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Abstract 

K. Hiraishi, some complexity results on transition systems and elementary net systems, Theoretical 

Computer Science 135 (1994) 361-376. 

There is a strong relationship between transition systems and elementary net systems. We consider 
the problem of finding an elementary net system corresponding to a given transition system, where 

the correspondence is defined as an isomorphism between a transition system and the state 

transition diagram of an EN system. The problem is decomposed into two related problems, and we 

show that these problems are NP-complete. However, this result does not mean that the original 

problem is NP-complete. The problem to construct a labeled EN system corresponding to a given 

transition system is also considered. 

1. Introduction 

Transition systems are models for representing global behavior of discrete event 

systems. However, Petri nets are suitable for representing local behavior. Places 

(S-elements) in a Petri net represent local states in a system, and global states are 

represented as markings, that is, configuration of tokens in each place. Each occur- 

rence of transitions depends only on the connected places, and does not affect other 

places directly. 

Elementary net systems (EN systems) as a primitive class of Petri nets. In EN 

systems, each place contains at most one token. There is strong relationship between 
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transition systems and elementary net systems. Nielsen, Rosenberg et al. found a class 

of transition systems corresponding to elementary net systems [l, 2,5]. This class is 

called elementary transition systems. This correspondence is defined as an isomor- 

phism between a transition system and the state transition diagram of an EN system. 

They showed a necessary and sufficient condition for a transition system to be in this 

class. In this paper, we will show some complexity results on the problem to check this 

condition. This problem can be considered as localization of global states. Especially 

when the system allows concurrent behavior, we can describe the state space with 

fewer elements than in transition systems. (The converse of this problem is known as 

“state explosion” [6].) 

In Section 3, we will consider this problem in a different setting, and after that we 

will discuss relationship between this setting and that of [S]. The problem is decom- 

posed into two related problems, and we will show that these problems are NP- 

complete. However, this result does not mean that the original problem is NP- 

complete. 

Not every transition system has a corresponding EN system. In Section 4, we will 

consider labeled EN systems. The behavior of a transition system can always be 

simulated by some labeled EN system. We will show a simple algorithm to construct 

a labeled EN system whose transition diagram is isomorphic to a given transition 

system. 

2. Preliminaries 

2. I. Transition systems 

Definition 2.1. A transition system is a quadruple TS=(S, E, r, s,,), where S is 

a nonempty set of states, E is a set of events, 5 c S x E x S is the transition relation, and 

sons is the initial state. 

Let TS = (S, E, 7, sO) be a transition system. TS is calledjinite if S is a finite set. TS is 

called deterministic if V(s, e,,s,), (s,~~,s~)Ez: [ei =ez+sl =s,]. We will write (s,e)~r 

to indicate 3~‘~s: (s, e, S’)ET. 

We assume that the following for transition systems which we will consider in this 

paper. 

Assumption. Every transition system TS = (S, E, z, .sO) satisfies the following axioms: 

(Al) VegE 3(s, e, S’)ET; 

(A2) VSES-{so} Zle’,e’,...e”-‘EE and 3s1,s2,...,s”~S such that sl=so, sn=s 

and (si,ei,si”)Er for O<i<n- 1. 

We define the following morphism between transition systems, which preserves 

global behavior of the system. 
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Definition 2.2. Let TSi =(Si, E, Zi, sb) (i = 1,2) be transition systems that have the same 

set of events. 

(1) An L-morphism from TS1 to TS2 is a mapping g: S1-+Sz that satisfies the 

following: 

(i) s(sl)=sd; 
(ii) V(s,e,s’)Erl: (g(s),e,g(s’))Erz. 

(2) An L-isomorphism is a bijection g : Si +Sz such that (i) g is an L-morphism from 

TS1 to TS2 and (ii) g-i is an L-morphism from TS2 to TS1. 

If there exists an L-isomorphism between TS1 and TS2, then the language gener- 

ated by TS1 is the same as that by TS2, i.e., each L-isomorphism preserves their 

languages. 

2.2. Elementary net systems 

Definition 2.3. A net is a triple N = (B, E, F), where B is a set of conditions, E is a set of 

events (BnE=O), and F c (B x E)u(E x B) is thepow relation. 

As usual for each XGBUE, let ‘x=(yl(y,x)~F} and x’={yl(x,y)~F}. A net N is 

called simple iff Vx,yEBuE: [‘x=‘y A x’=y’+x=y]. An element XGBUE is called 

isolated if there is no y~Bu E such that (x, y)~ F v (y, x)EF. 

Definition 2.4. An EN system is a quadruple M =(B, E, F; co), where N =(B, E, F) is 

a net called underlying net of M, and c,, c B.’ 

Let M = (B, E, F; c,,) be an EN system and let N = (B, E, F) be its underlying net. 

Then zN c 2’ x E x 2’ is the transition relation given by 

rN={(c,e,c’)lc-c’=*eA c’-c=e*j. 

The state space of M is represented by a transition system H(M)=(C,, Ew, tM, c,), 

where 

(i) CM is the smallest subset of 2’ containing co such that 

[cECw A (c, e, c’)ErN]*c’ECM; 

(ii) Z~ = {(c, e, c’)EC~ x E x C, 1 (c, e, c’)Ez~}; 

(iii) E,={el ~(c,~,c’)Es,,,}. 

We remark that events on a self-loop can never occur in H(M). (i) means that CM is 

the set of states reachable from the initial state co, and (ii) means that every element of 

EM appears in the transition relation at least once. Hence, H(M) satisfies the assump- 

tions (Al) and (A2). Moreover, H(M) is a deterministic transition system. 

‘EN systems defined in [S] requires that N is simple and has no isolated elements. We do not use this 
requirement here. 
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Fig. I. Atomic systems 

3. Transition systems and corresponding EN systems 

In this section, we consider the problem to find an EN system corresponding to 

a given transition system. An EN system can be decomposed into atomic EN systems, 

where an EN system is called atomic if it contains exactly one place. We will first study 

the properties to be satisfied by atomic EN systems so that there is an isomorphism 

between a given transition system and the composed EN system. We will prove that 

the problems to check these properties are NP-complete. After that, we will compare 

these properties with the condition obtained in [S]. 

3.1. Net atoms 

Let E be a set of events. An element x in 2” x 2E (x #(&@)) is called an atom over E. 

Let Atom, denote the set of all atoms over E. Each x=(E,, E,)EAtom, specifies 

atomic EN systems A,=( {h},E,F,@) and &=({h),E,F, jh}) such that (e,h)EF iff 

eEE,, and (h,e)EF iff eEE,. For example, Fig. 1 shows A, for E={a,b,c,d,e) and 

x = ({ c, d ), {a, h ) ). Each atom specifies dependency among occurring events. An atom 

(E,, E2)c Atom, requires that events in El and Ez occur alternately. Trace languages 

were proposed based on such dependency [4], and relationships between trace 

languages and EN systems were discussed in [3]. We should mention the difference 

between out atomic EN systems and net atoms used in [4]. In [4], an atom of an 

EN-system M = (B, E, F; co) (determined by a condition b) is defined by 

Each atom N, has ‘b u b’ as the set of event, while in our definition each atomic EN 

system has E itself as the set of events. This difference is important when we consider 

an L-morphism between transition system TS and H(A,). 

Definition 3.1. Let TS =(S, E, T, sO) be a transition system. An atom xgAtomE is called 

consistent with TS if there exists an L-morphism from TS to H(A,). Let Atom, 

denote the set of all atom yEAtomE consistent with TS, and let 

Atom-lE( TS)= j(EZ, El) 1 (E,, E,)EAtom,( TS)}. 

The following is obvious. 
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Property 3.2. Let TS=(S, E, z, s,,) be a transition system and let x =(E,, E2) and 

y=(E2,E1) be in Atom,. 

(i) H(A,) and H(A,) are L-isomorphic to each other. 

(ii) Let gx be an L-morphism from TS to H(A,), and let yY be an L-morphism from 

TS to H(A,). Then for each sES,g,(s)=$ iff g,(s)#@. 

Fig. 2 shows the atomic EN system AY for E= {a, b,c,d, e} and ~=({a, b), {c,d}). 

We can observe that the behavior of A, (Fig. 1) and AY is equivalent. We remark that 

Property 3.2 (ii) relies on the assumptions (Al) and (A2), i.e., this property is not 

always true without these assumptions. 

Let Mi=(Bi,E,Fi;ci) (i= 1,2),B,nB,=@, be EN systems having the same set of 

events. Then the composition of Ml and M, and M, is defined by Ml @ M, = 

(B,uB,,E,F,uF,;cluc,). Using H(M,) and H(M,), H(M, 0 M,) is obtained as 

follows: 

(i) C M, BM2 is the smallest subset of 2B1”B2 containing c1 ucz such that 

[CEC M,0M2 A(cn&,c’nBI)=M, A (CnBz,e,c’nB,)E5~2]~C’~C~~~M2; 

(ii) r M,OMa=((c,e,c’)~C~1~M,xExC~,~M2I(cnB,,e,c’nB,)~~~,*(cnB,, 

c,c’n&)ErMM,}; 
(ii) E M10M2={e13(c,e,c’)E~M10MZ). 
Such composition has been studied often, eg., [4]. We define the EN systems 

constructed from a set of atoms. Let W be a subset of Atom,. When W#8, 

let M(W)=@x,wA, and let IQ’( W)=exeW&. When W=@, let 

M(O)= &f(@)=(@, E,@;@) (the EN system that has no conditions). We have the 

following proposition. 

Proposition 3.3. Let TS =(S, E, z, s,,) be a transition system. Then H( M(Atom,( TS))) 

and H(Aj(Atom-‘,(TS))) are L-isomorphic to each other. 

Proof. Atom,( TS) contains an element x=(E,, E2) if and only if Atom-‘,( TS) 

contains y=(E,, El). Moreover, by Property 3.2 (i), H(A,) and H(A,) are L-isomor- 

phic to each other. Considering the above construction of H(M1 @M,), we can 

conclude that H(M(Atom,(TS))) and H(M(Atom - lE( TS))) are L-isomorphic to each 

other. 0 
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3.2. Net construction problems from consistent atoms 

Now we show a condition satisfied by a set W of atoms such that H(M( W)) and 

a given transition system are L-isomorphic. 

Proposition 3.4. Let TS=(S, E, ~,s,,) be a transition system and let WC Atom,. Then 

TS and H(M( W)) are L-isomorphic tf and only if the following hold: 

(i) For each XE W, there exists an L-morphism gx from TS to H(A,). 

(ii) For each pair sl,sZ~S (sl #sz), there exists an atom XE W such that 

gx(sI)#gx(s2). (Such an atom x is called a state separation atom for s1 and sz.) 

(iii) Let XTS be defined by XTS= {(s, e)ES x E 1 (s, e)$z}. For each (s,e)EXTS, there 

exists an atom XE W such that (g,(s), e)$rA,, (Such an atom x is called an inhibitor atom 

for (s, e).) 

Proof. The “Only if” part is clear. We will prove the “If” part. From (i), there is an 

L-morphism g from TS to H(M( W)). From (ii), g is an injection. From (iii), if 

(c, e, c’)ET~(~) and g(s) = c, then there exists s’ such that (s, e, S’)ET. Since H( M( W)) is 

deterministic, we have g(s’)=c’. On the one hand, this implies g(S)= C,,,(wJ, since 

H(M( W)) satisfies (A2). On the other hand, it implies for the inverse mapping 

g-i:CMM(w) +S that for each (c,e,c’)ET,(,, we have (g-‘(c),e,g-‘(c’))Er. 0 

Let us consider the problem to find a state separation atom for each pair of states. 

Let TS=(S,E,z,q,) be a finite transition system, let x=(Ei,E,)~Atorn,(TS) and 

let gX be an L-morphism from TS to H( A,). Suppose that x is a state separation atom 

for s,,s,~S(s, Zs,), i.e., g,(sl)#gX(sl). We define mappings f and m as follows. 

Let f:E+(-l,O,l} be a mapping such that f(e)=-1 if eEEz. f(e)=1 if egEI, 

and f(e)=0 otherwise. Let m:S+{O,l} be a mapping such that m(s)=1 if gJs)#@ 

m(s)=0 if gX(s)=8. Then the following holds: 

m(s)+,f(e)=m(s’) for each (s,e,s’)~r; m(si)#m(sz). 

Conversely, if there are such mappings m and f that satisfy the above equations, 

then ({eEElf(e)=l}, {eEElf(e)=--I}) IS a state separation atom for si, s2. 

m(sI)#m(sz) means that m(sI)= 1 A m(sz)=O or m(sI)=O A m(s2)= 1. Let us con- 

sider y=(E,,E,)~Atom- E( TS). By Property 3.2(i), H( A,) and H(A,) are L-isomor- 

phic to each other, and therefore there exists an L-morphism g,, from TS to H(A,). We 

define mappings f’ and m’ as follows. Let f’ : E+ { - l,O, l} be a mapping such that 

f’(e)= -1 if ecE,, f’(e)=1 if ecE,, and f’(e)=0 otherwise. Let m’:S+{O,l} be 

a mapping such that m’(s)= 1 if g,,(s) #@I, m’(s)=0 if g,(s)=@ By Property 3.2(ii), it 

follows that m(s)= 1 iff m’(s)=0 for each state SES. Therefore, we can conclude that 

there is a state separation atom for si and s2 if and only if there are mappings 

f: E+{ - l,O, l} and m: (0, 1) that satisfies the following: 

m(s)+f(e)=m(s’) for each (s,~,s’)ET; m(sl)= 1; m(s,)=O (1) 
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(b) 

Fig. 3. Construction of a transition system representing 3SAT. 

The problem to find the atom x can be written in the following form. 

States Separation Atom (SSA) 

Instance. A finite transition system TS =(S, E, z, sO) and a pairs of states 

Sl,%ES(SZ Zsz). 
Question. Is there a solution of (l)? 

Theorem 3.5. SSA is NP-complete. 

Proof. It is easy to see that SSAENP since we can check in polynomial time whether 

given m and f satisfies (1). We show that 3SAT below is reducible to SSA in 

polynomial time. 

3-Satisjiability (3SAT) 

Instance. A collection C = {cl, . . , , c,} of clauses on a finite set U of variables such 

that Icil=3 for 1 <i<m; 

Question. Is there a truth assignment for U that satisfies all the clauses in C? 

Given a collection C of clauses, a transition system TS = (S, E, z, so) is constructed as 

follows (Fig. 3): 

(i) sl, SUES. 

(ii) For each literals Ui and 1 Ui, let 

Sips, Vi, 1 UiE E, (S2,ui,Si),(Si,1UirS1)EZ. 

(iii) For each clause ci =cil v ciz v Ci3, let 

sil 9 si2 T Si3 3 Si4E S, Cia,l Cia,Cib,l CibEE, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(SI rcia, Sia)r (Siml Cim SZ), (SIT Cib, Sib), (Sib? 1 cib? SZ)ET. 
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(iv) Every element of S, E and r is defined by the above (i), (ii) and (iii). 

(v) Since every state is reachable from s2, we can choose s2 as the initial state. (In 

fact, the selection of the initial state is not important when we find a solution of(l).) 

The value f( 21) for each literal 2; is assigned by ,f( v) = 1 iff c is true, and ,f( u) = 0 iff L’ is 

false. Obviously, this instance can be constructed in polynomial time. Suppose that 

there exists a solution of (1) for TS. Then the following holds. 

(i) For each literal ui and 1 ri, (,f(ui)= 1 ~,f(l Vi)=O) v (f‘(vi)=Or\f(l ~?i)= 1); 

(ii) For each clause ci = cil v ci2 v ci3, 

(.f‘(~i~)= - 1 A,f(l C,)=O) V (.f‘(c’i,)=O A,f’(l (‘ia)= - l), 

(.f’((.ib)= - 1 A,f(l (‘ib)=O) V (,f’(Cib)=O A,f‘(l L.ib)= - l), 

For each clause ~i=cil v (‘iz v Ci3,,f((.il)+,f‘((.i2)+,J’((.i3)B 1 holds, and therefore at 

least one of the literals cil , ci2, (‘i3 must be true. Conversely, if all of the literals in Ci are 

true, then we have .f’(~il)=f’(Ci2)=,f((.i3)= 1 and .f’(Cia)=,f’(cib)= - 1. If two of the 

literals are true, e.g., cil =Ci2 = true and ci3 =false, then we have .f’(cir)=f’(c’iz)= 1, 

.f‘(ci3)=0 and (,f(cia)= - 1 ~,f(c~~)=O) v (.f‘(C’,)=O A,f(Cib)= - 1). If one of the lit- 

erals are true, e.g., ci,=true and ci,=ci,=false, then we have ,f(cil)=l, 

,f(ci2)=,f(ci3)=0 and ,f(cia)=f(cib)=O. If no literals are true, then we have no 

solutions of (1). 0 

The problem to find an inhibitor atom for each element in XTS can be treated in 

a similar way. Let TS = (S, E, 5, sO) be a finite transition system, let .utzAtom,( TS) and 

let gx be an L-morphism from 73 to H(A,). Suppose that .Y is an inhibitor atom for 

(s,,eZ)~XTs. Then (y,(s,)=@ r\,f(e,)= -1) v (s,(s,)#@ r\f(e,)= 1) holds. Therefore, 

there is an inhibitor atom for (sz, e,) if and only if there are mappings .f‘: E-+ ( - l,O, 1) 

and m:S+(O. 1) that satisfies the following: 

m(s)+J’(e)=m(s’) for each (.s,e,s’)Er; m(s,)=O; f’(e,)= - 1. (2) 

The problem to find the atom .y can be written as 

Inhibitor atom (IA) 

Instance. A finite transition system TS =(S, E, T, so) and (s,, e,)EXTs. 

Question. Is there a solution of (2)‘~ 

Theorem 3.6. IA is NP-complete. 

Proof. It is easy to see that IAENP since we can check in polynomial time whether 

given nz andfsatisfies (2). We show that SSA is reducible to IA in polynomial time. We 

consider an SSA for a transition system TS=(S, E,T,s,,) and sl,sZ~S (si fs,). Let 

TS’=(S, E’, T', s,,) be a transition system such that E’=Eu ie,) and 

r’= t u { (sl, e,, s2) 1. Then the SSA for TS and si, SUES has a solution if and only if an 
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IA for TS’ and (sl,ee)EXTS, has a solution. Clearly, TS’ can be constructed in 

polynomial time. 0 

Corollary 3.7. Let TS=(S, E, z, sO) be a transition system. Suppose that there exists 

WEAtom,( TS) such that TS and H(M( W)) are L-isomorphic to each other. Then there 

exists such Wsatisfying 1 W\<ISl(lSI-l)/2+ISjIEl. 

Proof. Wconsists of state separation atoms for pairs of states in S and inhibitor atoms 

for elements in Xrs. ISl(lSl- 1)/2 is the number of pairs of states in S and 

I~~slGl~llEl. 0 

3.3. Regions of elementary transition systems 

Elementary transition systems are defined as a subclass of transition systems 

corresponding to elementary net systems (without isolated elements) [S]. We first give 

the definitions and results related to elementary transition systems. 

Elementary transition systems are based on the notion of regions defined as follows. 

Definition 3.8. Let TS =(S, E, z, sO) be a transition system. r c S is called a region of TS 

if 

(i) [(s,e,s’)ET A sEr A s’$r]*V(sI,e,s;)ET: [s,Er A s;$r], and 

(ii) [(s,e,s’)E7 h s$r h s’Er]*V(s,,e,s;)ET: [sl$r A s;Er]. 

Let RTs denote the set of non-trivial (neither 0 nor S) regions of a transition system 

TS = (S, E, 5, s,,). 

(i) For each SES, let R,={r(3reR,s:sEr}. 

(ii) For each eeE, let Oe={rIrER,, A 3(s,e,s’)Er:[scr A s’#r]} and 

e”={rlrER,,~ ~(s,~,s’)Ez:[~@ A s’Er]j. 

(iii) For each reR,s, let “r={e~Elr~e”} and r’={eEEIrE’e}. 

We will use the following property later. 

Property 3.9. Let TS=(S, E, z, sO) be a transition system. 

(i) r is a region if and only if S-r is a region. 

(ii) Suppose that r is a region. Then ‘r=(S-r)’ and r’=‘(S-r). 

Using the notion regions, elementary transition systems are defined as a subclass of 

transition systems. 

Definition 3.10. Let TS = (S, E, z, sO) be a transition system (satisfying the assumptions 

(Al) and (A2)). TS is called elementary if the following axioms hold: 

(A3) V(s,e,s’)ET:s#s’; 

(A4) V(s,el,sl),(s,ez,s,)~~: Csi =s2*el =e21; 
(A5) Vs, s’ES: [R,= R,=-s = s’]; 

(A6) VSES VeEE: [“e c R,=>3s’~S:(s,e,s’)~z]. 
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Note. (A3) directly corresponds to the condition that an EN system has no isolated 

events, and (A4) corresponds to simple EN systems. 

In [S], correspondence between transition systems and EN systems is considered by 

the following morphism. 

Definition 3.11. Let TSi=(Si, Ei,7i,sb) (i= 1,2) be transition systems. 

(1) A G-morphism from TS, to TS2 is a mapping g: S1 +Sz that satisfies the 

following: 

(i) g(s6)=s& 
(ii) V(s,e,s’)~7, :[g(s)=g(s’) v 3e,EE2:(g(s),ez,g(s’))E7z]; 

(iii) C(s,e,s’)E71 A (g(s),ez,g(s’))Ezzl~V(sl,e,s;)ETI: Ms~),e2,dsi))=2. 
(2) A G-isomorphism is a bijection g: Si +S1 such that (i) g is a G-morphism from 

TS1 to TS2 and (ii) g _ ’ is a G-morphism from TS2 to TSI. 

Let TS = (S, E, T, so) be a transition system. Then J( TS) = ( RTS, E, FTS; R,,) denotes 

the EN system such that 

FTS={(r,e)Ir~RTs~e~Er\r~“e)u{(e,r)IrERTS~rEEArEeo}. 

The following results was obtained in [S]. 

Theorem 3.12. Let TS=(S, E,t,so) he an elementary transition system. Then the 

mapping g: S+CJ(TSI given by g(s)=R,for every SES is a G-isomorphism from TS to 

H(J(TS)). 

Theorem 3.13. A transition system TS is elementary if and only tf there exists an EN 

system M such that (i) M is simple, (ii) M has no isolated elements, and (iii) TS and H(M) 

are G-isomorphic to each other. 

We first show that there is one-to-one correspondence between regions and consis- 

tent atoms. 

Proposition 3.14. Let TS =(S, E, T, s,,) be a transition system. 

(i) Atom,( TS) = { ( “r,r”)IrERTS-R,,) and AtomP1v(TS)={(Or,rO)lrER,). 

(ii) Let r be a non-trivial region, let x=(‘r,r’)EAtom,(TS) (Atom-‘,( resp.), 

and let gX be an L-morphism from TS to H(A,) (H(A,), resp.). Then gX(s) #@ ifand only 

if rER,. 

Proof. (i) Let rER rS- RsO be a non-trivial region, let x =( Or, r”)EAtomE and let 

A,=({b),E,F,@) b e an atomic EN system for the atom x. Define a mapping 

g:S-+C,X such that for each SES, g(s)=(b) ‘f 1 sEr, and g(s)=@ if s$r. Then g is an 

L-morphism from TS to H(A,). Conversely, suppose that x=(E,, &)EAtom,( TS) 

and let gX be an L-morphism from TS to H(A,). Then r={s~S~g,(s)={b}} is 



Some complexity results 371 

a non-trivial region such that El =‘r and E2 =P. Moreover, r$R,, holds since 

g,(s,,)=@ Atom-‘.(TS)={( Or, r’) ) rE R,,} can similarly be proved. 

(ii) We will prove for xEAtom,( KS). The case that xEAtom_‘,( T’S) can be proved 

in a similar way. 

“If”. Let A,=({b},E,F,@) b e an atomic EN system for the atom x. Assume 

that gX(s)=@ Since sEr, g.Js’)=@ holds for every s’Er. Since r is non-trivial, either 

Or or r0 is not empty, i.e., there exist eeE,slES-r and s2Er such that 

(eE”r A (s,,e, e2)E7) v (eEr” A (s2, e, sl)Ez). Therefore, it follows that 

(=‘b A (g,(slhe,gx(s2))E~A,) v e&” A (gx(s2),e,g,(sl))Eza,). This contradicts 

gx(sz)=@ 
“Only if”. Assume that r#R,. By Property 3.9(i), it follows that S-rc:R,. Let 

y =(r’, “r)sAtom-lE( 7’S) and let gy be an L-morphism from TS to H(A,). From “If” 

part, g,(s) #0 holds. By Property 3.2(ii), we obtain gJs)=@. 0 

By the definitions of L-morphism and G-morphism, we have the following lemma. 

Lemma 3.15. Let TS=(S, E, t,sO) be a transition system and let M be an EN system, 

and let g be an L-isomorphism from TS to H(M). Then g is a G-isomorphism from TS to 

H(M). 

Using the notion of atoms, we can rewrite Theorem 3.13 as follows. 

Corollary 3.16. A transition system TS is elementary if and only if the following holds: 

(i) M(Atom,( TS)) is simple. 

(ii) M(Atom,( TS)) contains no isolated elements. 

(iii) TS and H(M(Atom,(TS))) are G-isomorphic to each other. 

Proof. The ‘If’ part is immediately obtained from Theorem 3.13. By Proposition 3.14, 

H(J( TS)) and H(M(Atom,(TS)) @ M(Atom-‘,( TS))) are L-isomorphic to each 

other. Since H( M(Atoma( TS))) and H(M(Atom - lE( TS)))) are L-isomorphic, 

H(J( TS)) and H(M(Atom,( TS))) are L-isomorphic, and therefore they are G- 

isomorphic by Lemma 3.15. Hence, we obtain the “Only if” part by Theorem 

3.12. 0 

Now we consider the problem to check the axiom (A5) and (A6). We can easily 

obtain the following result from Property 3.14. This proposition shows that these 

problems correspond to the problems SSA and IA, respectively. 

Proposition 3.17. Let TS=(S, E, z,sO) be a transition system. 

(i) There exists a state separation atom xeAtom,( TS) for sl, SUES (sl #s2) if and 

only if R,, # R,, . 
(ii) There exists an inhibitor atom xEAtomE( TS) for (s,e)~X~s if and only if 

“e-R,#Q). 
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4. Nondeterministic transition systems and labeled EN systems 

In this section, we will introduce labeled EN systems, and will consider a problem to 

find a labeled EN system which is L-isomorphic to a given transitions system. For EN 

systems, the corresponding transition systems should be deterministic. By using 

labeled EN systems, the corresponding transition systems can be nondeterministic. 

Definition 4.1. Let M =(B, T, F; cO) be an EN system, let E be a set of labels and let 

h : T+E be a mapping. Then ML =(M; E, h) is called a labeled EN system, and 

H(ML)=(C,,h(T,),r ML,~O) denotes the transition system defined by 

rML={(c,h(t),c’)EC,,, x E x C,,, I (c, t, c’)=N}, 

where N = (B, T, F) is the underlying net of M. 

Let TS =(S, E, z, s,,) be a transition system. Let M =(B, T, F; co) be an EN system 

and let ML = (M; E, h) be a labeled EN system. ML is called a trivial representation of 

TS if there exists a bijection 4 : S u r *BuTsuch that t(S)=& t(r)=T, co={~(so)}, 

and for each u=(s,~,s’)ET, (t(s),r(u))~F, (t(u),(<(s’))~F and h(<(u))=e. Clearly, TS 

and H(ML) are L-isomorphic. We need an ML such that IEl</ TI <IzI. We can show 

the following proposition. 

Proposition 4.2. Let TS = (S, E, z, so) be a transition system, and let ML = (M ( W); E, h) 

he a labeled EN system such that WC Atom, and h: T-+E. Then TS and H(ML) are 

L-isomorphic to each other if and only if the following holds: 

(i) For each XE W, their exists an L-morphism gx from TS to H((A,; E, h)). 

(ii) For each pair sI,sZ~S(sI #sz), there exists an atom XE W such that 

gx(s1)#gx(s2). (x is called a state separation pseudo-atom for s1 and sz.) 

(iii) Let TSh=(S, T, ~~~ so) be the relabeled transition system defined by (s, t, s’)~t~ ifs 

3(s, e,s’)ET: [h(t)=e A VXE W: (gx(x), t,gx(s’))ETA,]. Then for each (s, t)EXrsh, there 

exists an atom XE Wsuch that (g,(s), t)$~~,, (x is called an inhibitor pseudoatom ,for (s, t).) 

Proof. TSh and H(M( W)) are L-isomorphic if and only if TS and H(ML) are 

L-isomorphic. Therefore, we obtain the proposition by Proposition 3.4. Cl 

By adding state separation pseudo-atoms and inhibitor pseudo-atoms, we can 

obtain a labeled EN system which is L-isomorphic to a given finite transition system. 

The following is an algorithm to do this construction. 

Algorithm 4.3 

Input: a finite transition system TS = (S, E, z, so). 

Output: a labeled EN system ML such that TS and H(ML) are L-isomorphic. 

Step 1. (Initialization) 

k:=O. (k is the iteration counter.) 
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Tk = E. (T,, denote the set of events of the labeled EN system at step k.) 

W, = 0. ( W, c AtomT, denote the set of atoms at step k. Initially, W,, is empty, i.e., 

M( W,) is the EN system which has To = E as the set of events, and has no conditions.) 

uk : z-+ T, is defined by uk(u)= e for each u =(s, e, S’)ET. (uk indicates which element of 

T, corresponds to each element of 7.) 

Let TSI,=(S, T,, zk, so):= TS be a transition system. ( TSI, denote the relabeled 

transition system at step k. Each event of TS is relabeled by corresponding events of 

M( W,).) Define a mapping yO: S+{ 0}, which is an L-morphism from TS,, to M( W,). 
k:=k+l. 

s2 C 

a 0 S 

56 

Fig. 4(a). A nondeterministic transition system 

(3) m3 and fi 

Fig. 4(b). mi and,f, (i= 1,2,3). 
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Fig. 4(c). M( W,). 

Fig. 4(e). mi and ,fi (i=4,5) 

Fig. 4(d). H(M( W,)). 

bl bo C 

% a0 al 

Fig. 4(f). M( W,). 

Step 2. (Finding state separation pseudo-atoms) 

2.1. Let gk_ I be an L-morphism from TSk_ 1 to !vf( wk_ 1) and let s1 and s2 be states in 

S such that s1 fs, and gk_l(sl)=qk_l(sZ). If there are no such pair of states, then go 

to Step 3. 

2.2. Find mappings mk:S-+{O, 1) andfk:r+{ -l,O, l} such that 

mk(s)+fk(u)=mk(s’) for each U=(S,e,S’)eT; mk(S1)= 1; mk(+)=O. (3) 

We obtain a state separation pseudo-atom from the solution. We should find 

a solution that minimizes Dk(t)=I{fk(U)(Uk_l(u)=t}l for each tETk_l. When 

L&(t)> 1, the transition t will be decomposed into Dk(t) events in Tk. 

2.3. Construct an EN system A!( wk) and a relabeled transition system TSk as follows: 

Tk:={tqItETk-l Afk(o)=q}. (E ac h event TV Tk_ I is decomposed when &(t) > 1.) 

Let uk : T-+ Tk be a mapping defined by Uk(u) = t, if uk _ I (0) = t A_&(U) = q. 
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Let W,:={xrliG{l,..., k}} be the new set of atoms over Tk, where 

xi +({ h(u) Ifi( I}, { Kk(u) Ifi(u)= - 1 >I if M%)=O, 

Xi:=({Uk(U)Ifi(U)=-l},{U~(U)~fi(U)=l}) if m(so)=l (i=l,...,k). 

Let TSt :=(S, T,, zk, s,,), where 7,:={(s,t,,s’)~3u=(s,e,~‘)~7:~~(U)=t~}. Then 

W, c Atom,,( TS,) holds. 

2.4. k := k + 1 and go to Step 2. 

Step 3. (Finding inhibitor pseudo-atoms). 

3.1. Let (s,,t,)~Xr~~_~. If XTSk_l=Or then go to Step 4. 

3.2. Find mappings mk:S+{O, l> and &:7+{ - l,O, l} such that 

mk(s)+fk(U)=mk(s’) for each u=(s,~,s')Ez; 

mk(s,)=O; fk(u)= - 1 for all IJE~ such that uk_i(u)=t,. 

We obtain an inhibitor pseudo-atom from the solution. 

3.3. Construct an EN system M( W,) and a relabeled transition system TSt. 

3.4. k:= k + 1 and go to Step 3. 

(4) 

Step 4. (Definiting a labeling function). Let h: T,+E be a mapping defined by 

h(t)=e if 3u=(s,e,s’)E~:~~(u)=t. 

Output ML := (M( W,); E, h). 0 

Remark. We can easily find solutions of (3) and (4). For the equations (3), first assign 

arbitraly 0 or 1 to each state s other than s1 and s2, and let fk(u)=s’-s for each 

u=(s,e, S’)EZ. For Eqs. (4), we can obtain a solution as follows: 

(i) If u=(s,e,s')E7 and uk_i(u)=tr, then let m,(s)=1 and m,Js’)=O. In this 

case we can say that there is no u’=(s’, e, s”)E~ such that &_ i(u’)= t,. By processing Step 

2, M( Wk_ 1) already contains a state separation pseudo-atom for (s, s’), and therefore 7, is 

not isolated. This implies that the sequence t,t, is not enabled at state s. Moreover, 

s cannot be the state s,. Hence conflicts do not occur in the above value assignment. 

(ii) Assign arbitraly 0 or 1 to other states. 

(iii) Lct_&(U)=s’-s for each u=(s,e,s')E7 such that uk_l(u)#t,. 

Each solution of the Eqs. (1) corresponds to a solution of (3) such that &(t) = 1 for 

every tETk_l. This implies that the problem to find a solution minimizing Dk(t) for 

each tE Tk_ 1 is as hard as the problem SSA. Similarly, for Eq. (4), the problem to find 

a solution minimizing &(t) for each tE T,+ 1 is as hard as the problem IA. 

Example. We will consider a nondeterministic transition system TS shown in 

Fig. 4(a). For each pair of states (s,,, sr), (si, s4) and (ss, sq), we obtain mappings mi and 

fi (i= 1,2,3) shown in Fig. 4(b) (the number in each circle represents mi and the 

number on each arrow represents 1;:). Wi (i = 1,2,3) are obtained as 

wl={({~~>{~>c~)~~ W2={({ ao,a,$,(b,c}),((al},{c})} and w,={({ao9ar){b,c)), 

({ai>,(c ((b},0)1. M(Ws) h 1s s own in Fig. 4(c) and H(M( W,)) is shown in Fig. 

4(d). We can observe that for each pair si, sj of states, g3(si)=g3(sj) iff si=sj. 
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Comparing Fig. 4(a) and Fig. 4(d), an inhibitor pseudo-atom ({a,, h, }, 0) is found for 

(s~,G),(.G,u~)EX~~~ (Fig. 4(e)). T ransition h is decomposed into two transitions bO 

and h1 at this step. For (.sq,hO)~XTSI, ((a,), {ho}) is found. M( W,) is shown in Fig. 

4(f). Defining a labeling function h by h(a,)=h(al)=u, h(b,)=h(b,)=h, and 

h(c)= c, TS and ML=(M( W,); E, h) are L-isomorphic to each other. 

5. Concluding remarks 

We have shown some complexity results on the problem to find an EN system 

corresponding to a given transition system. Every EN system can be decomposed into 

a set of atomic EN systems, and there is one-to-one correspondence between atoms 

and regions. We have considered problems to find an atom which is consistent with 

the transition system and satisfies the conditions of state separation and inhibition. 

These two problems correspond to the axioms (A5) and (A6) of elementary transition 

systems, and are NP-complete. However, this result does not mean that the original 

problem is NP-complete. In Section 4, we have shown a simple algorithm to construct 

a labeled EN system from a given transition systems. However, the problem to find 

a labeled EN system ML that minimizes the number of necessary transitions is as hard 

as the above problems. 
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