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Abstract

In 1994, Cornuéjols and Novick published a classification of ideal and minimally non-ideal circulant
clutters. One of their main results for doing so relates contractions of these clutters, simple directed cycles
in an appropriate graph, and algebraic conditions. The purpose of this paper is twofold: to correct a small
inaccuracy of the necessity of the algebraic conditions in the original proof, and to show that these algebraic
conditions are actually sufficient, by giving a constructive proof of the existence of cycles.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Cornuéjols and Novick [1] described many ideal and minimally non-ideal clutters, studying
in particular the circulant clutters C k

n which are ideal or minimally non-ideal (we refer the reader
to the next subsection for basic notations and definitions).

One of the main tools in their classification is the following lemma.

Lemma 1. (See Lemma 4.5 in [1].) Suppose 2 � k � n − 2. If a subset N of V (C k
n ) induces a

simple directed cycle, D, in G(C k
n ), then there exist n1, n2, n3 ∈ Z+, n1 � 1, such that

(i) nn1 = kn2 + (k + 1)n3,
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(ii) gcd(n1, n2, n3) = 1,
(iii) if k −n1 � 0, then E(C k

n /N) = ∅ or {∅}. If k −n1 � 1, then C k
n /N is of the form C k−n1

n−n2−n3
.

There seems to be an inaccuracy in the proof given in [1] to show that (ii) holds: it is stated
there that n2 + n3 ≡ −1 (mod n1) and this need not be true in general. For example, consider

n = 11, k = 8, n1 = 7, n2 = 4, n3 = 5, (1)

and the cycle (0,8,5,3,1,9,6,4,2,0), whose corresponding increments are (8,8,9,9,8,8,

9,9,9).
In Section 2 we show first that if D is a simple directed cycle in G(C k

n ), then some algebraic
conditions must be satisfied, and give afterwards a proof of the property gcd(n1, n2, n3) = 1.

In the final section we show that the given algebraic conditions are actually sufficient for
the existence of such cycles. We point out that this construction is not needed for Cornuéjols
and Novick’s results on ideal or minimally non-ideal circulant clutters.

1.1. Basic notations and definitions

We will follow mostly the notations and definitions used by Cornuéjols and Novick, except
for a few instances which will be indicated here. For further notations and definitions, we refer
the reader to the original article [1].

Zn denotes the set of equivalence classes of the integers modulo n, which in this paper
will always be represented by {0, . . . , n − 1}. For fixed k,n ∈ N, 1 � k � n − 1, we set Ci =
{i, i + 1, . . . , i + (k − 1)} (sums taken modulo n) and define the circulant clutter C k

n by set-
ting V (C k

n ) = Zn and E(C k
n ) = {Ci : i ∈ Zn}. G(C k

n ) denotes the directed graph having ver-
tex set V (C k

n ) = Zn, and (i, i′) is an arc of G(C k
n ) if and only if either i′ = i + k (mod n)

or i′ = i + (k + 1) (mod n). A simple directed cycle in G(C k
n ) is a sequence of vertices

(v0, v1, . . . , vm = v0), with v0, v1, . . . , vm−1 distinct, such that (vi, vi+1) is an arc of G(C k
n );

and we allow m = 1, so that a loop will be considered to be a simple directed cycle.

2. Properties of cycles in G(CCC k
n)

Suppose D is a simple directed cycle in G(C k
n ), and let N = V (D), n2 be the number of arcs

of length k in D, and n3 be the number of arcs of length k+1. Since D is a cycle, n2k+n3(k+1)

is a multiple of n, and therefore there exists a unique n1 such that

n1n = n2k + n3(k + 1). (2)

For fixed n1 the general solution for the unknowns n2 and n3 of this Diophantine equation is
given by n2 = −n1n+ z(k + 1) and n3 = n1n− zk, for any z ∈ Z. Adding these equations for n2
and n3 we obtain n2 + n3 = z. On the other hand, if m = |N |, since D is simple, we have

m = n2 + n3, (3)

and therefore,

n2 = −n1n + m(k + 1), n3 = n1n − mk. (4)

Thus, given n2 and n3 we may obtain m and n1 by means of Eqs. (3) and (2), and, conversely,
given m and n1 we may obtain n2 and n3 by means of the equations in (4).

It is rather easy to show now:
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Lemma 2. If m, n1, n2 and n3 are non-negative integers satisfying Eqs. (2) and (3) (hence
also (4)), then gcd(n1, n2, n3) = gcd(n1,m).

Suppose that m, n1, n2 and n3 are non-negative integers so that Eqs. (2) and (3) hold. Then,
mk � n1n � m(k + 1), or

k

n
� n1

m
� k + 1

n
. (5)

Since we always have �km/n� � �(k + 1)m/n	, we may state:

Lemma 3. Let n, k,m be given, with 1 � k � n − 1 and 0 � m � n − 1. Then there exist
n1, n2, n3 � 0 satisfying Eqs. (2) and (3) if and only if⌈

km

n

⌉
=

⌊
(k + 1)m

n

⌋
. (6)

Moreover, if the equality (6) holds, n1 is determined by

n1 =
⌈

km

n

⌉
, (7)

and

(i) m = 0 if and only if n1 = 0, and if m > 0 then 0 < n1 � min{m,k}.
(ii) n2 and n3 are uniquely determined by the equations in (4).

Lemma 4. If the assumptions of Lemma 1 hold, then gcd(m,n1) = 1.

Proof. Let d = gcd(m,n1), and suppose D = (v0, v1, . . . , vm = v0). Let δi ∈ {k, k + 1} be de-
fined by vi+1 = vi + δi (mod n) for i = 0, . . . ,m − 1, and therefore |{i: δi = k}| = n2 and
|{i: δi = k + 1}| = n3.

Suppose that d > 1, and consider

n′
1 = n1/d, n′

2 = n2/d, n′
3 = n3/d, m′ = m/d,

so that n′
1n = n′

2k + n′
3(k + 1), and m′ = n′

2 + n′
3. For j = 0, . . . ,m − m′, let us define sj =

|{i: j � i < j + m′, δi = k}|.
If there exists j , 0 � j � m − m′, such that sj = n′

2, then

vj+m′ ≡ vj + δj + · · · + δj+m′−1 ≡ vj + n′
2k + n′

3(k + 1) ≡ vj (mod n),

and the cycle is not simple. Suppose now that sj 
= n′
2 for all j , and consider the sums

s0, sm′ , s2m′ , . . . , sm−m′ = s(d−1)m′ . We cannot have sim′ > n′
2 for all i = 0, . . . , d − 1, since this

would imply

n2 = ∣∣{i: δi = k}∣∣ =
d−1∑
j=0

sjm′ > dn′
2 = n2.

Similarly, we cannot have sim′ < n′
2 for all i = 0, . . . , d − 1. That is, there exists i such that

one of {sim′, s(i+1)m′ } is greater than n′
2 and the other is smaller. Since sj+1 − sj ∈ {0,1,−1},

and the values sim′ , sim′+1, . . . , s(i+1)m′ go from something smaller than n′
2 to something greater,

or vice versa, we must have sj = n′
2 for some j ∈ {im′ + 1, . . . , (i + 1)m′ − 1}, which is a

contradiction. �
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3. Existence of cycles in G(CCC k
n)

We will show now that the algebraic conditions of the previous section are also sufficient for
the existence of a simple directed cycle:

Theorem 5. Let n, k and m be given, 1 � k � n − 1, 1 � m � n − 1. Then there exists a simple
directed cycle D in G(C k

n ) with |V (D)| = m if and only if

(1) Eq. (6) holds, and
(2) if n1 is defined as in Eq. (7), then gcd(m,n1) = 1.

We will split the proof of this theorem into several steps, noticing that the “only if” part is
covered by Lemmas 3 and 4.

Let us suppose now that the inequalities in (5) hold. Defining the values n2 and n3 as in
Eqs. (4), we seek a simple directed cycle with n2 arcs of length k, and n3 arcs of length k + 1
in G(C k

n ). Since we are assuming V (G(C k
n )) = V (C k

n ) = Zn = {0,1, . . . , n − 1}, it will be
enough to construct a cycle through 0 ∈ Zn.

If k/n = n1/m, then n3 = 0 and n2 = m. Since gcd(m,n1) = 1, we must have n = dm

and k = dn1, where d = gcd(n, k). Thus, (0, k,2k, . . . , (mk) = 0) (products taken modulo n)
is a simple directed cycle. Similarly, if (k + 1)/n = n1/m, then n2 = 0, n3 = m, and we may
construct the simple directed cycle (0, k + 1,2(k + 1), . . . ,m(k + 1) = 0) (sums and products
modulo n).

Let us assume now that the inequalities in (5) are strict, and therefore

1 � n1 < m, n2, n3 > 0.

Although we know what number of arcs of length k or k + 1 to include, not any order will
make a simple directed cycle. For instance, if in the example (1) we take the increments in the
order (8,8,8,9,8,9,9,9,9), we obtain the cycle (0,8,5,2,0,8,6,4,2,0), which is not simple.

To construct a simple directed cycle, we will construct a (simple directed) path
(P0,P1, . . . ,Pm), with end points P0 = (0,0) and Pm = (n2k,n3(k + 1)), in the lattice
{rk, s(k + 1): r, s ∈ Z}, and moving only rightwards or upwards. Thus, the path will remain
inside the rectangle

R0 = {
(x, y) ∈ R

2: 0 � x � n2k, 0 � y � n3(k + 1)
}
.

Once an appropriate path has been constructed in the restricted lattice

R= {(
rk, s(k + 1)

)
: r, s ∈ Z, 0 � r � n2, 0 � s � n3

}
,

the simple directed path in G(C k
n ) will be obtained by taking

vj = aj + bj (mod n) if Pj = (aj , bj ), for j = 0, . . . ,m.

Except at its end points, our path will have to avoid points in the restricted lattice R of the form
(a, b) with a + b ≡ 0 (mod n). That is, there is a second restricted lattice involved:

M = {
P = (a, b) ∈ R: a + b ≡ 0 (mod n)

}
.

If gcd(m,n1) = 1, then—as we will show momentarily—there are no points of M in the
interior of the diagonal � of R0 joining the vertices (0,0) and (n2k,n3(k + 1)), and our aim is to
construct a path staying as close as possible to �.
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Let us denote by λ the slope of �,

λ = n3(k + 1)

n2k
,

and for P = (rk, s(k + 1)) ∈ M let us define h and t by

h = r + s, tn = rk + s(k + 1). (8a)

From Eqs. (4) applied to h and t , we know that

r = −tn + h(k + 1), s = tn − hk. (8b)

If P ∈ M∩ �, and P 
= (0,0), we have

λ = n3(k + 1)

n2k
= s(k + 1)

rk
,

which written in terms of m, n1, h and t , yields tm = n1h. Since gcd(m,n1) = 1 and we are
assuming P ∈ R0, this implies t = n1, h = m. Thus:

Lemma 6. If gcd(m,n1) = 1, then the only points in M∩ � are the end points of �.

Using the same type of calculations, we may estimate the distance from a point P ∈ M to �.
To be more precise, for P = (x, y) ∈ R0, let δx(P ) and δy(P ) denote the horizontal and vertical
distances from P to �, i.e.,

δx(P ) = |x − y/λ|, δy(P ) = |y − λx|.
Then, if P ∈M is above �, with the notations in (8), we have

δy(P ) = s(k + 1) − λrk = n

n2
(tm − n1h)(k + 1).

Since tm − n1h is a positive integer, we must have tm − n1h � 1, so that

δy(P ) � n

n2
(k + 1).

Given that δx(P ) = δy(P )/λ, we also have

δx(P ) = n2k

n3(k + 1)
δy(P ) � n

n3
k.

Using similar arguments when P ∈ M is below � (or just using symmetry about the midpoint
of �), we get:

Lemma 7. If P = (a, b) = (rk, s(k + 1)) ∈M− �, then

δx(P ) � n

n3
k and δy(P ) � n

n2
(k + 1).

We define the path (P0, . . . ,Pm) in R, with Pj = (aj , bj ) recursively by

P0 = (0,0),

and for j = 1, . . . ,m,

Pj = (aj , bj ) =
{

Pj−1 + (k,0) if bj−1 � λaj−1,
Pj−1 + (0, k + 1) in other case.
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In words: if Pj is on or above � we move one step (of length k) to the right, or else we move
up one step (of length k + 1). It should be clear that in the path (P0, . . . ,Pm) there is one di-
rection (up or to the right, depending on whether n3 � n2 or not), in which we never make two
consecutive steps. More formally:

Lemma 8. Let (P0, . . . ,Pm) be the path defined previously. Then, for j = 0, . . . ,m, we have:

(i) δy(Pi) � k + 1 if n3 � n2,
(ii) δx(Pi) � k if n2 � n3.

Moreover,

(iii) if n3 � n2 and Pj is below �, then δy(Pj ) � n3(k + 1)/n2,
(iv) if n2 � n3 and Pj is above �, then δx(Pj ) � n2k/n3.

We will show now that we cannot have two distinct points, Pj = (aj , bj ) and Pj ′ = (aj ′ , bj ′),
in the path with aj + bj ≡ aj ′ + bj ′ (mod n), unless they are the end points of �. Suppose, by
contradiction, that this is true for some j < j ′, so that Pj ′ ∈ Pj +M = {Pj + P : P ∈ M}.

Let us assume n3 � n2 (the case n3 > n2 is similar), and consider the point Q on Pj + �

having the same horizontal coordinate as Pj ′ (Q is not necessarily inside the rectangle R0). By
Lemma 7, the vertical distance δy(Pj ′ ,Q) between Pj ′ ∈ Pj +M and Q ∈ Pj + � satisfies

δy(Pj ′ ,Q) � n

n2
(k + 1),

unless Pj = (0,0) and Pj ′ = (n2k,n3(k + 1)).
Noticing that δy(Pj ) = δy(Q), since the segment PjQ is parallel to �, we see that if Pj ′ and Q

are on the same side of �, by Lemma 8 we have
n

n2
(k + 1) � δy(Pj ′ ,Q) � δy(Pj ′) � k + 1,

which is impossible since n2 < n. On the other hand, if Pj ′ and Q are on different sides of �,
applying the second part of Lemma 8 to either Pj or Pj ′ , we obtain

n

n2
(k + 1) � δy(Pj ′ ,Q) � δy(Pj ′) + δy(Pj ) � n3

n2
(k + 1) + k + 1 = m

n2
(k + 1),

again a contradiction since m < n. Thus, Theorem 5 is proved.
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