# 5-Arc transitive cubic Cayley graphs on finite simple groups ${ }^{\star}$ 

Shang Jin Xu ${ }^{\text {a,b }}$, Xin Gui Fang ${ }^{\text {b }}$, Jie Wang ${ }^{\text {b,c }}$, Ming Yao Xu ${ }^{\text {b,d }}$<br>${ }^{\text {a }}$ School of Mathematics and Information Sciences, Guangxi University, Nanning 530004, People's Republic of China<br>${ }^{\mathrm{b}}$ LMAM \& School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China<br>${ }^{\text {c }}$ National Natural Science Foundation of China, Beijing 100085, People's Republic of China<br>${ }^{\mathrm{d}}$ School of Mathematics and Computer Sciences, Shanxi Teachers University, Linfen 041004, People's Republic of China

Received 19 March 2005; accepted 22 July 2005
Available online 28 February 2006


#### Abstract

In this paper, we determine all connected 5-arc transitive cubic Cayley graphs on the alternating group $\mathbf{A}_{47}$; there are only two such graphs (up to isomorphism). By earlier work of the authors, these are the only two non-normal connected cubic arc-transitive Cayley graphs for finite nonabelian simple groups, and so this paper completes the classification of such non-normal Cayley graphs.


(c) 2006 Elsevier Ltd. All rights reserved.

## 1. Introduction

Let $G$ be a group. The subset $S$ of $G$ is called a Cayley subset if $1 \notin S$ and $S^{-1}=S$. The Cayley graph $\Gamma:=\operatorname{Cay}(G, S)$ on $G$ with respect to $S$ is defined by

$$
\begin{array}{ll}
\text { its vertex set } & V(\Gamma):=G \text {, and } \\
\text { its edge set } & E(\Gamma):=\{\{g, s g\} \mid g \in G, s \in S\} .
\end{array}
$$

Clearly, its full automorphism group $\operatorname{Aut}(\Gamma)$ acts transitively on the vertex set $V(\Gamma)$ since $\operatorname{Aut}(\Gamma) \geq R(G)$, the right regular representation of $G$, and hence $\Gamma$ is vertex-transitive. We always denote $R(G)$ by $G$ for short. It is well-known that $\Gamma$ is connected if and only if $\langle S\rangle=G$.

[^0]To study the symmetry properties of Cayley graphs, we need more concepts of isomorphisms between Cayley graphs and their full automorphism groups.

Denote the automorphism group of the group $G$ by $\operatorname{Aut}(G)$. A Cayley subset $S$ of $G$ is called a CI-subset of $G$ (where CI stands for "Cayley isomorphism"), if for any isomorphism $\operatorname{Cay}(G, S) \cong \operatorname{Cay}(G, T)$ of Cayley graphs there exists an $\alpha \in \operatorname{Aut}(G)$ such that $S^{\alpha}=T$.
$\operatorname{Denote} \operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$, and we easily have $\operatorname{Aut}(\Gamma) \geq G \rtimes \operatorname{Aut}(G, S)$. As a matter of fact, $\operatorname{Aut}(\Gamma)=G \rtimes \operatorname{Aut}(G, S)$ is equivalent to $G \unlhd \operatorname{Aut}(\Gamma)$ (see [2]). In this case we call the Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ normal for $G$.

Let $\Gamma$ be a graph, $G \leq \operatorname{Aut}(\Gamma)$ and $s$ a positive integer. $\Gamma$ is said to be $(G, s)$-arc transitive, if $G$ acts transitively on the set of $s$-arcs of $\Gamma$, where an $s$-arc is a sequence $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ in $V(\Gamma)$ satisfying $\left(v_{i-1}, v_{i}\right) \in E(\Gamma)$ and $v_{i-1} \neq v_{i+1}$ for all $i$. In particular, ( $\left.\operatorname{Aut}(\Gamma), s\right)$-arc transitive is called $s$-arc transitive, and 1-arc transitive is simply called arc transitive.

Sabidussi gave a construction for all vertex-transitive (not only Cayley) graphs by using a group-theoretic method.

Let $G$ be a finite group and $T$ a subgroup of it. Let $D$ be a union of several double cosets of $T$ satisfying $D^{-1}=D$. He defined a graph $\Gamma$ with vertex set $V(\Gamma)=[G: T]$, the set of all right cosets of $T$, and edge set $E(\Gamma)=\{\{T g, T d g\} \mid g \in G, d \in D\}$. This graph is called the Sabidussi cosets graph of $G$ with respect to $T$ and $D$, denoted by $\operatorname{Sab}(G, T, D)$.

Obviously, $\Gamma$ is connected if and only if $\langle D\rangle=G$. It is easy to check that $\operatorname{Sab}(G, T, D)$ is $G$-arc transitive if and only if $D=T d T$ (a single double coset) for some $d \in G$. We always denote $\operatorname{Sab}(G, T, T d T)$ by $\operatorname{Sab}(G, T, d)$ for short.

In fact, any vertex-transitive graph $\Gamma$ is the Sabidussi coset graph of its full automorphism $\operatorname{group} A:=\operatorname{Aut}(\Gamma)$ with respect to $T=A_{v}$, the stabilizer of any vertex $v$, and $D:=\{\alpha \in A \mid$ $\left.\left\{v, v^{\alpha}\right\} \in E(\Gamma)\right\}$, which is a union of several double cosets of $T$.

Let $P(G)$ be the right multiplication action of $G$ on $[G: T]$. Since $\operatorname{Aut}(\operatorname{Sab}(G, T, D)) \geq$ $P(G)$, all Sabidussi coset graphs are vertex transitive. If $T$ is core-free, that is $\cap_{g \in G} T^{g}=1$, then $P(G) \cong G$. We always denote $P(G)$ by $G$.

Regarding connected cubic $s$-arc transitive graphs, the first important result due to Tutte ([3, Theorem 18.6]) claims that there is no finite $s$-arc transitive cubic graphs for $s>5$. Also, it is easy to check that for normal cubic $s$-arc transitive Cayley graphs, we have $s \leq 2$. So, if a connected cubic Cayley graph is $s$-arc transitive $s>2$, then it must be nonnormal.

Much excellent work has dealt with arc-transitive Cayley graphs on finite nonabelian simple groups. For example, in [4, Theorem 7.1.3], Li proved that all connected cubic arc-transitive Cayley graphs are normal except for the following exceptions listed below:

$$
\mathbf{A}_{5}, \mathbf{P S L}_{2}(11), \mathbf{M}_{11}, \mathbf{A}_{11}, \mathbf{M}_{23}, \mathbf{A}_{23}, \text { and } \mathbf{A}_{47} .
$$

In [1] we proved that the only exception is $\mathbf{A}_{47}$. For all other groups listed above, we proved that their connected cubic arc-transitive Cayley graphs are normal. There we also constructed a connected 5-arc transitive cubic Cayley graph for $\mathbf{A}_{47}$.

The purpose of this paper is to classify all connected 5-arc transitive cubic Cayley graphs on the alternating group $\mathbf{A}_{47}$. By the remarks above, it is also a classification of connected 5-arc transitive cubic Cayley graphs on finite simple groups.

The rest of this paper is organized as follows. After giving some preliminary results in Section 2, we construct all connected 5-arc transitive cubic Cayley graphs on $\mathbf{A}_{47}$ in Section 3, then in the next section we determine the isomorphisms between them, and finally we complete the classification in the last section.

## 2. Preliminaries

The first lemma is about the relation between Sabidussi coset graphs and Cayley ones.
Lemma 2.1. (1) Let $\Gamma:=\operatorname{Cay}(G, S)$ be a Cayley graph, and $A:=\operatorname{Aut}(\Gamma)$. Then the vertex-stabilizer $A_{1}$ is a complement of $G$ in $A$, where 1 is the identity of $G$, and we have $\Gamma \cong \bar{\Gamma}:=\operatorname{Sab}\left(A, A_{1}, A_{1} S A_{1}\right)$. In particular, there exists an $s \in S$ such that $A_{1} S A_{1}=A_{1} s A_{1}$ when $\Gamma$ is arc transitive.
(2) Conversely, let $\bar{\Gamma}:=\operatorname{Sab}(A, T, D)$ be a Sabidussi coset graph and $G$ a complement of $T$ in A. Denote $S=G \cap D$. Then the Cayley graph $\Gamma:=\operatorname{Cay}(G, S)$ is isomorphic to $\bar{\Gamma}$, and hence $|S|=|D: T|$. In particular, $S$ contains an involution of $G$ if the valency of $\bar{\Gamma}$ is odd. Also $\Gamma$ is arc transitive if $D$ is a single double coset of $T$.

Proof. (1) Obvious.
(2) Since $A=G T$ and $G \cap T=1$, each coset in [A:T] has only an element of $G$ as its representative. We define a bijection $\sigma$ from $\Gamma$ to $\bar{\Gamma}$ such that $g^{\sigma}:=T g \in V(\bar{\Gamma})=[A: T]$ for all $g \in V(\Gamma)=G$. Since

$$
\left\{g, g^{\prime}\right\} \in E(\Gamma) \Leftrightarrow g^{\prime} g^{-1} \in S=G \cap D \Leftrightarrow\left\{T g, T g^{\prime}\right\} \in E(\bar{\Gamma})
$$

for any $g, g^{\prime} \in G$, we find $\Gamma \cong \bar{\Gamma}$.
By results of [1] and [3] (respectively) we easily have
Lemma 2.2. Let $G \cong \mathbf{A}_{47}$ and $\Gamma:=\operatorname{Cay}(G, S)$ be a connected 5-arc transitive cubic Cayley graph for $G$. Denote $A=\operatorname{Aut}(\Gamma)$. Then the following hold.
(1) $A \cong \mathbf{A}_{48}$;
(2) There exist an involution $s$ and a subgroup $T$ in $A$ which is isomorphic to $\mathbf{S}_{4} \times \mathbb{Z}_{2}$ such that the Sabidussi coset graph $\bar{\Gamma}:=\operatorname{Sab}(A, T, s) \cong \Gamma$. Also we have $\left|T: T \cap T^{s}\right|=3$, and $\langle T, s\rangle=A$.

The next lemma will play a very important role in proving our theorem.
Lemma 2.3. Suppose that $R$ is a regular subgroup on $\Omega:=\{1,2, \ldots, n\}$ and $s \in \mathbf{S}_{n}$. The following hold.
(1) Let $K$ be a subgroup of $R$. Then there are $|R: K| K$-orbits with length $|K|$. If $g \in R$ normalizes $K$, then $g$ induces a permutation action on the set of $K$-orbits. In particular, the action is transitive if $\langle K, g\rangle=R$;
(2) If $n=4$ and $R=\langle a\rangle \times\langle b\rangle \cong \mathbb{Z}_{2}^{2}$ such that $\langle a\rangle^{s}=\langle a\rangle$ and $b^{s}=a b$, then $s$ is an odd permutation. In particular, $s$ is a transposition if $s$ is an involution;
(3) If $n=8$ and $R=\langle a\rangle \rtimes\langle b\rangle \cong \mathbf{D}_{8}$ such that $\langle a\rangle^{s}=\langle a\rangle$ and $b^{s}=a b$, then $s$ is an odd permutation. In particular, $s$ is a product of three disjoint transpositions if $s$ is an involution.

Proof. (1) Clearly, $K$ is semiregular on $\Omega$ and each $K$-orbit has the same length $|K|$. Since $|\Omega|=|R|$, then there are $|R: K| K$-orbits on $\Omega$. Let $\Delta$ be a $K$-orbit. If $g$ normalizes $K$, then $\Delta^{g}$ is an orbit of $K^{g}=K$, and hence $g$ may act on the set of $k$-orbits. Furthermore, if $\langle K, g\rangle=R$, which is transitive on $\Omega$, then $\langle g\rangle$ is also transitive on the set of $K$-orbits.
(2) As $R=\langle a, b\rangle$ is regular on $\Omega$, we may let $a=$ (12)(34), $b=(13)(24) \in \mathbf{A}_{4}$. Since $s$ commutes with $a$ but not $b$, then $s$ is not a 3-cycle on $\Omega$ and $s \notin\langle a, b\rangle$, either. But $\langle a, b\rangle$ contains all involutions of $\mathbf{A}_{4}$, then $s$ is either $\left(i_{1} i_{2}\right)$ or $\left(i_{1} i_{2} i_{3} i_{4}\right)$, and hence $s$ is an odd permutation. In particular, $s=\left(i_{1} i_{2}\right)$ if its order is 2 .
(3) Being semiregular on $\Omega,\langle a\rangle$ has two orbits with length 4 , denoted by $\Delta_{1}, \Delta_{2}$. Without loss of generality, we may let $\Delta_{1}=\{1,2,3,4\}, \Delta_{2}=\{5,6,7,8\}$, and $a=(1234)(5678)$.

Since each of $b$ and $a b$ normalizes $\langle a\rangle$, we find $\Delta_{1}^{b}=\Delta_{1}^{a b}=\Delta_{2}$ by (1). This means that as two permutations with order 2 on $\Omega, b=\left(1 i_{1}\right)\left(2 i_{2}\right)\left(3 i_{3}\right)\left(4 i_{4}\right)$ and $a b=\left(1 j_{1}\right)\left(2 j_{2}\right)\left(3 j_{3}\right)\left(4 j_{4}\right)$ where $i_{r}, j_{r} \in \Delta_{2}$. Since $a^{b}=a^{a b}=a^{-1}$, both arrangements $i_{1} i_{2} i_{3} i_{4}$ and $j_{1} j_{2} j_{3} j_{4}$ on $\Delta_{2}$ are in the set $\{8765,7658,6587,5876\}$.

Clearly $s$ also normalizes $\langle a\rangle$, and hence $\Delta_{1}^{s}=\Delta_{1}$ or $\Delta_{2}$. We deal with these two cases separately.

Case 1: $\Delta_{1}^{s}=\Delta_{1}$. We may let $r^{s}=k_{r}$ where $r, k_{r} \in \Delta_{1}$. Then $k_{1} k_{2} k_{3} k_{4}$ is an arrangement on $\Delta_{1}$. Note that $a^{s}=a b$ and $b=\left(1 i_{1}\right)\left(2 i_{2}\right)\left(3 i_{3}\right)\left(4 i_{4}\right)$, only $\left(r i_{r}\right)^{s}=\left(k_{r} i_{r}^{s}\right)$ is a transposition of $a b$, and hence $i_{r}^{s}=j_{k_{r}}$. Thus $s=\binom{12234 i_{1} i_{2} i_{3} i_{4}}{k_{1} k_{2} k_{3} k_{4} j_{k_{1}} j_{k_{2}} j_{k_{3}} j_{k_{4}}}$.

Denote $u:=\binom{12345678}{k_{1} k_{2} k_{3} k_{4} 5678} \in \mathbf{S}_{8}, w:=u^{a b}$ and $x:=s(u w)^{-1}$. We will finish the proof of case 1 by the following steps:
(i) $w=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & j_{1} \\ 1 & 2 & j_{2} & j_{3} & j_{3} \\ 1 & 3 & j_{k_{1}} & j_{k} \\ j_{2} & j_{k} & j_{k_{4}}\end{array}\right)$.

In fact, since $w=u^{a b}=a b u a b$, then for any $r \in \Delta_{1}, r^{w}=\left(r^{a b}\right)^{u a b}=j_{r}^{u a b}=j_{r}^{a b}=r$, and for any $j_{r} \in \Delta_{2}, j_{r}^{w}=\left(j_{r}^{a b}\right)^{u a b}=r^{u a b}=k_{r}^{a b}=j_{k_{r}}$.
(ii) $u w=\binom{1234 j_{1} j_{2} j_{3} j_{4}}{k_{1} k_{2} k_{3} k_{4} j_{k_{1}} j_{k_{2}} j_{k_{3}} j_{k_{4}}}$, and $u w$ commutes with $a b$.

First, $u w=\binom{1}{k_{1} k_{2} k_{3} k_{4}}\left(\begin{array}{c}j_{1} \\ j_{1} j_{1} j_{2} j_{2} j_{3}\end{array} j_{4} j_{k_{3}} j_{4}\right)=\left(\begin{array}{cccc}1 & 2 & 3 & 4\end{array} j_{1} j_{2} j_{3} j_{4}\right.$. . Then $(a b)^{u w}=a b$ since $\left(r, j_{r}\right)^{u w}=\left(k_{r}, j_{k_{r}}\right)$ is still a transposition of $a b$.
(iii) $j_{r}=i_{r+1}$, where $4+1 \equiv 1(\bmod 4)$.

In fact, for any $r \in \Delta_{1}, j_{r}=r^{a b}=\left(r^{a}\right)^{b}=(r+1)^{b}=i_{r+1}$.
(iv) $x=\left(i_{1} i_{2} i_{3} i_{4}\right)$.

In fact, by (ii) and (iii),

$$
\left.\begin{array}{rl}
x & =s(u w)^{-1}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & i_{1} i_{2} & i_{3} \\
k_{4} \\
k_{1} k_{2} k_{3} k_{4} j_{k_{1}} j_{k_{2}} j_{k_{3}} j_{k_{4}}
\end{array}\right)\left(\begin{array}{c}
k_{1} k_{2} k_{3} k_{4} j_{k_{1}} j_{k_{2}} j_{k_{3}} j_{k_{4}} \\
1
\end{array} 2344 j_{1} j_{2} j_{3} j_{4}\right.
\end{array}\right) .
$$

(v) $s$ is an odd permutation.

In fact, since $u w=u\left(u^{a b}\right)$ is obviously an even permutation, then by (iv), $s=x(u w)=$ ( $i_{1} i_{2} i_{3} i_{4}$ )uw is an odd permutation.
Case 2: $\Delta_{1}^{s}=\Delta_{2}$. In this case, $\Delta_{1}^{b s}=\Delta_{1}$. Then $b s$, which obviously satisfies the assumption as $s$ does in case 1 , is an odd permutation, and so is $s$.

In particular, as an odd permutation with order 2 of $\mathbf{S}_{8}, s$ is a transposition or a product of three disjoint transpositions. If $s$ is a transposition, then it has 6 fixed points on $\Omega$, and hence $b=\left(1 i_{1}\right)\left(2 i_{2}\right)\left(3 i_{3}\right)\left(4 i_{4}\right)$ and $a b=\left(1 i_{2}\right)\left(2 i_{3}\right)\left(3 i_{4}\right)\left(4 i_{1}\right)$ are not conjugate under $s$. It follows that $s$ is a product of three disjoint transpositions.

## 3. How to construct the graphs

In this section, we construct all connected 5-arc transitive cubic Cayley graphs on $\mathbf{A}_{47}$.
Let $G$ be a finite nonabelian simple group and $\Gamma:=\operatorname{Cay}(G, S)$ a connected arc-transitive cubic Cayley graph. We know from [1] that $\Gamma$ is nonnormal for $G$ if and only if $G \cong \mathbf{A}_{47}$, and
$A:=\operatorname{Aut}(\Gamma)$ is isomorphic to $\mathbf{A}_{48}$. Recall that this means, (1) $\Gamma$ is 5-arc transitive; (2) the vertexstabilizer $T$ of $A$ is isomorphic to $\mathbf{S}_{4} \times \mathbb{Z}_{2}$; (3) there exists an involution $s$ in $G$ such that $\mid T$ : $T \cap T^{s} \mid=3,\langle T, s\rangle=A$, and furthermore the coset graph $\bar{\Gamma}:=\operatorname{Sab}(A, T, s)$ is isomorphic to $\Gamma$.

To construct all these Cayley graphs, we first let $A \cong \mathbf{A}_{48}$, and $A=G T$, where $G \cong \mathbf{A}_{47}$ and $T \cong \mathbf{S}_{4} \times \mathbb{Z}_{2}$. Secondly, we choose involutions $s$ of $G$ which satisfy that $\left|T: T \cap T^{s}\right|=3$ and $\langle T, s\rangle=A$. Then we examine the structure of $T$ and its subgroups with index 3 .

## (A) The structure of $T$

We will find out generators of $T$. Without loss of generality, we may let $T=\mathbf{S}_{4} \times \mathbb{Z}_{2}$. Noting that $\mathbf{A}_{4} \leq \mathbf{S}_{4}$, we take $K \in \operatorname{Syl}_{2}\left(\mathbf{A}_{4}\right)$ which is a Klein four-group and $L \in \operatorname{Syl}_{3}\left(\mathbf{A}_{4}\right)$ which is a cyclic group of order 3 such that $\mathbf{A}_{4}=K \rtimes L$. Thus there exist $b \in K, t \in L$ such that $K=\left\{1, b, b^{t}, b^{t^{2}}\right\}$ where $b^{t^{2}}=b b^{t}$, and hence $\mathbf{A}_{4}=\langle b, t\rangle$. Note that $\left|\mathbf{S}_{4}: \mathbf{A}_{4}\right|=2$, then we may take an element $a$ with order 4 of $\mathbf{S}_{4}$ such that $\mathbf{S}_{4}=\left\langle\mathbf{A}_{4}, a\right\rangle=\langle a, b, t\rangle$.

Consider the relations between $a, b$ and $t$. Note that $a^{2} \in K$, we may let $a^{2}=b^{t^{2}}=b b^{t}$, and accordingly $b^{t}=a^{2} b,\left(a^{2}\right)^{t}=b$. Further, $D:=K\langle a\rangle$ is an order 8 Sylow 2-subgroup of $\mathbf{S}_{4}$, and then $a^{b}=a^{-1}$. That is $D=\langle a\rangle \rtimes\langle b\rangle \cong \mathbf{D}_{8}$, and accordingly each Sylow 2-subgroup of $T$ is isomorphic to $\mathbf{D}_{8} \times \mathbb{Z}_{2}$.

By the way, $T$ has 4 Sylow 3-subgroups all of which are in $\mathbf{A}_{4}$ since $\mathbf{A}_{4} \triangleleft \mathbf{S}_{4} \triangleleft T$ and $\left|T: \mathbf{A}_{4}\right|$ is divisible by 3 , and hence all 8 elements of order 3 of $T$ exactly make up the right coset union $K t \cup K t^{-1}$.

Represent $a^{t}$ by $a, b$ and $t$. First, $a^{t}$ has order 4 and is not in $\mathbf{A}_{4}$, and hence in the left coset $a \mathbf{A}_{4}=\mathbf{S}_{4} \backslash \mathbf{A}_{4}$. Secondly, $a^{t} \in D t \cup D t^{-1}$ since $t$ does not normalize $D$. Thus we may let $a^{t}=a^{i} b^{j} t^{k}$ where $i= \pm 1, j=0$ or $1, k= \pm 1$. We claim that $i=k=-1$ and $j=0$, namely $a^{t}=a^{-1} t^{-1}$. In fact, (i) if $k=1$, then $t^{-1} a t=a^{i} b^{j} t$ and $t^{-1}=a^{i} b^{j} a^{-1} \in D$, a contradiction. Hence $k=-1$. (ii) If $i=1$, then $b=\left(a^{2}\right)^{t}=\left(a^{t}\right)^{2}=\left(a b^{j} t^{-1}\right)\left(a b^{j} t^{-1}\right)=a b^{j} a^{t} t^{-1} b^{j} t^{-1}=$ $a b^{j}\left(a b^{j} t^{-1}\right) t^{-1} b^{j} t^{2}=a\left(b^{j} a b^{j}\right) t^{-2} b^{j} t^{2}$. In this case, if $j=0$, then $b=a^{2}$, a contradiction, and if $j=1, b=a a^{-1} b^{t^{2}}=a^{2}$, still a contradiction. Hence $i=-1$. (iii) If $j=1$, we may let $t^{\prime}:=a^{2} t \in K t$, then $t^{\prime}$ is still an element of order 3, and $a^{t^{\prime}}=a^{t}=a^{-1} b t^{-1}=a^{-1} b t^{\prime-1} a^{2}=$ $a^{-1} b\left(a^{2}\right)^{t^{\prime}} t^{\prime-1}=a^{-1} b\left(a^{2}\right)^{a^{2} t} t^{\prime-1}=a^{-1} b\left(a^{2}\right)^{t} t^{\prime-1}=a^{-1} b b t^{\prime-1}=a^{-1} t^{\prime-1}$. We may replace $t$ by $t^{\prime}$ such that $a^{t}=a^{-1} t^{-1}$.

Finally, let $\mathbb{Z}_{2}=\langle c\rangle$. Then $T=\langle a, b, c, t| a^{4}=b^{2}=c^{2}=t^{3}=1, a^{b}=a^{-1}, a^{c}=a, b^{c}=$ $\left.b, a^{t}=a^{-1} t^{-1}, b^{t}=a^{2} b, c^{t}=c\right\rangle$.

## (B) The subgroup of index 3 in $T$

Let $R$ be a subgroup of $T$ with index 3 . Clearly, $R$ is a Sylow 2 -subgroup of $T$, and hence by (A) $R$ is isomorphic to $\mathbf{D}_{8} \times \mathbb{Z}_{2}$. Without loss of generality, we may let $R=\langle a, b, c\rangle$, where $a, b, c$ are the same as in (A). It is easy to check that $R$ has 7 subgroups of order 8 as follows.
Type $1, \mathbb{Z}_{2}^{3}:\left\langle a^{2}, b, c\right\rangle$ and $\left\langle a^{2}, a b, c\right\rangle$;
Type $2, \mathbb{Z}_{4} \times \mathbb{Z}_{2}:\langle a, c\rangle ;$
Type $3, \mathbb{Z}_{4} \rtimes \mathbb{Z}_{2}:\langle a, b\rangle,\langle a, b c\rangle,\langle a c, b\rangle$, and $\langle a c, b c\rangle$.
We shall choose an involution $s$ of $G$ such that $\left|T: T \cap T^{s}\right|=3$ and $\langle T, s\rangle=A$. Clearly, those involutions $s$ which normalize one of Sylow 2-subgroups of $T$ except for $T$ itself must satisfy that $\left|T: T \cap T^{s}\right|=3$. Note that all three Sylow 2-subgroups of $T$, including $R$, are conjugate to each other. Without loss of generality, we may let $R$ be normalized by $s$, and accordingly $R=T \cap T^{s}$. However, it is difficult to check if $\langle T, s\rangle=A$. But $\langle T, s\rangle$ should be a simple group, then $s$ does not normalize any nontrivial normal subgroup of $T$. Then $s$ belongs to the set defined by

$$
\Pi_{G}(R, T):=\left\{s \in N_{G}(R) \mid o(s)=2 \text { and } \forall 1 \neq K \unlhd T, K^{s} \neq K\right\},
$$

where $T=\langle a, b, c, t\rangle$ and $R=\langle a, b, c\rangle$ defined in (A) and (B).
We still denote $\mathbf{S}_{4}=\langle a, b, t\rangle$, its subgroup $D=\langle a, b\rangle$ as in (A) and denote $\langle a, c\rangle$ by $K$.
The next lemma shows us some properties of involutions in $\Pi_{G}(R, T)$.
Lemma 3.1. For $s \in \Pi_{G}(R, T)$, the following hold.
(1) $\left(a^{2}\right)^{s}=a^{2}$ and $c^{s}=a^{2} c$;
(2) $b^{s}=a b$;
(3) $a^{s}=a^{-1}$ and $(a c)^{s}=a c$;
(4) $\left(c^{j} D\right)^{s}=c^{j} D$ and $\left(b^{j} K\right)^{s}=b^{j} K$ for every $j \in\{0,1\}$.

Proof. (1) First, by (B), $s$ normalizes $K=\langle a, c\rangle=\left\{1, a, a^{2}, a^{3}, c, a c, a^{2} c, a^{3} c\right\}$ and hence $\langle a\rangle^{s}$ equals one of $\langle a\rangle$ and $\langle a c\rangle$. In any case, $\left(a^{2}\right)^{s}=a^{2}$. But $s$ normalizes neither $\left\langle a^{2}, b, c\right\rangle$ nor $\langle c\rangle$ since $\left\langle a^{2}, b, c\right\rangle,\langle c\rangle \triangleleft T$ and $c^{s}=a^{2} c$.
(2) Since $\left\langle a^{2}, b, c\right\rangle^{s}=\left\{1, a^{2}, b, c, a^{2} b, a^{2} c, b c, a^{2} b c\right\}^{s}=\left\langle a^{2}, a b, c\right\rangle=$ $\left\{1, a^{2}, a b, c, a^{3} b, a^{2} c, a b c, a^{3} b c\right\}$, then $b^{s}=a^{ \pm 1} b c^{j}(j \in\{0,1\})$. Let $a^{\prime}=a^{ \pm 1} c^{j}$. Then $R=\left(\left\langle a^{\prime}\right\rangle \rtimes\langle b\rangle\right) \times\langle c\rangle$, and $b^{s}=a^{\prime} b$. We may replace $a$ by $a^{\prime}$, and hence (2) holds.
(3) We know from (1) that $\langle a\rangle^{s}=\langle a\rangle$ or $\langle a c\rangle$. If $\langle a\rangle^{s}=\langle a c\rangle$, then $a^{s}=a^{ \pm 1} c$ and further $a=a^{s^{2}}=\left(a^{ \pm 1} c\right)^{s}=\left(a^{s}\right)^{ \pm 1} c^{s}=\left(a^{ \pm 1} c\right)^{ \pm 1}\left(a^{2} c\right)=\left(a c^{ \pm 1}\right)\left(a^{2} c\right)=(a c)\left(a^{2} c\right)=a^{3} \neq a$. This contradiction shows that $\langle a\rangle^{s}=\langle a\rangle$ and hence $a^{s}=a^{ \pm 1}$. If $a^{s}=a$, then $b=b^{s^{2}}=$ $(a b)^{s}=a^{s} b^{s}=a(a b)=a^{2} b \neq b$. This contradiction shows that $a^{s}=a^{-1}$ and consequently $(a c)^{s}=a^{s} c^{s}=a^{-1} a^{2} c=a c$.
(4) Obvious.

Of course, we cannot confirm if $\langle T, s\rangle=A$ for $s \in \Pi_{G}(R, T)$ and so we need some additional assumptions to help us choose $s$.

With the right multiplication permutation representation of $A$ on $\Omega:=[A: G]$ being faithful, we may assume $A=\operatorname{Alt}(\Omega)$. As a complement of $G$ in $A, T$ is a regular subgroup on $\Omega$. Its subgroups $R, \mathbf{S}_{4}$ and $D$ are semiregular. So there are $|T: R|=3 R$-orbits denoted by $\Omega_{0}, \Omega_{1}, \Omega_{2}$, and $\left|T: \mathbf{S}_{4}\right|=2 \mathbf{S}_{4}$-orbits denoted by $\Delta_{0}, \Delta_{1}$ in $\Omega$. By Lemma 2.3(1) and $T=\mathbf{S}_{4} \rtimes\langle c\rangle, c$ interchanges $\Delta_{0}$ and $\Delta_{1}$. Furthermore, for all $i \in\{0,1,2\}$ and $j \in\{0,1\}, \Omega_{i j}:=\Omega_{i} \cap \Delta_{j}$ are 6 $D$-orbits. $c$ interchanges $\Omega_{i 0}$ and $\Omega_{i 1}$ for each $i$.

The $R$-orbits $\Omega_{i}(i=0,1,2), \mathbf{S}_{4}$-orbits $\Delta_{j}(j=0,1)$ and their intersection orbits $\Omega_{i j}$ are depicted in the following figure:


According to the action of $s \in \Pi_{G}(R, T)$ on $\mathbf{S}_{4}$-orbits, we say $s$ is of the first type if it fixes each $\Delta_{j}$ setwise and $s$ is of the second type if it is not of the first type.

Since $s$ normalizes $R$, $s$ may act on the $R$-orbit's set $\left\{\Omega_{0}, \Omega_{1}, \Omega_{2}\right\}$. As an involution, $s$ must fix one of them. Without loss of generality, we always assume $\Omega_{0}^{s}=\Omega_{0}$. Thus $\Omega_{1}^{s}=\Omega_{1}$ or $\Omega_{2}$. Analogously, from Lemma 3.1(4) $s$ normalizes $D$ and hence fixes the sets $\left\{\Omega_{00}, \Omega_{01}\right\}$ and $\left\{\Omega_{10}, \Omega_{11}, \Omega_{20}, \Omega_{21}\right\}$ of $D$-orbits setwise. But $s$ does not normalize $\mathbf{S}_{4}$, so the equation $\Delta_{0}^{s}=\Delta_{1}$ may be not true even if $s$ is of the second type.

The next lemma is related to the type of the involutions in $\Pi_{G}(R, T)$.
Lemma 3.2. Let $s \in \Pi_{G}(R, T)$. Then the following hold.
(1) The element cs has order 4, and has no fixed point in $\Omega$, and contains no transposition on $\Omega$. In fact, cs is a product of 12 disjoint 4-cycles;
(2) If $s$ fixes some $\Omega_{i}$ setwise, then $s$ fixes each of $\Omega_{i 0}$ and $\Omega_{i 1}$ setwise, and further $s^{\Omega_{i}}$ is a product of 6 disjoint transpositions on $\Omega_{i}$. In particular, by our assumption, so is s $\Omega_{0}$;
(3) The involution $s$ does not interchange $\Omega_{i 0}$ and $\Omega_{i 1}$ for any $i \in\{0,1,2\}$;
(4) If $s$ fixes $\Omega_{1}$ or $\Omega_{2}$ setwise, then s fixes every $\Omega_{i j}$ setwise and hence s is of the first type;
(5) If $s$ interchanges $\Omega_{10}$ and $\Omega_{20}$, then $s$ is of the first type.

Proof. (1) Since $(c s)^{2}=c(s c s)=c\left(a^{2} c\right)=a^{2} \neq 1$ and $(c s)^{4}=\left(a^{2}\right)^{2}=1$, we find $o(c s)=4$. In particular, $(c s)^{2}=a^{2}$ has no fixed point in $\Omega$ so that $c s$ has no fixed point and contains no transposition. Hence $c s$ with order 4 is a product of 12 disjoint 4-cycles.
(2) Since $s$ fixes $\Omega_{i}$, then $\Omega_{i 0}^{s}=\Omega_{i 0}$ or $\Omega_{i 1}$. Assume $\Omega_{i 0}^{s}=\Omega_{i 1}$. Then $\Omega_{i 0}^{c s}=\Omega_{i 0}$. As components of $\Omega_{i 0}, a^{\prime}:=a^{\Omega_{i 0}}, b^{\prime}:=b^{\Omega_{i 0}}$ and $s^{\prime}:=(c s)^{\Omega_{i 0}}$ satisfy, by easily checking, the assumption of Lemma 2.3(3), that is, $\left\langle a^{\prime}\right\rangle \rtimes\left\langle b^{\prime}\right\rangle \cong \mathbf{D}_{8},\left\langle a^{\prime}\right\rangle^{s^{\prime}}=\left\langle a^{\prime}\right\rangle$ and $\left(b^{\prime}\right)^{s^{\prime}}=a^{\prime} b^{\prime}$. So $s^{\prime}=(c s)^{\Omega_{i 0}}$ is an odd permutation on $\Omega_{i 0}$. By (1), cs with order 4 has no fixed point and contains no transposition, then $s^{\prime}=(c s)^{\Omega_{i 0}}$ is a product of 2 disjoint 4-cycles on $\Omega_{i 0}$, contradicting the oddness of it. Hence $s$ fixes each of $\Omega_{i 0}$ and $\Omega_{i 1}$ setwise. In this case, using the way of dealing with $(c s)^{\Omega_{i 0}}$ on $\Omega_{i 0}$ above to deal with $s^{\Omega_{i 0}}$ on $\Omega_{i 0}$ and $s^{\Omega_{i 1}}$ on $\Omega_{i 1}$, we finally have that $s^{\Omega_{i}}=s^{\Omega_{i 0}} s^{\Omega_{i 1}}$ is a product of 6 disjoint transpositions on $\Omega_{i}$.
(3) and (4) hold by (2).
(5) Since $s$ always fixes $\Omega_{0}$ setwise, and by (2), we find $s$ also fixes $\Omega_{00}$ setwise. It follows that $s$ fixes $\Delta_{0}$ setwise, and consequently $s$ fixes $\Delta_{1}$ setwise. So $s$ is of the first type.

Theorem 3.3. Let $s \in \Pi_{G}(R, T)$. Then the following statements are equivalent.
(1) $\langle T, s\rangle=A$;
(2) The involution $s$ is of the second type;
(3) The involution s interchanges $\Omega_{10}$ and $\Omega_{21}$.

Proof. (1) $\Rightarrow$ (2): Since $\langle T, s\rangle=A$ is primitive on $\Omega$ but each $\Delta_{j}$ is obviously nonprimitive block of $T$, then $s$ does not fix $\Delta_{j}$ anymore, namely $s$ is of the second type.
(2) $\Rightarrow$ (3): By Lemma 3.2(3), (4) and (5), $s$ must interchange $\Omega_{10}$ and $\Omega_{21}$.
$(3) \Rightarrow(1)$ : See Corollary 4.4 later.
Theorem 3.3 shows that the Sabidussi coset graph $\bar{\Gamma}:=\operatorname{Sab}(A, T, s)$ is a connected 5-arc transitive cubic graph if and only if the involution $s$ is of the second type.

## 4. Finding the graphs

In this section, we will find out all connected 5-arc transitive cubic Cayley graphs for $\mathbf{A}_{47}$.
We first denote each coset $G a \in \Omega=[A: G]$ by $\bar{a}$. Then $\Omega=\bar{T}:=\{\bar{h} \mid h \in T\}$ and $G$ is the point stabilizer of $\overline{1}$ in $A$. For any subgroup $L$ of $T$ and its left coset $h L$, the set $\overline{h L}$ is obviously an $L$-orbit in $\Omega$. Thus, $\bar{R}, \overline{t R}$ and $\overline{t^{2} R}$ are also $R$-orbits. But $\bar{R}^{s}=G R s=G s R=G R=\bar{R}$, then $s$ fixes $\bar{R}$ setwise. So we may let $\bar{R}=\Omega_{0}$. Without loss of generality, we may assume that $\Omega_{i}=\overline{t^{i} R}$ and $\Omega_{i j}=\overline{t^{i} c^{j} D}$ for $i \in\{0,1,2\}, j \in\{0,1\}$.

By Theorem 3.3, we need only to investigate those $s \in \Pi_{G}(R, T)$ for which $\Omega_{10}^{s}=\Omega_{21}$. In this case, $\Omega_{1}^{s}=\Omega_{2}$ and hence $s^{\Omega_{1} \cup \Omega_{2}}$ is a product of 16 disjoint transpositions on $\Omega_{1} \cup \Omega_{2}$. By Lemma 3.2(2), $s^{\Omega_{0}}$ is a product of 6 disjoint transpositions on $\Omega_{0}$, and then $s=s^{\Omega_{0}} s^{\Omega_{1} \cup \Omega_{2}}$ is a product of 22 disjoint transpositions on $\Omega$, and $s$ has only 4 fixed-points all belong to $\Omega_{0}=\bar{R}$.

To find out all these involutions, we will examine the permutations induced by them on $\Omega_{0}$ and $\Omega_{1} \cup \Omega_{2}$ respectively.

First, the action by $s$ on $\Omega_{0}$ is conjugation since for every $\bar{r} \in \bar{R}=\Omega_{0}, \bar{r}^{s}=G r s=$ $G s s^{-1} r s=G r^{s}=\overline{r^{s}}$. By Lemma 3.1 there is only one choice for $s^{\Omega_{0}}$.

Secondly, in $\Omega_{1} \cup \Omega_{2}$, since $s$ forces $\bar{t} \in \overline{t D}=\Omega_{10}$ to be in $\Omega_{21}=\overline{t^{2} c D}$, there exists $d \in D$ such that $\bar{t}^{s}=\overline{t^{2} c d}$, or $G t s=G t^{2} c d$. Immediately, for each $\overline{t r} \in \Omega_{1}=\overline{t R}$, $\overline{t r}^{s}=G t r s=G t s s^{-1} r s=(G t s) r^{s}=\left(G t^{2} c d\right) r^{s}=\overline{t^{2} c d r^{s}} \in \overline{t^{2} R}=\Omega_{2}$. Thus there are 8 choices for $s^{\Omega_{1} \cup \Omega_{2}}$ since $|D|=8$.

Let $d_{0}=1, d_{1}=a b, d_{2}=a, d_{3}=a^{2} b, d_{4}=a^{2}, d_{5}=a^{3} b, \underline{d_{6}=a^{3}}$ and $d_{7}=b$ which make up $D$, then we have 8 involutions $s_{0}, s_{1}, \ldots, s_{7}$ to make $\bar{t}^{s_{k}}=t^{2} c d_{k}$ and $\Omega_{10}^{s}=\Omega_{21}(k=$ $0,1, \ldots, 7$ ).

Accordingly, we have 8 Sabidussi coset graphs:

$$
\bar{\Gamma}_{k}:=\operatorname{Sab}\left(A, T, s_{k}\right),
$$

where $\operatorname{Val}\left(\bar{\Gamma}_{k}\right)=\left|T s_{k} T: T\right|=\left|T: T \cap T^{s_{k}}\right|=3$.
Remark. Each $\bar{\Gamma}_{k}$ here may not be connected because we do not know if $\left\langle T, s_{k}\right\rangle=A$ yet.
From Theorem 3.3, we immediately have
Corollary 4.1. Let $s \in \Pi_{G}(R, T)$. If the Sabidussi coset graph $\bar{\Gamma}:=\operatorname{Sab}(A, T, s)$ is connected 5-arc transitive cubic, then $s \in\left\{s_{0}, s_{1}, \ldots, s_{7}\right\}$, and further, $\bar{\Gamma} \in\left\{\bar{\Gamma}_{0}, \bar{\Gamma}_{1}, \ldots, \bar{\Gamma}_{7}\right\}$.

Due to Lemma 2.1(2) we also have 8 Cayley graphs of $G$ :

$$
\Gamma_{k}:=\operatorname{Cay}\left(G, S_{k}\right) \cong \bar{\Gamma}_{k},
$$

where the Cayley subset $S_{k}=G \cap\left(T s_{k} T\right)$, and $\left|S_{k}\right|=\operatorname{Val}\left(\Gamma_{k}\right)=\operatorname{Val}\left(\bar{\Gamma}_{k}\right)=3$.
We will prove soon that $S_{0}$ is conjugate to $S_{1}, S_{2}, S_{3}$ and $S_{4}$ is conjugate to $S_{5}, S_{6}, S_{7}$. Moreover, we will prove that each $S_{k}$ generates $G \cong \mathbf{A}_{47}$.

Clearly, the three-element set $S_{k}$ contains $s_{k}$. To find the other two elements of $S_{k}$, we denote $u_{k}:=t^{2} c d_{k} s_{k} t^{2} \in T s_{k} T$. Note that $G t s_{k}=G t^{2} c d_{k}$, then $u_{k}=t^{2} c d_{k} s_{k} t^{2} \in G$ and hence $u_{k} \in S_{k}=G \cap\left(T s_{k} T\right)$. We claim that $u_{k}$ is not an involution on $\Omega$.

Otherwise, if $u_{k}$ is an involution, then $1=u_{k}^{2}=t^{2} c d_{k} s_{k} t c d_{k} s_{k} t^{2}=t^{2} d_{k} c s_{k} c t d_{k} s_{k} t^{2}=$ $t^{2} d_{k} s_{k} c^{s_{k}} c t d_{k} s_{k} t^{2}=t^{2} d_{k} s_{k} a^{2} t d_{k} s_{k} t^{2}=t^{-1}\left(d_{k} s_{k} a^{2} t d_{k} s_{k} t\right) t=d_{k} s_{k}\left(a^{2} t\right) d_{k} s_{k} t=d_{k} s_{k}(t b) d_{k} s_{k} t$, that is, $G d_{k}^{-1}=G d_{k}^{-1}\left(d_{k} s_{k} t b d_{k} s_{k} t\right)=G t b d_{k} s_{k} t$.

For $k=0, G t b d_{0} s_{0} t=G t b s_{0} t=G t s_{0} a b t=\left(G t^{2} c d_{0}\right) a b t=G t^{2} a b c t \neq G=G d_{0}^{-1}, \mathrm{a}$ contradiction.

For $k=4, G t b d_{4} s_{4} t=G t b a^{2} s_{4} t=G t s_{4} a^{3} b t=\left(G t^{2} c d_{4}\right) a^{3} b t=G t^{2} c a^{2} a^{3} b t=$ $G t^{2} a b c t \neq G a^{2}=G d_{4}^{-1}$, a contradiction.

Analogously, for $k=1,2,3,5,6$ or 7 , we also obtain a contradiction (the details are omitted). Thus, $u_{k}$ is not an involution so that $u_{k}^{-1} \in S_{k} \backslash\left\{s_{k}, u_{k}\right\}$, and hence

$$
S_{k}=\left\{s_{k}, u_{k}, u_{k}^{-1}\right\}
$$

Lemma 4.2. Assume $\sigma \in G$ such that $a^{\sigma}=a, b^{\sigma}=a^{2} b, c^{\sigma}=c$, and $t^{\sigma}=t^{2} a^{2}$. Then $S_{0}^{\sigma^{k}}=S_{k}$ and $S_{4}^{\sigma^{k}}=S_{k+4}$ for $k \in\{1,2,3\}$.
Proof. We easily have

$$
\left(t^{2}\right)^{\sigma}=t b, \quad t^{\sigma^{2}}=t a^{2} b, \quad\left(t^{2}\right)^{\sigma^{2}}=t^{2} b, \quad t^{\sigma^{3}}=t^{2} a^{2} b, \quad\left(t^{2}\right)^{\sigma^{3}}=t a^{2}, \quad \text { and } t^{\sigma^{4}}=t
$$

Consequently, $\sigma^{4} \in G$ centralizes $T$, and hence $\sigma^{4}=1$.
Since $\sigma \in G$, then $(G t) \sigma=G \sigma t^{\sigma}=G t^{2} a^{2}$. Analogously, $\left(G t^{2}\right) \sigma=G t b,(G t) \sigma^{2}=$ $G t a^{2} b,\left(G t^{2}\right) \sigma^{2}=G t^{2} b,(G t) \sigma^{3}=G t^{2} a^{2} b$ and $\left(G t^{2}\right) \sigma^{3}=G t a^{2}$.

First, we will prove that for each $k \in\{1,2,3\}, s_{k}=s_{0}^{\sigma^{k}}$ or $s_{k} s_{0}^{\sigma^{k}}=1$. Equivalently, we manage to prove $s_{k} s_{0}^{\sigma^{k}}$ fixing $\Omega=\Omega_{0} \cup \Omega_{1} \cup \Omega_{2}$ pointwise. We deal with these three cases separately.
Case 1: $\bar{r} \in \bar{R}=\Omega_{0}$.
We claim that $s_{k} s_{0}^{\sigma^{k}}$ commutes with each $r \in R$.
In fact, let $r \in b^{j} K(j=0$ or 1$)$. Then $r^{\sigma}=a^{2 j} r, r^{\sigma^{2}}=r$ and $r^{\sigma^{3}}=a^{2 j} r$. That is $r^{\sigma^{ \pm k}}=a^{2 j(2-k)} r$. Note that $r^{s_{k}}=r^{s_{0}}$ and $r^{s_{k}} \in b^{j} K$ by Lemma 3.1(4). We have $r s_{k} s_{0}^{\sigma^{k}}=r s_{k} \sigma^{-k} s_{0} \sigma^{k}=s_{k} r^{s_{k}} \sigma^{-k} s_{0} \sigma^{k}=s_{k} \sigma^{-k} a^{2 j(2-k)} r^{s_{k}} s_{0} \sigma^{k}=s_{k} \sigma^{-k} a^{2 j(2-k)} r^{s_{0}} s_{0} \sigma^{k}=$ $s_{k} \sigma^{-k} a^{2 j(2-k)} s_{0} r \sigma^{k}=s_{k} \sigma^{-k} s_{0} a^{2 j(2-k)} r \sigma^{k}=s_{k} \sigma^{-k} s_{0} \sigma^{k} r=s_{k} s_{0}^{\sigma^{k}} r$. Thus $s_{k} s_{0}^{\sigma^{k}}$ commutes with each $r \in R$, and hence $s_{k} s_{0}^{\sigma^{k}}$ fixes $\bar{R}=\Omega_{0}$ pointwise.
Case 2: $\overline{t r} \in \overline{t R}=\Omega_{1}$.
Let $\bar{h}_{k}:=G \operatorname{tr}\left(s_{k} \sigma^{-k} s_{0} \sigma^{k}\right)=G t\left(s_{k} \sigma^{-k} s_{0} \sigma^{k}\right) r=\left(G t s_{k}\right) \sigma^{-k} s_{0} \sigma^{k} r=G t^{2} c d_{k} \sigma^{-k} s_{0} \sigma^{k} r$, then
(1) $\bar{h}_{1}=G t^{2} c(a b) \sigma^{-1} s_{0} \sigma r=G t^{2}(a b c) \sigma^{3} s_{0} \sigma r=G t^{2} \sigma^{3}\left(a^{3} b c\right) s_{0} \sigma r=$ $\left(G t a^{2}\right) a^{3} b c s_{0} \sigma r=G t(a b c) s_{0} \sigma r=G t s_{0}(a b)^{s_{0}} c^{s_{0}} \sigma r=G t s_{0} b\left(a^{2} c\right) \sigma r=\left(G t^{2} c\right) b a^{2} c \sigma r=$ $G t^{2}\left(b a^{2}\right) \sigma r=G t^{2}(\sigma b) r=\left(G t^{2} \sigma\right) b r=G(t b) b r=G t r ;$
(2) $\bar{h}_{2}=G t^{2} c a \sigma^{2} s_{0} \sigma^{2} r=G t^{2} \sigma^{2} c^{2}\left(s_{0} \sigma^{2} r=\left(G t^{2} b\right) c a s_{0} \sigma^{2} r=G t^{2} c(b a) s_{0} \sigma^{2} r=\right.$ $G t^{2} c\left(a^{3} b\right) s_{0} \sigma^{2} r=\left(G t^{2} c\right) s_{0}\left(a^{2} b\right) \sigma^{2} r=(G t)\left(a^{2} b\right) \sigma^{2} r=G t \sigma^{2}\left(a^{2} b\right) r=\left(G t a^{2} b\right)\left(a^{2} b\right) r=$ Gtr;
(3) $\bar{h}_{3}=G t^{2} c\left(a^{2} b\right) \sigma s_{0} \sigma^{3} r=G t^{2} \sigma c b s_{0} \sigma^{3} r=(G t b) c b s_{0} \sigma^{3} r=G t c s_{0} \sigma^{3} r=$ (Gt) $s_{0}\left(a^{2} c\right) \sigma^{3} r=\left(G t^{2} c\right) a^{2} c \sigma^{3} r=G t^{2} \sigma^{3} a^{2} r=\left(G t a^{2}\right) a^{2} r=G t r$.

Thus $s_{k} s_{0}^{\sigma^{k}}$ fixes $\overline{t R}=\Omega_{1}$ pointwise.
Case 3: $\overline{t^{2} r} \in \overline{t^{2} R}=\Omega_{2}$.
Let $\bar{h}_{k}^{\prime}:=G t^{2} r\left(s_{k} \sigma^{-k} s_{0} \sigma^{k}\right)=\left(G t^{2} c d_{k}\right)\left(c d_{k}^{-1} r\right)\left(s_{k} \sigma^{-k} s_{0} \sigma^{k}\right)=\left(G t s_{k}\right)\left(s_{k} \sigma^{-k} s_{0} \sigma^{k}\right)\left(c d_{k}^{-1} r\right)$ $=\left(G t^{2} c d_{k} s_{k}\right) \sigma^{-k} s_{0} \sigma^{k}\left(c d_{k}^{-1} r\right)=G t \sigma^{-k} s_{0} \sigma^{k} c d_{k}^{-1} r$, then
(1) $\bar{h}_{1}^{\prime}=G t \sigma^{3} s_{0} \sigma(c a b) r=\left(G t^{2} a^{2} b\right) s_{0} \sigma(c a b) r=G t^{2} c\left(c a^{2}\right) b s_{0} \sigma(c a b) r=$ $G t^{2} c s_{0} c(a b) \sigma(c a b) r=\left(G t^{2} c s_{0}\right)(a b c) \sigma(c a b) r=(G t) \sigma\left(a^{3} b c\right)(c a b) r=\left(G t^{2} a^{2}\right) a^{2} r=G t^{2} r$;
(2) $\bar{h}_{2}^{\prime}=G t \sigma^{2} s_{0} \sigma^{2}\left(c a^{3}\right) r=\left(G t a^{2} b\right) s_{0} \sigma^{2}\left(c a^{3}\right) r=G t s_{0} a^{3} b \sigma^{2}\left(c a^{3}\right) r=$ $\left(G t^{2} c\right) \sigma^{2} a^{3} b\left(c a^{3}\right) r=G t^{2} \sigma^{2} c(b c r)=\left(G t^{2} b\right)(b r)=G t^{2} r$;
(3) $\bar{h}_{3}^{\prime}=G t \sigma s_{0} \sigma^{3}\left(c a^{2} b\right) r=\left(G t^{2} a^{2}\right) s_{0} \sigma^{3}\left(c a^{2} b\right) r=\left(G t^{2} c\right)\left(c a^{2} s_{0}\right) \sigma^{3}\left(c a^{2} b\right) r=$ $\left(G t s_{0}\right)\left(s_{0} c\right) \sigma^{3}\left(c a^{2} b\right) r=G t\left(c \sigma^{3}\right)\left(c a^{2} b\right) r=G t \sigma^{3} c\left(c a^{2} b\right) r=\left(G t^{2} a^{2} b\right) a^{2} b r=G t^{2} r$.

Thus $s_{k} s_{0}^{\sigma^{k}}$ fixes $\overline{t^{2} R}=\Omega_{2}$ pointwise.
Therefore, $s_{k} s_{0}^{\sigma^{k}}=1$ or $s_{0}^{\sigma^{k}}=s_{k}$.
Secondly, depending on $u_{k}=t^{2} c d_{k} s_{k} t^{2}$, we have
(1) $u_{0}^{\sigma}=\left(t^{2} c d_{0} s_{0} t^{2}\right)^{\sigma}=\left(t^{2} c s_{0} t^{2}\right)^{\sigma}=(t b) c s_{1}(t b)=t\left(b c s_{1}\right) t b=t s_{1}(a b)\left(a^{2} c\right)\left(a^{2} t\right)=$ $t s_{1}(a b) c t=t s_{1}^{-1}(a b)^{-1} c^{-1} t=\left(t^{2} c d_{1} s_{1} t^{2}\right)^{-1}=u_{1}^{-1} ;$
(2) $u_{0}^{\sigma^{2}}=\left(t^{2} c s_{0} t^{2}\right)^{\sigma^{2}}=\left(t^{2} b\right) c s_{2}\left(t^{2} b\right)=t^{2} b c s_{2}\left(a^{2} b t^{2}\right)=t^{2} b c\left(a^{3} b s_{2}\right) t^{2}=t^{2} c a s_{2} t^{2}=u_{2}$;
(3) $u_{0}^{\sigma^{3}}=\left(t^{2} c s_{0} t^{2}\right)^{\sigma^{3}}=\left(t a^{2}\right) c s_{3}\left(t a^{2}\right)=t\left(a^{2} c s_{3}\right) t a^{2}=t\left(s_{3} c\right)\left(a^{2} b t\right)=t s_{3}\left(a^{2} b\right) c t=$ $\left(t^{2} c d_{3} s_{3} t^{2}\right)^{-1}=u_{3}^{-1}$.

To sum up, $S_{0}^{\sigma^{k}}=S_{k}(k=1,2,3)$.
Similarly, $S_{4}^{\sigma^{k}}=S_{k+4}$ (the detailed proof is omitted).
Theorem 4.3. With the above notation, we have
(1) The graph $\Gamma_{0}$ is isomorphic to $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, and $\Gamma_{4}$ is isomorphic to $\Gamma_{5}, \Gamma_{6}, \Gamma_{7}$;
(2) Each graph $\Gamma_{k}(k=0,1, \ldots, 7)$ is a connected 5 -arc transitive cubic graph and its full automorphism group is isomorphic to $A$;
(3) Each set $S_{k}(k=0,1, \ldots, 7)$ is a CI-subset of $G$;
(4) The graphs $\Gamma_{0}$ and $\Gamma_{4}$ are not isomorphic to each other.

Before our proof we need to represent the permutations of $A$ in another way.
For each element of $\Omega=[A: G]$ which is a right coset of $G$ with the unique representative from $T$, we will rearrange these representatives. First, we denote all elements of $R$ in turn by
$r_{1}:=1, r_{2}=a, r_{3}:=a^{2}, r_{4}:=a^{3}, r_{5}:=a^{3} b, r_{6}:=a^{2} b, r_{7}:=a b, r_{8}:=b, r_{9}:=c$, $r_{10}:=a c, r_{11}:=a^{2} c, r_{12}:=a^{3} c, r_{13}:=a^{3} b c, r_{14}:=a^{2} b c, r_{15}:=a b c$, and $r_{16}:=b c$.

Then, from $T=R \cup t R \cup t^{2} R$, we denote all other elements of $T$ by $r_{16 i+j}:=t^{i} r_{j}$ where $i \in\{1,2\}$ and $j \in\{1,2, \ldots, 16\}$. Thus we may depict $\Omega=\left\{\overline{r_{1}}, \overline{r_{2}}, \ldots, \overline{r_{48}}\right\}$ as follows:


Now, acting by its right multiplication, each element of $A$ may simply be denoted as the permutation on $\{1,2, \ldots, 48\}$, such as

$$
a=(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)
$$

$$
\begin{aligned}
& (21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40) \\
& (41,42,43,44)(45,46,47,48), \\
b= & (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,24)(18,23)(19,22) \\
& (20,21)(25,32)(26,31)(27,30)(28,29)(33,40)(34,39)(35,38)(36,37)(41,48) \\
& (42,47)(43,46)(44,45), \\
c= & (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27) \\
& (20,28)(21,29)(22,30)(23,31)(24,32)(33,41)(34,42)(35,43)(36,44)(37,45) \\
& (38,46)(39,47)(40,48) .
\end{aligned}
$$

For the $t$, we easily have that $b t=t a^{2} b$ and $c t=t c$. In addition, since $a^{t}=a^{-1} t^{-1}$, then $a t^{2}=t a^{3}$, and hence $a t=\left(a t^{2}\right) t^{2}=\left(t a^{3}\right) t^{2}=t a^{2}\left(a t^{2}\right)=t^{2} t^{-1} a^{2} t a^{3}=t^{2} b a^{3}=t^{2} a b$. So we also obtain the following permutation for $t$ :

$$
\begin{aligned}
t= & (1,17,33)(2,39,20)(3,24,38)(4,34,23)(5,37,21)(6,19,40)(7,36,18)(8,22,35) \\
& (9,25,41)(10,47,28)(11,32,46)(12,42,31)(13,45,29)(14,27,48)(15,44,26) \\
& (16,30,43) .
\end{aligned}
$$

Proof of Theorem 4.3. (1) From Lemma 4.2 we need only to find out a $\sigma \in G$ such that $\sigma$ satisfies the assumptions there. Take

$$
\begin{aligned}
\sigma & :=(5,7)(6,8)(13,15)(14,16)(17,35,22,38)(18,36,23,39)(19,33,24,40) \\
& (20,34,21,37)(25,43,30,46)(26,44,31,47)(27,41,32,48)(28,42,29,45) \\
& \in A_{1}=G
\end{aligned}
$$

It is easy to check that $a^{\sigma}=a, b^{\sigma}=a^{2} b, c^{\sigma}=c, t^{\sigma}=t^{2} a^{2}$, and hence (1) holds.
(2) We will prove that $\left\langle T, s_{l}\right\rangle=A$ for $l \in\{0,4\}$. This will imply that $\bar{\Gamma}_{l}$ is a connected 5-arc transitive cubic graph for any $l$, and so are all other $\bar{\Gamma}_{k}$ from (1) and also are $\Gamma_{k} \cong \bar{\Gamma}_{k}$.

To prove the above assertion, we first determine the permutations of $s_{0}, s_{4}, u_{0}$ and $u_{4}$ on $\{1,2, \ldots, 48\}$.

For every $\bar{r}$ in $\Omega_{0}$, since $\bar{r}^{s}=(G r) s=G r^{s}=\overline{r^{s}}$ and $a^{s}=a^{-1}, b^{s}=a b, c^{s}=a^{2} c$, we easily have that $s_{k}^{\Omega_{0}}=(2,4)(5,6)(7,8)(9,11)(13,16)(14,15)$, being independent of $k$.

For every $\overline{t r} \in \Omega_{1}$, since $\overline{t r}{ }^{s_{k}}=(G t r) s_{k}=\left(G t s_{k}\right) r^{s_{k}}=\left(G t^{2} c d_{k}\right) r^{s_{k}}=\overline{t^{2} c d_{k} r^{s_{k}}} \in \Omega_{2}$, we have the following.

Since $d_{0}=1$,

$$
\begin{aligned}
& s_{0}=(2,4)(5,6)(7,8)(9,11)(13,16)(14,15)(17,41)(18,44)(19,43)(20,42)(21,46) \\
& \quad(22,45)(23,48)(24,47)(25,35)(26,34)(27,33)(28,36)(29,40)(30,39) \\
& \quad(31,38)(32,37)
\end{aligned}
$$

and since $d_{4}=a^{2} c$,

$$
\begin{aligned}
& s_{4}=(2,4)(5,6)(7,8)(9,11)(13,16)(14,15)(17,43)(18,42)(19,41)(20,44)(21,48) \\
& \quad(22,47)(23,46)(24,45)(25,33)(26,36)(27,35)(28,34)(29,38)(30,37) \\
& \\
& (31,40)(32,39) .
\end{aligned}
$$

Accordingly,

$$
u_{0}:=t^{2} c s_{0} t^{2}=(2,7,4,24,41,25,33,22,29,11,42,20,3,37,43,13,32,38,5,19,26
$$

$47,23,39,28,16,9,14,45,40,17,46,10,12,27,21,8,6,34,31,44,35)$
(18, 36, 48, 30),
$u_{4}:=t^{2} c a^{2} s_{4} t^{2}=(2,7,4,24,46,10,12,27,18,36,43,13,32,33,22,26,47,20,3,37$,
$48,30,21,8,6,34,28,16,9,14,45,35)(5,19,29,11,42,23,39,31,44,40$, $17,41,25,38)$.

Denote $H_{l}:=\left\langle T, s_{l}\right\rangle$ for $l \in\{0,4\}$. We claim that $H_{l}$ is 2-transitive on $\Omega$.
In fact, $H_{l}$ is obviously transitive on $\Omega$. Examining all orbits of $\left\langle u_{l}\right\rangle$ in $\Omega \backslash\left\{\overline{r_{1}}\right\}$ as follows, we easily have that $\left\langle s_{l}, u_{l}\right\rangle$ is transitive on $\Omega \backslash\left\{\overline{r_{1}}\right\}$ and so is $H_{l} \cap G$ since $s_{l}, u_{l} \in H_{l} \cap G$.

3 orbits of $u_{0}$ :
$\left\{\overline{r_{2}}, \overline{r_{3}}, \overline{r_{4}}, \overline{r_{5}}, \overline{r_{6}}, \overline{r_{7}}, \overline{r_{8}}, \overline{r_{9}}, \overline{r_{10}}, \overline{r_{11}}, \overline{r_{12}}, \overline{r_{13}}, \overline{r_{14}}, \overline{r_{16}}, \overline{r_{17}}, \overline{r_{19}}, \overline{r_{20}}, \overline{r_{21}}, \overline{r_{22}}, \overline{r_{23}}, \overline{r_{24}}, \overline{r_{25}}, \overline{r_{26}}\right.$, $\left.\overline{r_{27}}, \overline{r_{28}}, \overline{r_{29}}, \overline{r_{31}}, \overline{r_{32}}, \overline{r_{33}}, \overline{r_{34}}, \overline{r_{35}}, \overline{r_{37}}, \overline{r_{38}}, \overline{r_{39}}, \overline{r_{40}}, \overline{r_{41}}, \overline{r_{42}}, \overline{r_{43}}, \overline{r_{44}}, \overline{r_{45}}, \overline{r_{46}}, \overline{r_{47}}\right\}$,
$\left\{\overline{r_{15}}\right\}$,
$\left\{\overline{r_{18}}, \overline{r_{30}}, \overline{r_{36}}, \overline{r_{48}}\right\} ;$
3 orbits of $u_{4}$ :

$$
\begin{aligned}
& \left\{\overline{r_{2}}, \overline{r_{3}}, \overline{r_{4}}, \overline{r_{6}}, \overline{r_{7}}, \overline{r_{8}}, \overline{r_{9}}, \overline{r_{10}}, \overline{r_{12}}, \overline{r_{13}}, \overline{r_{14}}, \overline{r_{16}}, \overline{r_{18}}, \overline{r_{20}}, \overline{r_{21}}, \overline{r_{22}}, \overline{r_{24}}, \overline{r_{26}}, \overline{r_{27}}, \overline{r_{28}}, \overline{r_{30}}, \overline{r_{32}}, \overline{r_{3}}, \overline{r_{34}}, \overline{r_{35}}, \overline{r_{36}}, \overline{r_{37}}, \overline{r_{43}}, \overline{r_{45}}, \overline{r_{46}}, \overline{r_{47}}, \overline{r_{48}}\right\}, \\
& \left\{\overline{r_{5}}, \overline{r_{11}}, \overline{r_{17}}, \overline{r_{19}}, \overline{r_{23}}, \overline{r_{25}}, \overline{r_{29}}, \overline{r_{31}}, \overline{r_{38}}, \overline{r_{39}}, \overline{r_{40}}, \overline{r_{41}}, \overline{r_{42}}, \overline{r_{44}}\right\}, \\
& \left\{\overline{\left.r_{15}\right\}}\right\} .
\end{aligned}
$$

But $H_{l} \cap G$ is exactly the point stabilizer of $\overline{r_{1}}$ in $H_{l}$, then each $H_{l}$ is 2-transitive on $\Omega$, and hence is primitive. Besides, by direct checking we have

$$
\begin{aligned}
& u_{0}^{10}=(2,42,26,17,44,29,5,45,34,33,32,9,8,41,43,28,27,4,3,23,10) \\
& \quad(6,25,13,16,21,24,37,39,12,7,20,47,46,35,11,19,40,31,22,38,14)(18,48) \\
& \quad(30,36) \text { with order } 42 \text {, } \\
& s_{1} u_{0}^{10}=(2,3,23,18,29,31,14,15,6,45,38,22,34,17,43,40,5,25,11,8,20,26,33, \\
& 4,42,47,37,9,19,28,30,12,7,41,44,48,10)(13,21,35)(24,46)(27,32,39,36) \\
& \text { with order } 444,
\end{aligned}
$$

$$
\begin{aligned}
& \left(s_{0} u_{0}^{10}\right)^{148}=(13,21,35) \in H_{0}, \quad \text { and } \\
& s_{4} u_{4}=(2,24,35,18,23,10,12,27)(3,37,21,30,48,8,4,7,6,19,25,22,20,40,44)
\end{aligned}
$$

$$
(5,34,16,32,31,17,13,9,42,36,47,26,43,41,29)(11,14,15,45,46,39,33,38)
$$

with order 120,
$\left(s_{4} u_{4}\right)^{3}=(2,18,12,24,23,27,35,10)(3,30,4,19,20)(5,32,13,36,43)$
$(6,22,44,21,8)(7,25,40,37,48)(9,47,41,34,31)(11,45,33,14,46,38,15,39)$
$(16,17,42,26,29)$ with order 40 ,
$s_{4} u_{4}^{-1}=(2,7,21,37,48,30,3,20,31,44,47,33,41,5,8)(4,35,12,10,46,42,27,45)$
$(6,38,19,17,36,22,26,18,11,16,43,40,39,13,28)(9,29,25,32,23,24,14,15)$
with order 120,
$\left(s_{4} u_{4}^{-1}\right)^{2}=(2,21,48,3,31,47,41,8,7,37,30,20,44,33,5)(4,12,46,27)$
$(6,19,36,26,11,43,39,28,38,17,22,18,16,40,13)(9,25,23,14)(10,42,45,35)$
$(15,29,32,24)$ with order 60 ,

$$
\begin{aligned}
& \left(s_{4} u_{4}\right)^{3}\left(s_{4} u_{4}^{-1}\right)^{2}=(2,16,22,33,9,41,34,47,8,19,44,48,37,3,20,31,25,13,26,32, \\
& \quad 6,18,46,17,45,5,24,14,27,10,21,7,23,4,36,39,43)(11,35,42) \\
& \quad(12,15,28,38,29,40,30) \text { with order } 777, \\
& \left(\left(s_{4} u_{4}\right)^{3}\left(s_{4} u_{4}^{-1}\right)^{2}\right)^{259}=(11,35,42) \in H_{4} .
\end{aligned}
$$

It follows from Jordan's theorem that $H_{l}=\left\langle T, s_{l}\right\rangle=A$ for $l=0,4$.
(3) Since $A=\operatorname{Aut}\left(\Gamma_{k}\right) \cong \mathbf{A}_{48}$, then we need only to prove that for any $\sigma \in \operatorname{Sym}(G)$ satisfying $G^{\sigma} \leq A, G^{\sigma}$ has to be conjugate with $G$ in $A$. In this case, $S_{k}$ is a CI-subset by Babai's criterion (see [5]).

In fact, we see that $G^{\sigma}$ has at most one fixed point on $\Omega$, since $G^{\sigma} \cong \mathbf{A}_{47}$ contains a 47-cycle. We claim that $G^{\sigma}$ has exactly one fixed point. If not, then $G^{\sigma}$ is transitive on $\Omega$, and the point stabilizer is a maximal subgroup since its index in $G^{\sigma}$ is 48 . Consequently $G^{\sigma}$ is primitive on $\Omega$. But $G^{\sigma}$ has 43 -cycles in $\Omega$, and $|\Omega|-43 \geq 3$, it follows from Jordan's theorem that $G^{\sigma} \geq \operatorname{Alt}(\Omega) \cong A$, a contradiction.

Let $\bar{r} \in \Omega(r \in T)$ be this fixed point of $G^{\sigma}$. It is easy to check that $G^{\sigma}$ is the point stabilizer of $\bar{r}$ in $A$. Note that $G$ is also the point stabilizer of $\overline{1}$ and hence $G^{\sigma}$ is conjugate with $G$ in $A$.
(4) By direct calculation we have $o\left(u_{0}\right)=o\left(u_{0}^{-1}\right)=84$ for $u_{0} \in S_{0}$, and $o\left(u_{4}\right)=o\left(u_{4}^{-1}\right)=$ 224 for $u_{4} \in S_{4}$. Therefore, for any $\alpha \in \operatorname{Aut}(G), S_{0}^{\alpha} \neq S_{4}$. By (3), $\Gamma_{0}$ is not isomorphic to $\Gamma_{4}$.

By the proof of Theorem 4.3, we have directly a corollary below and hence complete the proof of Theorem 3.3.

Corollary 4.4. Let $s \in \Pi_{G}(R, T)$. Assume that $s$ interchanges $\Omega_{10}$ and $\Omega_{21}$. Then the Sabidussi coset graph $\bar{\Gamma}:=\operatorname{Sab}(A, T, s)$ is isomorphic to one of $\Gamma_{0}$ and $\Gamma_{4}$. In particular, $\langle T, s\rangle=A$.

By the proof of Theorem 4.3(3), we have the following corollary.
Corollary 4.5. In the alternating group $\mathbf{A}_{48}$, all subgroups which are isomorphic to $\mathbf{A}_{47}$ are conjugate.

The following lemma shows that no matter how to choose the involution $s$, the Sabidussi coset $\operatorname{graph} \operatorname{Sab}\left(A, T, s_{k}\right)$ is, up to isomorphism, independent of $T$.

Lemma 4.6. Any two mutually isomorphic regular subgroups of $\mathbf{S}_{n}$ are conjugate in $\mathbf{S}_{n}$.
Proof. If $X$ and $Y$ are regular permutation groups on $\Omega=\{1,2, \ldots, n\}$, and $\alpha: \Omega \rightarrow X$ and $\beta: \Omega \rightarrow Y$ are bijections with the property that $1^{\alpha(i)}=1^{\beta(i)}$ for $1 \leq i \leq n$, and $\theta: X \rightarrow Y$ is isomorphism, then $\alpha \theta \beta^{-1}: \Omega \rightarrow \Omega$ is a permutation in $\mathbf{S}_{n}$ that conjugates $X$ to $Y$.

## 5. The main result

Now, we are able to give a complete classification of the nonnormal connected $s$-arc transitive cubic Cayley graphs of finite nonabelian simple groups.

Theorem 5.1. Let $G$ be a finite nonabelian simple group and $\Gamma:=\operatorname{Cay}(G, S)$ a nonnormal connected s-arc transitive cubic Cayley graph for $G$. Then $\Gamma$ is isomorphic to one of $\Gamma_{0}$ and $\Gamma_{4}$.

Proof. We know from the paper [1] that $G$ here must be isomorphic to $\mathbf{A}_{47}$, and the full automorphism group $A:=\operatorname{Aut}(\Gamma)$ of the Cayley graph $\Gamma$ is isomorphic to $\mathbf{A}_{48}$, and that its point stabilizer $A_{1}$ is isomorphic to $\mathbf{S}_{4} \times \mathbb{Z}_{2}$ which is the complement of $G$ in $A$, that is $A=G A_{1}$. Thus, by Lemma 2.1(1) there exists an involution $s$ in $G$ such that $\Gamma \cong \bar{\Gamma}:=\operatorname{Sab}\left(A, A_{1}, s\right)$ with $\left|A_{1} s A_{1}: A_{1}\right|=\left|A_{1}: A_{1} \cap A_{1}^{s}\right|=3$ and $\left\langle A_{1}, s\right\rangle=A$.

According to Corollary 4.5, we may assume the pair of simple groups $(A, G)$ to be the same as in Theorem 4.3. In this case, $A$ has two subgroups $A_{1}$ and $T$ ( $T$ is defined as in Theorem 4.3), both are complements of $G$ and they are regular on $\Omega:=[A: G]$. In light of Lemma 4.6, there exists $\sigma \in \operatorname{Sym}(\Omega)$ such that $A_{1}^{\sigma}=T$, and then $A=A^{\sigma}=\left(G A_{1}\right)^{\sigma}=G^{\sigma} T$. It follows by Corollary 4.5 that $G^{\sigma} \in A$ is conjugate to $G$ in $A$, and we may take $h \in T$ such that $G^{\sigma h}=G$.

Denote $\alpha=\sigma h \in \operatorname{Sym}(\Omega)$. Then $A=A^{\alpha}=G^{\alpha} A_{1}^{\alpha}=G T,\left|A_{1}^{\alpha} s^{\alpha} A_{1}^{\alpha}: A_{1}^{\alpha}\right|=\mid T s^{\alpha} T$ : $T \mid=3$ and $\left\langle A_{1}^{\alpha}, s^{\alpha}\right\rangle=\left\langle T, s^{\alpha}\right\rangle=A$. This implies that $s^{\alpha} \in \Pi_{G}(R, T)$. From Corollary 4.1, we have $s^{\alpha} \in\left\{s_{0}, s_{1}, \ldots, s_{7}\right\}$ and $\bar{\Gamma}^{\prime}:=\operatorname{Sab}\left(A, T, s^{\alpha}\right) \in\left\{\bar{\Gamma}_{0}, \bar{\Gamma}_{1}, \ldots, \bar{\Gamma}_{7}\right\}$. So we know from Theorem 4.3 that $\bar{\Gamma}^{\prime}$ is isomorphic to $\Gamma_{0}$ or $\Gamma_{4}$, and hence we complete the proof since $\bar{\Gamma}=\operatorname{Sab}\left(A, A_{1}, s\right)$ is obviously isomorphic to $\bar{\Gamma}^{\prime}=\operatorname{Sab}\left(A, T, s^{\alpha}\right)$.

## References

[1] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc-transitive Cayley graphs of finite simple groups, European J. Combin. 26 (2005) 133-143.
[2] M.-Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-319.
[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974, Second edition 1993.
[4] C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of Western Australia, 1996.
[5] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar 29 (1977) 329-336.


[^0]:    Th This work was supported by NSFC and GXSF.
    E-mail address: xusj@gxu.edu.cn (S.J. Xu).

