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Abstract

In this paper, we determine all connected 5-arc transitive cubic Cayley graphs on the alternating group
Ay7; there are only two such graphs (up to isomorphism). By earlier work of the authors, these are the only
two non-normal connected cubic arc-transitive Cayley graphs for finite nonabelian simple groups, and so
this paper completes the classification of such non-normal Cayley graphs.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a group. The subset S of G is called a Cayley subsetif 1 ¢ S and S~! = S. The
Cayley graph I' := Cay(G, S) on G with respect to S is defined by

its vertex set  V(I') := G, and
itsedgeset E(I'):={{g,sg} | g€ G, seS}

Clearly, its full automorphism group Aut(/") acts transitively on the vertex set V(I') since
Aut(I) > R(G), the right regular representation of G, and hence [I" is vertex-transitive. We
always denote R(G) by G for short. It is well-known that I is connected if and only if (S) = G.
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To study the symmetry properties of Cayley graphs, we need more concepts of isomorphisms
between Cayley graphs and their full automorphism groups.

Denote the automorphism group of the group G by Aut(G). A Cayley subset S of G is
called a CI-subset of G (where CI stands for “Cayley isomorphism”), if for any isomorphism
Cay(G, S) = Cay(G, T) of Cayley graphs there exists an o € Aut(G) such that S* = T.

Denote Aut(G, S) = {@ € Aut(G) | S* = S}, and we easily have Aut(I") > G x Aut(G, S).
As a matter of fact, Aut(I') = G x Aut(G, S) is equivalent to G < Aut(I") (see [2]). In this case
we call the Cayley graph I' = Cay(G, S) normal for G.

Let I' be a graph, G < Aut(I") and s a positive integer. I is said to be (G, s)-arc transitive,
if G acts transitively on the set of s-arcs of I', where an s-arc is a sequence (vg, v1, ..., Us)
in V(I') satisfying (vi—1,v;) € E(I") and v;—1 # v;4 for all i. In particular, (Aut([), s)-arc
transitive is called s-arc transitive, and 1-arc transitive is simply called arc transitive.

Sabidussi gave a construction for all vertex-transitive (not only Cayley) graphs by using a
group-theoretic method.

Let G be a finite group and T a subgroup of it. Let D be a union of several double cosets of
T satisfying D~' = D. He defined a graph I" with vertex set V(I") = [G : T, the set of all
right cosets of T, and edge set E(I') = {{T'g, Tdg} | g € G,d € D}. This graph is called the
Sabidussi cosets graph of G with respect to T and D, denoted by Sab(G, T, D).

Obviously, I" is connected if and only if (D) = G. It is easy to check that Sab(G, T, D) is
G-arc transitive if and only if D = TdT (a single double coset) for some d € G. We always
denote Sab(G, T, TdT) by Sab(G, T, d) for short.

In fact, any vertex-transitive graph I" is the Sabidussi coset graph of its full automorphism
group A = Aut(l") with respect to T = A,, the stabilizer of any vertex v, and D := {0 € A |
{v,v¥} € E(I')}, which is a union of several double cosets of T'.

Let P(G) be the right multiplication action of G on [G : T]. Since Aut(Sab(G, T, D)) >
P(G), all Sabidussi coset graphs are vertex transitive. If T is core-free, that is Ngeg T8 = 1,
then P(G) = G. We always denote P(G) by G.

Regarding connected cubic s-arc transitive graphs, the first important result due to Tutte
([3, Theorem 18.6]) claims that there is no finite s-arc transitive cubic graphs for s > 5. Also,
it is easy to check that for normal cubic s-arc transitive Cayley graphs, we have s < 2. So, if a
connected cubic Cayley graph is s-arc transitive s > 2, then it must be nonnormal.

Much excellent work has dealt with arc-transitive Cayley graphs on finite nonabelian simple
groups. For example, in [4, Theorem 7.1.3], Li proved that all connected cubic arc-transitive
Cayley graphs are normal except for the following exceptions listed below:

As,PSLy(11), My, Ay1, M3, Aoz, and Aygsy.

In [1] we proved that the only exception is A47. For all other groups listed above, we proved
that their connected cubic arc-transitive Cayley graphs are normal. There we also constructed a
connected 5-arc transitive cubic Cayley graph for A47.

The purpose of this paper is to classify all connected 5-arc transitive cubic Cayley graphs on
the alternating group A47. By the remarks above, it is also a classification of connected 5-arc
transitive cubic Cayley graphs on finite simple groups.

The rest of this paper is organized as follows. After giving some preliminary results in
Section 2, we construct all connected 5-arc transitive cubic Cayley graphs on A47 in Section 3,
then in the next section we determine the isomorphisms between them, and finally we complete
the classification in the last section.
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2. Preliminaries
The first lemma is about the relation between Sabidussi coset graphs and Cayley ones.

Lemma 2.1. (1) Let I' := Cay(G, S) be a Cayley graph, and A = Aut(I'). Then the
vertex-stabilizer A1 is a complement of G in A, where 1 is the identity of G, and we have
r=r= Sab(A, A1, A1SA1). In particular, there exists an s € S such that A1SA| = A1sAy
when I is arc transitive.

(2) Conversely, let T = Sab(A, T, D) be a Sabidussi coset graph and G a complement of T
in A. Denote S = G N D. Then the Cayley graph I" := Cay(G, S) is isomorphic to T, and hence
|S| = |D : T|. In particular, S contains an involution of G if the valency of T is odd. Also T is
arc transitive if D is a single double coset of T.

Proof. (1) Obvious.

(2) Since A = GT and GNT = 1, each coset in [A : T] has only an element of G as its
representative. We define a bijection o from I" to I" such that g° := Tg € V(I') = [A : T] for
all g e V(I') = G. Since

(881 e EN) ¢ gg7  eS=GND & (Tg.Tg'} € E()
forany g, g’ € G,wefind ' =T. O
By results of [1] and [3] (respectively) we easily have

Lemma 2.2. Let G = Ay7 and I' = Cay(G, S) be a connected 5-arc transitive cubic Cayley
graph for G. Denote A = Aut(I"). Then the following hold.

(1) A = Agg;

(2) There exist an involution s and a subgroup T in A which is isomorphic to S4 X Zy such
that the Sabidussi coset graph T' = Sab(A, T, s) = I'. Also we have |T : T N T*| = 3, and
(T,s) = A.

The next lemma will play a very important role in proving our theorem.

Lemma 2.3. Suppose that R is a regular subgroup on 2 = {1,2,...,n} and s € S,. The
following hold.

(1) Let K be a subgroup of R. Then there are |R : K| K-orbits with length |K|. If g € R
normalizes K, then g induces a permutation action on the set of K-orbits. In particular, the
action is transitive if (K, g) = R;

2)If n =4and R = (a) x (b) = Z% such that {a)® = (a) and b’ = ab, then s is an odd
permutation. In particular, s is a transposition if s is an involution;

(3)If n = 8and R = (a) x (b) = Dg such that (a)* = (a) and b* = ab, then s is an odd
permutation. In particular, s is a product of three disjoint transpositions if s is an involution.

Proof. (1) Clearly, K is semiregular on {2 and each K-orbit has the same length |K|. Since
[£2| = | R|, then there are |R : K| K-orbits on {2. Let A be a K -orbit. If g normalizes K, then A8
is an orbit of K8 = K, and hence g may act on the set of k-orbits. Furthermore, if (K, g) = R,
which is transitive on (2, then (g) is also transitive on the set of K -orbits.

(2) As R = {(a, b) is regular on {2, we may let a = (12)(34), b = (13)(24) € A4. Since s
commutes with a but not b, then s is not a 3-cycle on {2 and s ¢ (a, b), either. But {(a, b) contains
all involutions of A4, then s is either (i1i2) or (i1i2i3i4), and hence s is an odd permutation. In
particular, s = (i1i7) if its order is 2.
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(3) Being semiregular on {2, (a) has two orbits with length 4, denoted by A, A;. Without
loss of generality, we may let A; = {1, 2, 3,4}, Ay ={5,6,7, 8}, and a = (1234)(5678).

Since each of b and ab normalizes (a), we find All’ = A‘fb = Aj; by (1). This means that as
two permutations with order 2 on 2, b = (1i1)(2i2)(3i3)(4i4) and ab = (11)(2j2)(3j3)(4ja)
where i, j, € Ay. Since a’ = a®® = a7, both arrangements i1i2i3i4 and ji j2j3j4 on Aj are in
the set {8765, 7658, 6587, 5876}.

Clearly s also normalizes (a), and hence A} = A; or A;. We deal with these two cases
separately.

Case 1: A“]‘ = Aj;. We may let r* = k, where r, k, € Aj. Then k1kksks is an arrangement on
Aj.Note thata® = aband b = (1i1)(2i2)(3i3)(4i4), only (ri,)* = (k. i}) is a transposition of
ab, and hence i} = ji,. Thus s = ( k llzi:kjj; 11 ﬁzl;k:l/u )

Denote u := ( klu ,{22,2;};5667788) € Sg, w := u’ and x := s(uw)~'. We will finish the proof of

case 1 by the following steps:

: _( 12341 jaj3ia

Hw = (1 234jkljkzjk3jk4)-

In fact, since w = utt — abuab,then forany r € Ay, r" = (rab)”“b = jr“ab = jr
for any jr e AZ, ];u — (jrab)uab — ruab — kfb — jk,-

i _ 1234y j2j3ja :
(i) uw = ( kikaksks Jk, ey i iy ) and uw commutes with ab.

; _ 1234 J1J2 J3 Ja _ 1234 )1 j2 3 Ja uw  _ :
First, uw = <k|k2k3k4) (./kl Jipdkyikg ) T \kikakska jiy Jiy Jis iy ) Then (ab) = ab since

(ry j)"" = (kr, ji,) is still a transposition of ab.

(iii) jr = ir4+1, where 4 + 1 = I(mod 4).

In fact, for any r € Ay, j, = ret = b = (r + 1) =i,y

(1v) x = (i1i2i3i4).

In fact, by (ii) and (iii),

( 1234i1iri31i4 ) <k1k2k3k4jk| jkzjk3jk4)
kikokska ji, Jiey Jis Jky 1234 j1j2 )3 Ja

_ 1234i1iri3i4 _ 1234401021314
B (12341'1 2 J3 j4) B (1234i2i3 is iy

b —r, and

X = s(uw)_l =

) = (i1i2i314).

(v) s is an odd permutation.
In fact, since uw = u(u”b) is obviously an even permutation, then by (iv), s = x(uw) =
(i1i2i3i4)uw is an odd permutation.

Case 2: A{ = A». In this case, Al]” = Aj. Then bs, which obviously satisfies the assumption as
s does in case 1, is an odd permutation, and so is s.

In particular, as an odd permutation with order 2 of Sg, s is a transposition or a product of
three disjoint transpositions. If s is a transposition, then it has 6 fixed points on {2, and hence
b= 1i1)2i2)(3i3)(4is) and ab = (1i3)(2i3)(3i4)(4i1) are not conjugate under s. It follows
that s is a product of three disjoint transpositions. [J

3. How to construct the graphs
In this section, we construct all connected 5-arc transitive cubic Cayley graphs on A47.

Let G be a finite nonabelian simple group and I' := Cay(G, S) a connected arc-transitive
cubic Cayley graph. We know from [1] that I" is nonnormal for G if and only if G = A47, and
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A = Aut(I") is isomorphic to Asg. Recall that this means, (1) I" is 5-arc transitive; (2) the vertex-
stabilizer T of A is isomorphic to S4 X Zj; (3) there exists an involution s in G such that |T :
TNTS| =3,(T,s) = A, and furthermore the coset graphf = Sab(A, T, s) is isomorphic to ['.

To construct all these Cayley graphs, we firstlet A = A4g, and A = GT, where G = A47 and
T = S4 x Z3. Secondly, we choose involutions s of G which satisfy that [T : T N 7°| = 3 and
(T, s) = A. Then we examine the structure of 7" and its subgroups with index 3.

(A) The structure of T

We will find out generators of 7. Without loss of generality, we may let T = S4 x Z,. Noting
that A4 < S4, we take K € Syl,(A4) which is a Klein four-group and L € Syl;(A4) which
is a cyclic group of order 3 such that Ay = K x L. Thus there exist b € K, t € L such that
K = {1,b,b',b"’} where b'° = bb', and hence Ay = (b, 1). Note that |Ss : A4| = 2, then we
may take an element a with order 4 of S4 such that S4 = (A4, a) = (a, b, 1).

Consider the relations between a, b and 7. Note that a® € K, we may let a’ = b’2 =bb',and
accordingly b’ = a’b, (a*)' = b. Further, D := K (a) is an order 8 Sylow 2-subgroup of Sy,
and then a® = ¢~!. Thatis D = (a) x (b) = Dg, and accordingly each Sylow 2-subgroup of T
is isomorphic to Dg x Z,.

By the way, T has 4 Sylow 3-subgroups all of which are in A4 since Ay < S4 < T and
|T : A4] is divisible by 3, and hence all 8 elements of order 3 of T exactly make up the right
coset union Kt U Kt~ 1.

Represent a’ by a, b and t. First, a’ has order 4 and is not in A4, and hence in the left coset
aAy = S4 \ A4. Secondly, a’ € Dr U Dt~ ! since ¢ does not normalize D. Thus we may let
a' = a'b/t* wherei =41, j =0or 1,k = +1. We claim thati = k = —1 and j = 0, namely
a' = a Y1 In fact, (i) if k = 1, then t~lar = a'b/rand 7! = a'b/a~! € D, a contradiction.
Hence k = —1. (i) If i = 1, then b = (a®)! = (a")? = (ab/t™ VY (ab/t™) = abla't~ b/t~ =
abl (ab/t=)t7'bit? = a(b/abl)t=?b7 1> In this case, if j = 0, then b = a?, a contradiction,

andif j =1,b = aa~'b"" = &2, still a contradiction. Hence i = —1. (iii) If j = 1, we may let
t' .= a®t € Kt, thent' is stilzl an element of order 3, and a’ = a' = a bt = a~'bt' " 1a? =
a '@t ' =a 0@ =a (@' = a'bbr’~ = a1~ We may replace ¢

by ¢’ such thata’ = a~'t~1.
Finally, let Zy = (c¢). Then T = (a, b, c, t | ad=pr=c2=r=1,d=a1a"=a, b=
b,a' =a 't7',b' = a®b, ' =c).

(B) The subgroup of index 3in 7

Let R be a subgroup of T with index 3. Clearly, R is a Sylow 2-subgroup of T, and hence
by (A) R is isomorphic to Dg x Z,. Without loss of generality, we may let R = (a, b, c), where
a, b, c are the same as in (A). It is easy to check that R has 7 subgroups of order 8 as follows.

Type 1, Z%: (az, b, c) and (az, ab, c);
Type 2, Z4 X Z>: {a, c);

Type 3, Za X Z3: {(a, b), {(a, bc), (ac, b), and {ac, bc).

We shall choose an involution s of G such that |7 : TNT*| = 3 and (T, s) = A. Clearly, those
involutions s which normalize one of Sylow 2-subgroups of 7' except for T itself must satisfy that
|T : TNT*| = 3. Note that all three Sylow 2-subgroups of T, including R, are conjugate to each
other. Without loss of generality, we may let R be normalized by s, and accordingly R = T NT*.
However, it is difficult to check if (T, s) = A. But (T, s) should be a simple group, then s does
not normalize any nontrivial normal subgroup of 7. Then s belongs to the set defined by
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IIG(R,T) :={s € N6(R) | o(s) =2andV 1 # K < T, K® # K},

where T = {(a, b, c,t) and R = {(a, b, ¢) defined in (A) and (B).
We still denote S4 = (a, b, t), its subgroup D = (a, b) as in (A) and denote (a, c) by K.
The next lemma shows us some properties of involutions in IIg (R, T).

Lemma 3.1. For s € Ilig(R, T), the following hold.

(D) (@®* =a?and ¢’ = a’c;

2) b5 = ab;

(3)a’ = a! and (ac)* = ac; '

@) (¢!D)’ =c¢/D and (b’ K)* = b/K forevery j € {0, 1}.

Proof. (1) First, by (B), s normalizes K = {a, c) = {1, a, a%, a3, ¢, ac,a’c, a3c} and hence (a)*

equals one of (a) and (ac). In any case, (@®)* = a?. But s normalizes neither (a2, b, ¢) nor {(c)
since (a2, b, ¢), (¢) < T and ¢* = a?c.

(2) Since (a%,b,c) = {l1,a%b,c,a*b,a’c,bc,a*bcy = (a®, ab,c) =
{1,a>, ab, c,a’b, a’c, abc, a’bc), then b* = a*'bc/ (j € {0,1}). Let a’ = a*'c/. Then
R = ({a’) x (b)) x {(c), and b® = a’b. We may replace a by a’, and hence (2) holds.

(3) We know from (1) that (a)* = (a) or {ac). If (@)’ = (ac), then a®* = a*!c and further
a=a" = (@*le)® = @)F'e* = (@'o)t(a?c) = (act)(a?c) = (ac)(a®c) = a’ +# a.
This contradiction shows that (a)* = (a) and hence a* = a*!. If a* = a, then b = b’ =
(ab)® = a*b* = a(ab) = a’b # b. This contradiction shows that a® = a~! and consequently
(ac)® = a’c® =ala?c = ac.

(4) Obvious. O

Of course, we cannot confirmif (T, s) = A fors € IIg(R, T) and so we need some additional
assumptions to help us choose s.

With the right multiplication permutation representation of A on {2 := [A : G] being faithful,
we may assume A = Alt({2). As a complement of G in A, T is a regular subgroup on 2. Its
subgroups R, S4 and D are semiregular. So there are |T : R| = 3 R-orbits denoted by (2, {2, {2,
and |T : S4| = 2S4-orbits denoted by Ag, Ay in 2. By Lemma 2.3(1) and T = S4 % {c), ¢
interchanges Ag and A;. Furthermore, for alli € {0, 1,2} and j € {0, 1}, £2; =4, N A; are 6
D-orbits. ¢ interchanges (29 and (2;; for each i.

The R-orbits (2; (i = 0, 1,2), S4-orbits A; (j = 0, 1) and their intersection orbits (2;; are
depicted in the following figure:

N
00 01
2o
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According to the action of s € IIg(R, T) on Ss-orbits, we say s is of the first type if it fixes
each A; setwise and s is of the second type if it is not of the first type.

Since s normalizes R, s may act on the R-orbit’s set {{2, {21, {%»}. As an involution, s must
fix one of them. Without loss of generality, we always assume {J; = . Thus 2] = (2 or
(2. Analogously, from Lemma 3.1(4) s normalizes D and hence fixes the sets {{20, {21} and
{10, £211, (0, 221} of D-orbits setwise. But s does not normalize Sy, so the equation Ay = 4,
may be not true even if s is of the second type.

The next lemma is related to the type of the involutions in Il (R, T).

Lemma 3.2. Let s € IIg(R, T). Then the following hold.

(1) The element cs has order 4, and has no fixed point in (2, and contains no transposition on
£2. In fact, cs is a product of 12 disjoint 4-cycles;

(2) If s fixes some {); setwise, then s fixes each of (%0 and (2 setwise, and further s%% isa
product of 6 disjoint transpositions on §;. In particular, by our assumption, so is st

(3) The involution s does not interchange (2,0 and (21 for anyi € {0, 1, 2};

(4) If s fixes {2y or {2 setwise, then s fixes every {);; setwise and hence s is of the first type;

(5) If s interchanges 219 and $h, then s is of the first type.

Proof. (1) Since (cs)? = c(scs) = c(a®c) = a* # 1 and (cs)* = (a?)? = 1, we find o(cs) = 4.
In particular, (cs)> = a® has no fixed point in £2 so that cs has no fixed point and contains no
transposition. Hence c¢s with order 4 is a product of 12 disjoint 4-cycles.

(2) Since s fixes §2;, then 25 = § or §2;1. Assume (23, = (. Then 2] = (0. As
components of g, a’ = a*%0, b = b%%0 and s’ := (cs)%0 satisfy, by easily checking, the
assumption of Lemma 2.3(3), that is, (a’) x (b') = Dg, (@) = (d’) and (»')* = a'b’. So
s = (cs)QiO is an odd permutation on 2. By (1), cs with order 4 has no fixed point and contains
no transposition, then s’ = (cs)”f" is a product of 2 disjoint 4-cycles on 2o, contradicting
the oddness of it. Hence s fixes each of (2,9 and (2 setwise. In this case, using the way of
dealing with (cs)Q"U on (2,9 above to deal with s%%0 on {20 and s%1 on {2;1, we finally have that
s¥% = S0 gfi s a product of 6 disjoint transpositions on {2;.

(3) and (4) hold by (2).

(5) Since s always fixes {2 setwise, and by (2), we find s also fixes % setwise. It follows
that s fixes Ag setwise, and consequently s fixes A setwise. So s is of the first type. O

Theorem 3.3. Let s € IIg(R, T). Then the following statements are equivalent.

(D (T,s) = A;
(2) The involution s is of the second type;
(3) The involution s interchanges $21¢ and $);.

Proof. (1)=(2): Since (T, s) = A is primitive on {2 but each A is obviously nonprimitive block
of T, then s does not fix A; anymore, namely s is of the second type.

(2)=(3): By Lemma 3.2(3), (4) and (5), s must interchange (29 and (2.

(3)=(1): See Corollary 4.4 later. [

Theorem 3.3 shows that the Sabidussi coset graph I' := Sab(A, T, s) is a connected 5-arc
transitive cubic graph if and only if the involution s is of the second type.
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4. Finding the graphs

In this section, we will find out all connected 5-arc transitive cubic Cayley graphs for A47.

We first denote each coset Ga € 2 =[A: G]lbya.Then 2 =T :={h | h € T} and G is the
point stabilizer of 1 in A. For any subgroup L of T and its left coset &L, the set AL is obviously
an L-orbit in 2. Thus, R, tR and 2R are also R-orbits. But R = GRs = GsR = GR = R,
then s fixes R setwise. So we may let R = 2. Without loss of generality, we may assume that
; =t'Rand 2;; =t'c/Dfori € {0,1,2}, j € {0, 1}.

By Theorem 3.3, we need only to investigate those s € IIg(R, T) for which Qfo = (h;.In

USD g g product of 16 disjoint transpositions on 2] U (2. By
QOSQIUQZ is a

this case, {2{ = (2 and hence s
Lemma 3.2(2), s is a product of 6 disjoint transpositions on {2, and then s = s
product of 22 disjoint transpositions on 2, and s has only 4 fixed-points all belong to 2y = R.

To find out all these involutions, we will examine the permutations induced by them on (2
and {21 U () respectively.

First, the action by s on ) is conjugation since for every 7 € R = (%, 7* = Grs =
Gss~'rs = Gr® = r5. By Lemma 3.1 there is only one choice for s,

Secondly, in 2| U (), since s forces 7 € tD = 0 to bein & = %, there exists
d € D such that 7* = r2cd, or Gts = Gt*cd. Immediately, for each ir € 2, = iR,

S = Gtrs = Gtss 'rs = (Gts)r® = (Gt2cd)r’® = t2cdr’ € t2R = (). Thus there are
8 choices for s 1Y% gince |D| = 8.

Letdy = 1, d| = ab, dy = a, d3 = a°b, dy = a®, ds = a’b, dg = a*® and d7 = b which
make up D, then we have 8 involutions sg, 51, ..., s7 to make 7 ** = t2cd; and Qfo = (k=
0,1,...,7).

Accordingly, we have 8 Sabidussi coset graphs:

T = Sab(A, T, sp),

where Val(I'y) = |Tsy T : T| = |T : T N T%| = 3.

Remark. Each I here may not be connected because we do not know if (T, sx) = A yet.

From Theorem 3.3, we immediately have

Corollary 4.1. Ler s € IIg(R, T). If the Sabidussi coset graph T_:: Sab(A, T, s) is connected
5-arc transitive cubic, then s € {so, s1, ..., s7}, and further, I' € {I'0, I'1, ..., ['7}. O

Due to Lemma 2.1(2) we also have 8 Cayley graphs of G:
Iy = Cay(G, §) = I,

where the Cayley subset Sy = G N (T'sgT), and | S| = Val(I'x) = Val(I'y) = 3.

We will prove soon that Sy is conjugate to S1, S2, S3 and Sz is conjugate to Ss, Se, S7.
Moreover, we will prove that each S generates G = Ay7.

Clearly, the three-element set Sy contains si. To find the other two elements of Sk, we denote
up = t2cdpspt* € TsiT. Note that Grsy = GtPcdy, then uy = t2cdrsgt? € G and hence
ury € S = G N (TsT). We claim that uy is not an involution on f2.

Otherwise, if uy is an involution, then 1 = u,% = Pedisptediskt? = t2diesgetdysit? =
tzdkskcskctdksktz = tzdkskaztdksktz = (dkskaztdkskt)t = dksk(azt)dkskt = dy sy (tb)dgsit,
thatis, Gd; ' = Gd, ' (disktbdysit) = Gtbdyst.

For k = 0, Gtbdysot = Gtbsot = Gtspabt = (Gt2cdg)abt = Gt?abct # G = Gd; ', a
contradiction.
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For k = 4, Gtbdasat = Gtba’sast = Gtssa’bt = (Gtzcd4)a3bt = Gt*ca’a®br =
Grlabct #* Ga? = Gd;], a contradiction.

Analogously, fork = 1, 2, 3, 5, 6 or 7, we also obtain a contradiction (the details are omitted).
Thus, uy is not an involution so that u,:] € Sk \ {sk, ux}, and hence

Sk = {5k, up, up ')

Legnma 4.2. ASSthme o € G such that a® = a, b° = a®b, ¢° = ¢, and t° = t?a®. Then
S§ = Sk and S] = Sgia fork € {1,2,3}.

Proof. We easily have
2 =1h, 1 =1a*h, 2 =2h, © =i2a*, *)° =ta%, and® =1.

Consequently, o* € G centralizes T, and hence 0% = 1.

Since o € G, then (Gt)o = Got® = Gt*a®. Analogously, (Gt*)o = Gtb, (Gt)o? =
Gta®b, (GtY)o? = Gt?b, (Gt)o> = Gt2a>b and (Gt?)o? = Gta?. )

. . k .

First, we will prove that for each k € {1,2,3}, sy = sj or sgsj = 1. Equivalently, we
manage to prove sisg ¢ fixing 2 = () U 21 U (% pointwise. We deal with these three cases
separately.

Casel:7 e R = Qo.k
We claim that sksg commutes with each r € R.

. . . 2 3 .

In fact, let r € /K (j = 0 or 1). Then r° = a*r, r° = r and r° = a%r.
+k . .

That i 1s r° = a%2=Mr Note that r¥ = r% and r¥* e b/K by Lemma 3.1(4). We have

rskso = rspo Ksgo* = spriko Ksgok = spo ka2 C R pskgpok = s ka2 QR psogyak =

—k —k

o o k k
sk *a2I @R rok = g0 Ks9a2 C P rok = spoKsgokr = sgsg 7. Thus sgs; commutes

. k - ..
with each r € R, and hence s;s§ fixes R = {J pointwise.

Case2:7r € 1R = (2.

Let hy = Gtr(ska_ksoak) = Gt(sko_ksoak)r = (Gtsk)a_ksoakr = Gt2cdk(f_ksoakr,
then

() By = Gt2cabyoYsgor = Gti(abe)o3sgor = Gtio3(@’be)spor =
(Gta®)albesgor = Gt(abe)soor = Gtso(ab)cor = Gtsob(a’c)or = (Gt c)ba*cor =
Gt*(ba*)or = Gt*(ob)r = (Gt*0)br = G(tb)br = Gtr;

(2) hy = Gt*cac’soo*r = Gt*o’casoo’r = (Gt*b)casoo*r = Gt?c(ba)soo’r =
Gt*c(a’b)soo’r = (Gt3c)so(a*b)o’r = (Gt)(a*b)o’r = Gto?(a*b)r = (Gta*b)(a*b)r =
Gtr;

3) hy = Gtzc(azb)asoa3r = Gtzacbsoa r o= (th)cbsoa3r = Gresgodr =
(Gt)so(azc)USr = (GZ‘ZC)LZZCO'SI’ = Gtlo3d?r = (Gtaz)a r = Gtr.

Thus sksgk fixes tR = {2 pointwise.

Case 3i/t2_r € 2R = (.
Leth; = Gt2r(skc7’ksoc7k) = (Gtzcdk)(cdk_lr)(skafksoak) = (Gtsk)(skafksoak)(cdk_lr)
= (G2cdysp)o *sook(cd; 'r) = GtoFsga*cd; ', then

(1) F] = Gio? soo (cab)r = (Gt2 2b)socr(cab)r = Gtzc(caz)bsoa(cab)r =
Gt2csoc(ab)a(cab)r = (Gt?cso)(abe)o (cab)r = (Gt)o (a>be)(cab)r = (Gt?a®)a*r = Gt?r;
(2) By = Gtolspo(ca’)r = (Gta’bh)soo2(ca®)r = Gisoa’bo?(ca®)yr =

(Gt2c)o?a’b(ca’)r = Gt?o%c(ber) = (Gt2b)(br) = Gt3r;
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(3) By = Gtosoo’(ca?byr = (Gr2a®)soo3(ca’b)yr = (Giic)(calso)o(ca’b)yr =
(Gts0)(s0c)o> (ca’b)r = Gt (co3)(ca*b)r = Gto3c(ca’b)r = (Gt?a’b)a’*br = Gt?r.

Thus sgsg fixes 2R = £} pointwise.

Therefore, sgsg “—1or 53 Lo Sk

Secondly, depending on uy = t2cdysit?, we have

(D) uf = (t*cdosot*)° = (t2csot?)” = (tb)esi(th) = t(bes))th = tsi(ab)(a’c)(a’t) =
tsi(ab)ct = tsl_l(ab)*]c’lt = (tPedisit?)~! = ul_l;

(2) u32 = (2esot?)?” = (2h)esy(12b) = 12besy(abt?) = 2be(a3bsy)t? = tPcasit?® = uy;

3) ug3 = (tzcsotz)‘73 = (ta®)es3(ta?) = t(ales3)ta® = t(s3c)(a’bt) = ts3(ab)ct =
(t2cdzs3t®) ™! = u;l.
To sumup, S§° = S (k = 1,2, 3).
Similarly, Sf{k = Sk+4 (the detailed proof is omitted). O

Theorem 4.3. With the above notation, we have

(1) The graph Iy is isomorphic to I'1, I, I3, and Iy is isomorphic to s, I, I'7;

(2) Each graph Iy (k = 0, 1,...,7) is a connected 5-arc transitive cubic graph and its full
automorphism group is isomorphic to A;

(3) Each set Sy (k =0, 1,...,7) is a Cl-subset of G;

(4) The graphs Iy and I'y are not isomorphic to each other.

Before our proof we need to represent the permutations of A in another way.

For each element of {2 = [A : G] which is a right coset of G with the unique representative
from T, we will rearrange these representatives. First, we denote all elements of R in turn by

rn=1,rn=a,r3 = a’, ry = ad, rs = a3b, re = a’b, r7 .= ab,rg .= b, r9 = c,
rio :=ac,ri = a’c, rpp = ac, r3 = a’be, riq = a’be, ri5 := abc, and ri¢ := bc.

Then, from7 = RUtR U 2R, we denote all other elements of T by rigi+j = tirj where
i €{l,2}and j € {1,2,...,16}. Thus we may depict 2 = {r1, 72, ..., rag} as follows:

o R
£200

20y
dc  dc dbe &be abe b
2
5 16
o 2
ta' tdh tab
®
20 21 22 30 31 32
220 221
% b % t%a’ % t*dbet*dhe tPabe tHe
i

45 46

47§

A A,

Now, acting by its right multiplication, each element of A may simply be denoted as the
permutation on {1, 2, ..., 48}, such as

a=(1,2,3,4)(5,6,7,8)(9, 10, 11, 12)(13, 14, 15, 16)(17, 18, 19, 20)
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(21,22, 23,24)(25, 26, 27, 28)(29, 30, 31, 32)(33, 34, 35, 36)(37, 38, 39, 40)
(41,42,43,44)(45,46,47,48),

b=(1,8)(2,7)3,6)(4,5)(9,16)(10, 15)(11, 14)(12, 13)(17, 24) (18, 23)(19, 22)
(20, 21)(25, 32)(26, 31)(27, 30)(28, 29)(33, 40)(34, 39)(35, 38)(36, 37) (41, 48)
(42,47)(43, 46)(44, 45),

c=(1,9)(2,10)(3, 11)(4, 12)(5, 13)(6, 14)(7, 15)(8, 16)(17, 25)(18, 26)(19, 27)
(20, 28)(21, 29)(22, 30)(23, 31)(24, 32)(33, 41)(34, 42)(35, 43) (36, 44) (37, 45)
(38,46)(39, 47)(40, 48).

For the ¢, we easily have that bt = ta?b and cr = tc. In addition, since a’ = a~'¢r~!, then
at* = ta?, and hence at = (ar®)t2 = (ta’)t? = ta*(ar?) = 12t 'a*ta® = *ba® = 1%ab. So
we also obtain the following permutation for ¢:

t = (1,17,33)(2,39,20)(3, 24, 38)(4, 34, 23)(5, 37, 21)(6, 19, 40)(7, 36, 18)(8, 22, 35)
(9, 25,41)(10,47,28)(11,32,46)(12,42,31)(13, 45,29)(14, 27, 48)(15, 44, 26)
(16, 30, 43).

Proof of Theorem 4.3. (1) From Lemma 4.2 we need only to find out a ¢ € G such that o
satisfies the assumptions there. Take
o = (5,7)(6,8)(13,15)(14, 16)(17, 35, 22, 38)(18, 36, 23, 39)(19, 33, 24, 40)
(20, 34,21, 37)(25, 43, 30, 46)(26, 44, 31, 47)(27, 41, 32, 48) (28, 42, 29, 45)
e A =G.
It is easy to check that a® = a, b = a’b, c® =c,t° = 22, and henge (1) holds.
(2) We will prove that (7', s;) = A for/ € {0, 4}. This will imply that I'; is a connected 5-arc
transitive cubic graph for any /, and so are all other ' from (1) and also are I} = ['k.
To prove the above assertion, we first determine the permutations of sg, s4, #o and u4 on
{1,2,...,48}.
For every 7 in (2, since 7* = (Gr)s = Gr® = r’ and a* = a1, b5 = ab, ¢ = a?c, we
easily have that skg" = (2,4)(5,6)(7,8)(9,11)(13, 16)(14, 15), being independent of k.
For every fr € (21, since 77 %t = (Gtr)sy = (Gtsp)r®* = (Gt?cdy)r'* = t2cdirst € (b, we
have the following.
Since dy = 1,
so = (2,4)(5,6)(7,8)(9, 11)(13, 16)(14, 15)(17,41)(18, 44)(19, 43)(20, 42)(21, 46)
(22,45)(23,48)(24, 47)(25, 35)(26, 34)(27, 33)(28, 36)(29, 40) (30, 39)
(31,38)(32,37);

and since d4 = a’c,

s4 = (2,4)(5,6)(7,8)(9, 11)(13, 16)(14, 15)(17, 43)(18, 42)(19, 41)(20, 44)(21, 48)
(22,47)(23,46) (24, 45)(25, 33) (26, 36)(27, 35)(28, 34)(29, 38)(30, 37)
(31, 40)(32, 39).
Accordingly,
uo == t2esor? = (2,7,4,24,41,25,33,22,29, 11,42, 20, 3,37, 43, 13, 32, 38, 5, 19, 26,
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47,123,139, 28,16,9, 14, 45,40, 17, 46, 10, 12,27, 21, 8, 6, 34, 31, 44, 35)
(18, 36, 48, 30),
ug = t2ca’syt* = (2,7,4,24,46, 10, 12,27, 18, 36,43, 13, 32, 33, 22, 26, 47, 20, 3, 37,
48,30,21,8,6,34,28,16,9, 14, 45, 35)(5, 19, 29, 11, 42, 23, 39, 31, 44, 40,
17,41, 25, 38).
Denote H; := (T, s;) forl € {0, 4}. We claim that H; is 2-transitive on {2.
In fact, Hj is obviously transitive on {2. Examining all orbits of (u;) in {2\ {r{} as follows, we

easily have that (s;, u;) is transitive on {2 \ {r;} and so is H; N\ G since s;, u; € H N G.
3 orbits of ug:

{ris},
{r18, 730, 736, T48};

3 orbits of u4:

{r1s}.

But H; N G is exactly the point stabilizer of 7| in Hj, then each Hj is 2-transitive on {2, and
hence is primitive. Besides, by direct checking we have

ul’ = (2,42,26,17,44,29,5,45,34,33,32,9, 8,41, 43, 28,27, 4,3,23, 10)
(6,25,13,16,21,24,37,39,12,7,20,47, 46, 35, 11, 19, 40, 31, 22, 38, 14)(18, 48)
(30, 36) with order 42,

slu(l)o =(2,3,23,18,29, 31, 14, 15, 6, 45, 38,22, 34, 17, 43, 40, 5, 25, 11, 8, 20, 26, 33,
4,42,47,37,9,19,28,30,12,7,41, 44,48, 10)(13, 21, 35)(24, 46) (27, 32, 39, 36)
with order 444,

(soup))'*® = (13,21,35) € Hy, and

sauq = (2,24, 35,18, 23,10, 12, 27)(3, 37, 21, 30, 48, 8,4, 7, 6, 19, 25, 22, 20, 40, 44)
(5,34,16,32,31,17,13,9,42, 36,47, 26,43, 41,29)(11, 14, 15, 45, 46, 39, 33, 38)
with order 120,

(squs)® = (2,18, 12,24,23,27,35,10)(3, 30, 4, 19, 20)(5, 32, 13, 36, 43)
(6,22,44,21, 8)(7,25,40,37,48)(9, 47,41, 34, 31)(11, 45, 33, 14, 46, 38, 15, 39)
(16, 17,42, 26, 29) with order 40,

S4uZ1 =(2,7,21,37,48, 30, 3,20, 31, 44,47, 33,41, 5,8)(4, 35, 12, 10, 46, 42, 27, 45)
(6,38, 19,17, 36,22,26, 18, 11, 16, 43, 40, 39, 13, 28)(9, 29, 25, 32, 23,24, 14, 15)
with order 120,

(sauy")? = (2,21,48,3,31,47,41,8,7,37, 30, 20, 44, 33, 5)(4, 12, 46, 27)

(6,19, 36,26, 11,43,39,28,38,17,22, 18, 16, 40, 13)(9, 25, 23, 14)(10, 42, 45, 35)
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(15,29, 32, 24) with order 60,

(saus)’ (sauy ") = (2,16,22,33,9,41,34,47, 8,19, 44,48, 37, 3,20, 31, 25, 13, 26, 32,
6, 18,46, 17,45,5,24, 14,27, 10,21, 7, 23, 4, 36, 39, 43)(11, 35, 42)
(12, 15, 28, 38, 29, 40, 30) with order 777,

((saua)(sauy )P = (11,35,42) € Hy.

It follows from Jordan’s theorem that H; = (T, s;) = A forl = 0, 4.

(3) Since A = Aut(I}) = Ayg, then we need only to prove that for any o € Sym(G) satisfying
G < A, G? has to be conjugate with G in A. In this case, Sy is a CI-subset by Babai’s criterion
(see [5]).

In fact, we see that G° has at most one fixed point on 2, since G° = Ay47 contains a
47-cycle. We claim that G° has exactly one fixed point. If not, then G is transitive on {2,
and the point stabilizer is a maximal subgroup since its index in G is 48. Consequently G is
primitive on {2. But G° has 43-cycles in {2, and |{2| — 43 > 3, it follows from Jordan’s theorem
that G® > Alt(£2) = A, a contradiction.

Letr € {2 (r € T) be this fixed point of G?. It is easy to check that G is the point stabilizer
of 7 in A. Note that G is also the point stabilizer of 1 and hence G is conjugate with G in A.

(4) By direct calculation we have o(ug) = o(u(j]) = 84 for ug € Sp, and o(u4) = o(ugl) =
224 for uy € S4. Therefore, for any o« € Aut(G), Sg‘ # S4. By (3), I is not isomorphic to .

d

By the proof of Theorem 4.3, we have directly a corollary below and hence complete the proof
of Theorem 3.3.

Corollary 4.4. Let s € Ilg(R, T). Assume that s interchanges §210 and (. Then the Sabidussi
coset graph I' := Sab(A, T, s) is isomorphic to one of Iy and I'y. In particular, (T,s) = A. 0O

By the proof of Theorem 4.3(3), we have the following corollary.

Corollary 4.5. In the alternating group Ass, all subgroups which are isomorphic to A47 are
conjugate. 0O

The following lemma shows that no matter how to choose the involution s, the Sabidussi coset
graph Sab(A, T, si) is, up to isomorphism, independent of 7.

Lemma 4.6. Any two mutually isomorphic regular subgroups of S, are conjugate in Sy,.

Proof. If X and Y are regular permutation groups on 2 = {1, 2,...,n},and o : 2 — X and
B : 2 — Y are bijections with the property that 1) = 1@ for | < <n,and 9 : X — Y is
isomorphism, then «6p ! : 2 — 2 is a permutation in S, that conjugates X to Y. [

5. The main result

Now, we are able to give a complete classification of the nonnormal connected s-arc transitive
cubic Cayley graphs of finite nonabelian simple groups.

Theorem 5.1. Let G be a finite nonabelian simple group and I' = Cay(G, S) a nonnormal
connected s-arc transitive cubic Cayley graph for G. Then I is isomorphic to one of Iy and Is.
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Proof. We know from the paper [1] that G here must be isomorphic to A47, and the full
automorphism group A := Aut(I") of the Cayley graph I' is isomorphic to A4g, and that its point
stabilizer A; is isomorphic to S4 x Z; which is the complement of G in A, thatis A = GA;.
Thus, by Lemma 2.1(1) there exists an involution s in G such that [’ = T = Sab(A, Ay, s) with
|[A1sAr A1l =|A1: AfNAj| =3and (A}, s) = A.

According to Corollary 4.5, we may assume the pair of simple groups (A, G) to be the same
as in Theorem 4.3. In this case, A has two subgroups A1 and T (T is defined as in Theorem 4.3),
both are complements of G and they are regular on {2 := [A : G]. In light of Lemma 4.6, there
exists 0 € Sym({2) such that A7 = T, and then A = A° = (GA,)” = G°T. It follows by
Corollary 4.5 that G € A is conjugate to G in A, and we may take i € T such that G = G.

Denote « = oh € Sym({2). Then A = A% = G*AY = GT, |A{s*AY : AY| = |Ts°T :
T| = 3 and (A{,s%) = (T,s*) = A. This implies that s* € IIg(R, T). From Corollary 4.1,
we have s* € {sg,s1,...,s7} and T’ = Sab(A, T, s%) € {70,71, .. .,77}. So we know
from Theorem 4.3 that T"/ is isomorphic to Iy or I, and hence we complete the proof since
T = Sab(A, A1, s) is obviously isomorphic to T = Sab(A, T,s%*). O
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