_{1}^{n-3}+\cdots+(k-1) S_{k} r^{n} \lambda_{1}^{n-k} \\
& >S_{2} r^{n-2} \lambda_{1}^{n-2}+2 S_{3} r^{n-3} \lambda_{1}^{n-3}+\cdots+(k-1) S_{k} r^{n-k} \lambda_{1}^{n-k} \\
& =S_{2} \lambda_{2}^{n-2}+2 S_{3} \lambda_{2}^{n-3}+\cdots+(k-1) S_{k} \lambda_{2}^{n-k} .
\end{aligned}
$$

Thus, $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda_{2}\right)>0$, which implies that $P\left(K_{n_{1}, n_{2}, \ldots, n_{k}}, \lambda\right)$ has exactly one positive root.
In [12], J.H. Smith showed that the following Lemma 2.2 holds.
Lemma 2.2 ([12]).A graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph.

In fact, as illustrated in [12], if we ignore isolated vertices, and if a graph G is not a complete multipartite, then it contains an induced subgraph shown in Fig. 1(a). Since x is not an isolated vertex of G. Thus we conclude that G at least contains one of such graphs (b), (c) and (d) shown in Fig. 1 as an induced subgraph. All of these graphs have two positive eigenvalues, so we know that G has at least two positive eigenvalues.

We noted that Lemmas 2.1 and 2.2 imply the following Lemma 2.3:
Lemma 2.3 ([2,12]). A graph has exactly one positive eigenvalue if and only if all its non-isolated vertices form a complete k-partite graph with $k=1+\rho_{-}$, where ρ_{-}denotes the number of negative eigenvalues of G.

Lemma 2.4. Let $n_{1}, \ldots, n_{k}(k \geq 2)$ be the integers not less than 2 . Then

$$
n_{1} \cdots n_{k} \geq n_{1}+\cdots+n_{k}
$$

Proof. Let n_{1} and n_{2} be two integers not less than 2 . Since $\left(n_{1}-1\right)\left(n_{2}-1\right) \geq 1$. Then $n_{1} n_{2} \geq n_{1}+n_{2}$. By the inductive assumption, we can easily generalize the result to the case of $k(\geq 2)$ integers. This completes the proof.

Lemma 2.5. Let $x_{1}, x_{2}, \ldots, x_{s}(s \geq 2)$ be the positive integers, and let $x_{1}+x_{2}+\cdots+x_{s}=N^{\prime}$. Suppose that $N^{\prime}=s d+r,(0 \leq$ $r<s$). Then $x_{1} x_{2} \cdots x_{s}$ is the greatest if and only if

$$
\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}=\{d, \ldots, d, \overbrace{d+1, \ldots, d+1}^{r}\}
$$

and the greatest product is $d^{s-r}(d+1)^{r}$.
Proof. The following Fact 1 clearly holds.
Fact 1. Let x, y be two positive integers. If $x-y \geq 2$, then $(x-1)(y+1)>x y$.

We noted that above Fact 1 implies that for two positive integers a and b, if $a+b$ is constant, the more a being close to b the greater $a b$. Furthermore, by continuously applying Fact 1 we can easily generalize the result to the case of $s(\geq 2)$ positive integers, i.e., for the positive integers $x_{1}, x_{2}, \ldots, x_{s}(s \geq 2)$, if their sum is constant, the more they being close to each other the greater their product. This proves Lemma 2.5.

In addition, the dual law of Lemma 2.5 holds, i.e., for the positive integers $x_{1}, x_{2}, \ldots, x_{s}(s \geq 2)$, if their product is constant, the more they being close to each other the smaller their sum, and which can be formulated as the following Lemma 2.6:

Lemma 2.6. Let $x_{1}, x_{2}, \ldots, x_{s}$ be the positive integers, and let $x_{1} x_{2} \cdots x_{s}=d^{s-r}(d+1)^{r}$, where $0 \leq r<s$. Then $x_{1}+x_{2}+\cdots+x_{s}$ is the smallest if and only if

$$
\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}=\{d, \ldots, d, \overbrace{d+1, \ldots, d+1}^{r}\}
$$

and the smallest sum is $s d+r$.

3. Main results and proofs

Let $n_{1}, n_{2}, \ldots, n_{k}$ be the positive integers and s be a non-negative integer. For $a \in\left\{k, k+1, \ldots, n_{1}+n_{2}+\cdots+n_{k}+s\right\}$, if the equation

$$
\begin{equation*}
\left(x-n_{1}\right)\left(x-n_{2}\right) \cdots\left(x-n_{k}\right)+\left(n_{1}+n_{2}+\cdots+n_{k}-a\right) x^{k-1}=0 \tag{1}
\end{equation*}
$$

has only integral roots: $x_{1}, x_{2}, \ldots, x_{k}$, then the sequence $\left(x_{1}, x_{2}, \ldots, x_{k}, a\right)$ is called a suitable solution of (1). Denoted by \mathcal{N} the set of all suitable solutions of (1).

Theorem 3.1. Let $n_{1}, n_{2}, \ldots, n_{k}$ be the positive integers and s be a non-negative integer.
(i)

$$
\left[K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}\right]=\left\{K_{x_{1}, x_{2}, \ldots, x_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \mid\left(x_{1}, x_{2}, \ldots, x_{k}, a\right) \in \mathcal{N}\right\}
$$

where \mathcal{N} denotes the set of all suitable solutions of Eq. (1).
(ii) $K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}$ is DS if and only if there is no suitable solution of Eq. (1) except $a=n_{1}+n_{2}+\cdots+n_{k}$.

Proof. (i) If $\left(x_{1}, x_{2}, \ldots, x_{k}, a\right) \in \mathcal{N}$. Then we have

$$
\left\{\begin{array}{l}
\sum_{1 \leq i \leq k} x_{i}=a, \tag{2}\\
\sum_{1 \leq i_{1}<i_{2} \leq k} x_{i_{1}} x_{i_{2}}=\sum_{1 \leq i_{1}<i_{2} \leq k} n_{i_{1}} n_{i_{2}}, \\
\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq k} x_{i_{1}} x_{i_{2}} x_{i_{3}}=\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq k} n_{i_{1}} n_{i_{2}} n_{i_{3}}, \\
\cdots \cdots \cdots \\
x_{1} x_{2} \cdots x_{k}=n_{1} n_{2} \cdots n_{k} .
\end{array}\right.
$$

By Lemma 2.1, we get

$$
K_{x_{1}, x_{2}, \ldots, x_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \sim K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1} .
$$

Thus

$$
K_{x_{1}, x_{2}, \ldots, x_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \in\left[K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}\right] .
$$

On the contrary, let $H \in\left[K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}\right]$. Then H has exactly one positive eigenvalue. By Lemma 2.2, the nonisolated vertices of H form a complete l-partite graph. Further, by Lemma 2.3 and comparing the number of their negative eigenvalues, we have $l-1=k-1$, which implies that the non-isolated vertices of H form a complete k-partite graph. Thus, we may set $H \cong K_{m_{1}, m_{2}, \ldots, m_{k}} \cup t K_{1}$. Then,

$$
P\left(K_{m_{1}, m_{2}, \ldots, m_{k}} \cup t K_{1}, \lambda\right)=P\left(K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}, \lambda\right) .
$$

By Lemma 2.1, ($m_{1}, m_{2}, \ldots, m_{k}$) is a positive integer solution of the Diophantine equations (2) for $a=m_{1}+m_{2}+$ $\cdots+m_{k}$, and $k \leq a=m_{1}+m_{2}+\cdots+m_{k} \leq m_{1}+m_{2}+\cdots+m_{k}+t=n_{1}+n_{2}+\cdots+n_{k}+s$. Therefore, $\left(m_{1}, m_{2}, \ldots, m_{k}, a\right)$ is a suitable solution of Eq. (1), i.e., $\left(m_{1}, m_{2}, \ldots, m_{k}, a\right) \in \mathcal{N}$.
(ii) Suppose that there exist $a \in\left\{k, k+1, \ldots, n_{1}+n_{2}+\cdots+n_{k}+s\right\}$ and $a \neq n_{1}+n_{2}+\cdots+n_{k}$ such that Eq. (1) has suitable solution: $\left(m_{1}, m_{2}, \ldots, m_{k}, a\right)$. By the relationship between roots and coefficients, we know that

$$
\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} \neq\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}
$$

So,

$$
K_{m_{1}, m_{2}, \ldots, m_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \in\left[K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}\right]
$$

and

$$
K_{m_{1}, m_{2}, \ldots, m_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \neq K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}
$$

which is impossible. This proves the necessity. To prove the sufficiency, note that if $K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}$ is not DS. By (i) we may set $K_{m_{1}, m_{2}, \ldots, m_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \in\left[K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}\right]$ and $K_{m_{1}, m_{2}, \ldots, m_{k}} \cup\left(n_{1}+n_{2}+\right.$ $\left.\cdots+n_{k}+s-a\right) K_{1} \neq K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}$, where $a=m_{1}+m_{2}+\cdots+m_{k}$. Then $\left(m_{1}, m_{2}, \ldots, m_{k}, a\right)$ is a suitable solution of Eq. (1), and $a \neq n_{1}+n_{2}+\cdots+n_{k}$ (Otherwise, by Eq. (1) we have $\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, then $K_{m_{1}, m_{2}, \ldots, m_{k}} \cup\left(n_{1}+n_{2}+\cdots+n_{k}+s-a\right) K_{1} \cong K_{n_{1}, n_{2}, \ldots, n_{k}} \cup s K_{1}$. This is contradictory.) This completes the proof.

Corollary 3.1. Let s, t be the positive integers. The complete bipartite graph $K_{s, t}$ is DS if and only if the equality $n=s t$ is the decomposition of two factors s and t with the smallest sum $s+t$.
Proof. To prove the sufficiency, suppose that $\left[K_{s, t}\right]=\left\{K_{x_{1}, x_{2}} \cup(s+t-a) K_{1} \mid\left(x_{1}, x_{2}, a\right) \in \mathcal{N}\right\}$. Then by Theorem 3.1, $x_{1}+x_{2}=$ $a \leq s+t$ and $x_{1} x_{2}=s t=n$. So we have $\left\{x_{1}, x_{2}\right\}=\{s, t\}$ and $s+t=a$. Thus $\left[K_{s, t}\right]=\left\{K_{s, t}\right\}$. Now we prove the necessity. If $K_{s, t}$ is DS, we assume that there exist the positive integers s_{1} and t_{1} such that $n=s_{1} t_{1}$ and $s_{1}+t_{1}<s+t$. This implies (by Theorem 3.1) that $K_{s, t} \sim K_{s_{1}, t_{1}} \cup\left(s+t-s_{1}-t_{1}\right) K_{1}$, which is impossible.
Theorem 3.2. Let $p_{1}, p_{2}, \ldots, p_{s}$ be the prime numbers and t be a non-negative integer. Then $\underbrace{K_{1}, 1, \ldots, 1, p_{1}, p_{2}, \ldots, p_{s}}_{t}$ is $D S$.
Proof. By Theorem 3.1, let

$$
K_{x_{1}, x_{2}, \ldots, x_{s+t}} \cup\left(t+p_{1}+\cdots+p_{s}-x_{1}-\cdots-x_{s+t}\right) K_{1} \in[K_{\underbrace{1,1, \ldots, 1,}_{t}, p_{1}, p_{2}, \ldots, p_{s}}]
$$

Then $x_{1} x_{2} \cdots x_{s+t}=p_{1} p_{2} \cdots p_{s}$. Obviously, the numbers of 1 in $x_{1}, x_{2}, \ldots, x_{s+t}$ are at least t. If the numbers of 1 in $x_{1}, x_{2}, \ldots, x_{s+t}$ are greater than t, without loss of generality, let $x_{1}=x_{2}=\cdots=x_{a}=1,(a>t)$, and let $x_{a+1}=$ $p_{1}^{\prime} \cdots p_{l_{1}}^{\prime}, \ldots, x_{s+t}=p_{l_{i}}^{\prime} \cdots p_{s}^{\prime}$, where $p_{1}^{\prime}, \ldots, p_{l_{1}}^{\prime}, \ldots, p_{l_{i}}^{\prime}, \ldots, p_{s}^{\prime}$ is a permutation of $p_{1}, p_{2}, \ldots, p_{s}$. By Lemma 2.4 , we have

$$
x_{a+1} \geq p_{1}^{\prime}+\cdots+p_{l_{1}}^{\prime}, \ldots, x_{s+t} \geq p_{l_{i}}^{\prime}+\cdots+p_{s}^{\prime}
$$

and

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{a}+x_{a+1}+\cdots+x_{s+t} & \geq a+p_{1}^{\prime}+\cdots+p_{l_{1}}^{\prime}+\cdots+p_{l_{i}}^{\prime}+\cdots+p_{s}^{\prime} \\
& >t+p_{1}+p_{2}+\cdots+p_{s}
\end{aligned}
$$

Considering the number of vertices of graphs, this is contradictory. Thus, the numbers of 1 in $x_{1}, x_{2}, \ldots, x_{s+t}$ exactly are t. By symmetry and the unique decomposition theorem of integers, we can get $\left\{x_{1}, x_{2}, \ldots, x_{s+t}\right\}=\left\{1, \ldots, 1, p_{1}, \ldots, p_{s}\right\}$. Therefore, $K_{1, \ldots, 1, p_{1}, \ldots, p_{s}}$ is uniquely determined by its adjacency spectrum. This completes the proof.

By Theorem 3.2, we get the following Corollary 3.2:
Corollary 3.2. Let $p_{1}, p_{2}, \ldots, p_{s}$ be the prime numbers. Then $K_{p_{1}, p_{2}, \ldots, p_{s}}$ is DS.
Theorem 3.3. Let d, s be two positive integers. Then $K^{(d+1), \ldots,(d+1),} \underbrace{d, \ldots, d}_{r}$ is DS, where $0 \leq r<s$.

Proof. Let

$$
K_{x_{1}, x_{2}, \ldots, x_{s}} \cup\left(s d+r-x_{1}-\cdots-x_{s}\right) K_{1} \in[\underbrace{K_{(d+1), \ldots,(d+1)}^{d}, \ldots, \ldots, d}_{r}] .
$$

Then $x_{1}+x_{2}+\cdots+x_{s} \leq s d+r$ and $x_{1} x_{2} \cdots, x_{s}=d^{s-r}(d+1)^{r}$ by Theorem 3.1. Thus, by Lemma 2.6 we have

$$
\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}=\{\underbrace{d+1, \ldots, d+1,}_{r} d, \ldots, d\} .
$$

Therefore, $K^{d+1, \ldots, d+1}, \underbrace{d, \ldots, d}$ is uniquely determined by its adjacency spectrum, where $0 \leq r<s$. This completes the proof.

By Theorem 3.3, we get $K_{\underbrace{}_{t}}^{d_{d, \ldots, d}}$, is DS , where d and t are positive integers.

4. Remarks

We noted that Theorem 3.1 implies that a new method of constructing cospectral graphs. For example, $K_{n(2 n-1)^{2},(2 n-1),(2 n-1)}$ is cospectral with $K_{n,(2 n-1)^{2},(2 n-1)^{2}} \bigcup 4(n-1)^{3} K_{1}$. In addition, we know that the complete multipartite graph is not necessarily DS with respect to its adjacency matrix. Thus, we pose the following problem:

Problem: Characterize all complete multipartite graphs that are DS.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, North-Holland, Amsterdam, 1976.
[2] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1982.
[3] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241-272.
[4] E.R. van Dam, W.H. Haemers, J.H. Koolen, E. Spence, Characterizing distance-regularity of graphs by the spectrum, J. Combin. Theory Ser. A 113 (2006) 1805-1820.
[5] M. Doob, W.H. Haemers, The complement of the path is determined by its spectrum, Linear Algebra Appl. 356 (2002) 57-65.
[6] N. Ghareghani, G.R. Omidi, B. Tayfeh-Rezaie, Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 420 (2007) 483-489.
[7] T. Huang, C. Liu, Spectral characterization of some generalized odd graphs, Graphs Comb. 15 (1999) 195-209.
[8] M. Lepović, I. Gutman, No starlike trees are cospectral, Discrete Math. 242 (2002) 291-295.
[9] B.D. McKay, On the spectral characterisation of trees, Ars Combin. 3 (1979) 219-232.
[10] N. Marc, Graphs determined by polynomial invariants, Theoret Comput. Sci. 307 (2003) 365-384.
[11] G.R. Omidi, The spectral characterization of graphs of index less than 2 with no path as a component, Lin. Alg. Appl. 428 (2008) 1696-1705.
[12] J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970.
[13] W. Wang, C.X. Xu, On the spectral characterization of T-shape trees, Linear Algebra Appl. 414 (2006) 492-501.
[14] W. Wang, C.X. Xu, Note: on the generalized spectral characterization of graphs having an isolated vertex, Linear Algebra Appl. 425 (2007) $210-215$.

[^0]: . Supported by the National Natural Science Foundation of China (10861009, 11061027).

 * Corresponding author.

 E-mail addresses: qhmymhc@163.com (H. Ma), haizhenr@126.com (H. Ren).

